JPH05163906A - Combustion chamber structure of two-cycle internal combustion engine - Google Patents

Combustion chamber structure of two-cycle internal combustion engine

Info

Publication number
JPH05163906A
JPH05163906A JP3328803A JP32880391A JPH05163906A JP H05163906 A JPH05163906 A JP H05163906A JP 3328803 A JP3328803 A JP 3328803A JP 32880391 A JP32880391 A JP 32880391A JP H05163906 A JPH05163906 A JP H05163906A
Authority
JP
Japan
Prior art keywords
air supply
valve
exhaust
valves
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3328803A
Other languages
Japanese (ja)
Inventor
Koichi Nakae
公一 中江
Toyoichi Umehana
豊一 梅花
Takeshi Sato
武 佐藤
Tadashi Fukuyama
正 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3328803A priority Critical patent/JPH05163906A/en
Publication of JPH05163906A publication Critical patent/JPH05163906A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • F02F1/4221Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder particularly for three or more inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis

Abstract

PURPOSE:To scavenge already burnt gas in good condition by providing a pair of intake valves on one side in a cylinder head, providing at least three exhaust valves on the other side thereof, in symmetric positions respectively, providing a mask wall at the opening port of one side intake valve opposing to the exhaust valve on one side of symmetric surfaces, also providing a mask on the other side thereof in the same way, so as to make new air flow in a loop shape. CONSTITUTION:Intake valves 9 to 11 are provided on one side of a cylinder head inner wall surface, exhaust valves 12 to 14 are provided on the other side, and the valves 9 to 14 are provided symmetrically in relation to a symmetric surface K-K. For example, the opening port of the intake valve 9 is covered with a cylindrical inner circumferencial wall part so as to form mask wall 16. The mask wall 16 covers a range within straight lines L1a, L1b which hold inward the whole of the umbrella parts of the exhaust valves 12, 14 from the umbrella part center of the intake valve 9, and a mask angle alpha1 becomes a minimum value. Thus new air flows in a loop shape so as to scavenge already burnt gas in the circumferential rim part of a combustion chamber in good condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は2サイクル内燃機関の燃
焼室構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion chamber structure for a two-cycle internal combustion engine.

【0002】[0002]

【従来の技術】シリンダヘッド内壁面の一側にシリンダ
軸線を含む対称平面に関して対称的に一対の給気弁を配
置すると共にシンリダヘッド内壁面の他側に排気弁を配
置し、排気弁側に位置する各給気弁の開口を給気弁の開
弁期間全体に亘ってマスク壁により覆うようにした2サ
イクル内燃機関の燃焼室構造が公知である(特開平2−
153222号公報参照)。この2サイクル内燃機関の
燃焼室構造では、排気弁側に位置する各給気弁の開口が
マスク壁によって覆われているので新気はマスク壁と反
対側の各給気弁の開口から燃焼室内に流入し、この新気
は給気弁下方のシリンダボア内壁面に沿い下降し、次い
でピストン頂面に沿い進んで排気弁下方のシリンダボア
内壁面に沿い上昇するのでループ掃気を行うことができ
る。
2. Description of the Related Art A pair of air supply valves are arranged symmetrically with respect to a plane of symmetry including a cylinder axis on one side of an inner wall surface of a cylinder head, and an exhaust valve is arranged on the other side of the inner wall surface of the cylinder head, and is located on the exhaust valve side. There is known a combustion chamber structure of a two-cycle internal combustion engine in which the opening of each intake valve is covered with a mask wall over the entire opening period of the intake valve (JP-A-2-
153222). In the combustion chamber structure of this two-cycle internal combustion engine, since the openings of the intake valves located on the exhaust valve side are covered by the mask wall, fresh air is introduced from the openings of the intake valves on the opposite side of the mask wall to the combustion chamber. This fresh air flows down to the inner wall surface of the cylinder bore below the intake valve, then advances to the top surface of the piston and rises along the inner wall surface of the cylinder bore below the exhaust valve, so that loop scavenging can be performed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上述の2
サイクル内燃機関の燃焼室構造では給気弁の周縁部に沿
って延びるマスク壁の範囲、即ち給気弁の周縁方向に沿
ったマスク壁の長さおよび位置について十分な検討がな
されていない。即ち、給気弁の周縁方向に沿ったマスク
壁の範囲を小さく形成しすぎると、マスク壁で覆われて
おらず且つ排気弁側に位置する給気弁の開口部分から燃
焼室内に流入した新気がシリンダヘッド内壁面に沿って
進み、次いで排気弁の開口を通って排気ポート内に吹き
抜けてしまう。この場合、この吹き抜ける新気は燃焼室
内の既燃ガスの掃気作用に寄与しないので無駄な空気と
なり、その結果掃気効率が低下してしまうという問題を
生ずる。
[Problems to be Solved by the Invention] However, the above-mentioned 2
In the combustion chamber structure of the cycle internal combustion engine, the range of the mask wall extending along the peripheral portion of the intake valve, that is, the length and position of the mask wall along the peripheral direction of the intake valve have not been sufficiently studied. That is, if the range of the mask wall along the peripheral direction of the air supply valve is made too small, new air flows into the combustion chamber from the opening of the air supply valve which is not covered by the mask wall and is located on the exhaust valve side. Air travels along the inner wall surface of the cylinder head and then blows through the opening of the exhaust valve into the exhaust port. In this case, since the fresh air that blows through does not contribute to the scavenging action of the burnt gas in the combustion chamber, it becomes useless air, resulting in a problem that the scavenging efficiency decreases.

【0004】一方、新気がシリンダヘッド内壁面に沿っ
て排気ポート内に吹き抜けることを確実に阻止しようと
して給気弁の周縁方向に沿ったマスク壁の範囲を大きく
形成しすぎると、今度は給気弁の開口面積が減少するた
めに新気が給気弁開口を通過するときに受ける流れ抵
抗、即ち給気抵抗が増大してしまい、従って給気ポート
から燃焼室内に新気が流入しにくくなる。その結果、給
気ポート上流に配置された機械式過給機が新気を燃焼室
内に送り込むためになす吐出仕事が増大し、斯くして機
関の熱効率が低下してしまうという問題を生ずる。
On the other hand, if the area of the mask wall along the peripheral direction of the air supply valve is made too large in order to surely prevent fresh air from blowing through into the exhaust port along the inner wall surface of the cylinder head, then the air supply will be performed. Since the opening area of the air valve decreases, the flow resistance, that is, the air supply resistance, that the fresh air receives when passing through the air supply valve opening increases, and thus it is difficult for fresh air to flow from the air supply port into the combustion chamber. Become. As a result, the discharge work performed by the mechanical supercharger arranged upstream of the air supply port to send the fresh air into the combustion chamber is increased, and thus the thermal efficiency of the engine is reduced.

【0005】従って良好なループ掃気を行うためには、
給気抵抗をできるだけ小さく抑えつつシリンダヘッド内
壁面に沿って吹き抜ける新気量をできるだけ低減させる
ことができるように、給気弁の周縁方向に沿ったマスク
壁の長さおよび位置を最適な長さおよび最適な位置に形
成することが重要である。しかしながら上述の2サイク
ル内燃機関の燃焼室構造では、このように良好なループ
掃気を確保するために最適なマスク壁の範囲について十
分な検討がなされていない。
Therefore, in order to perform good loop scavenging,
Optimum length and position of the mask wall along the peripheral edge of the air supply valve so that the amount of new air that blows along the inner wall surface of the cylinder head can be reduced as much as possible while keeping the air supply resistance as small as possible. And it is important to form in an optimal position. However, in the above-described combustion chamber structure of the two-cycle internal combustion engine, the optimum range of the mask wall for ensuring such good loop scavenging has not been sufficiently studied.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
めに本発明によれば、シリンダヘッド内壁面の一側にシ
リンダ軸線を含む対称平面に関して対称的に一対の給気
弁を配置すると共にシリンダヘッド内壁面の他側に少く
とも3個の排気弁を配置し、排気弁側に位置する各給気
弁の開口をマスク壁によって覆うようにした2サイクル
内燃機関の燃焼室構造において、上述の少くとも3個の
排気弁の内で排気弁かさ部の一部または全体が対称平面
に関して一方の給気弁側に配置されている第1の排気弁
についてすべての第1排気弁のかさ部全体を挟むように
一方の給気弁のかさ部中心から延びる一対の直線の内で
一対の直線間に形成される挟み角が最小となるような一
対の直線で挟まれた領域内に位置する一方の給気弁の開
口をマスク壁によって覆い、上述の少くとも3個の排気
弁の内で排気弁かさ部の一部または全体が対称平面に関
して他方の給気弁側に配置されている第2の排気弁につ
いてすべての第2排気弁のかさ部全体を挟むように他方
の給気弁のかさ部中心から延びる一対の直線の内で一対
の直線間に形成される挟み角が最小となるような一対の
直線で挟まれた領域内に位置する他方の給気弁の開口を
マスク壁によって覆うようにしている。
In order to solve the above problems, according to the present invention, a pair of air supply valves are arranged symmetrically with respect to a plane of symmetry including a cylinder axis on one side of an inner wall surface of a cylinder head. A combustion chamber structure of a two-cycle internal combustion engine, in which at least three exhaust valves are arranged on the other side of the inner wall surface of the cylinder head, and the openings of the intake valves located on the exhaust valve side are covered with a mask wall. Of all the first exhaust valves for at least one of the three exhaust valves of the first exhaust valve in which part or all of the exhaust valve bulk is arranged on the side of one intake valve with respect to the plane of symmetry. It is located in a region sandwiched by a pair of straight lines that minimizes the sandwiching angle formed between a pair of straight lines extending from the center of the bulge portion of one air supply valve so as to sandwich the whole. Open the opening of one air supply valve to the mask wall. All the second exhausts for the second exhaust valve which is located on the side of the other intake valve with respect to the plane of symmetry with respect to the plane of symmetry, of the at least three exhaust valves described above. A region sandwiched by a pair of straight lines that extends from the center of the bulk portion of the other air supply valve so as to sandwich the entire bulk portion of the valve and has a minimum sandwich angle formed between the pair of straight lines. The opening of the other air supply valve located inside is covered with the mask wall.

【0007】更に、上記問題点を解決するために本発明
によれば、シリンダヘッド内壁面の一側にシリンダ軸線
を含む対称平面に関して対称的に一対の給気弁を配置す
ると共にシリンダヘッド内壁面の他側に少くとも3個の
排気弁を配置し、排気弁側に位置する各給気弁の開口を
マスク壁によって覆うようにした2サイクル内燃機関の
燃焼室構造において、上述の一対の給気弁をシリンダヘ
ッド内壁面の一側の周辺部に配置すると共に上述の少く
とも3個の排気弁をシリンダヘッド内壁面の他側周辺部
に配置し、少くとも3個の排気弁の内で排気弁かさ部の
一部または全体が対称平面に関して一方の給気弁側に配
置されている第1の排気弁についてすべての第1排気弁
のかさ部全体を挟むように一方の給気弁のかさ部中心か
ら延びる一対の直線の内で一対の直線間に形成される挟
み角が最小となるような一対の直線で挟まれた領域内に
位置する一方の給気弁の開口をマスク壁によって覆い、
少くとも3個の排気弁の内で排気弁かさ部の一部または
全体が対称平面に関して他方の給気弁側に配置されてい
る第2の排気弁についてすべての第2排気弁のかさ部全
体を挟むように他方の給気弁のかさ部中心から延びる一
対の直線の内で一対の直線間に形成される挟み角が最小
となるような一対の直線で挟まれた領域内に位置する他
方の給気弁の開口をマスク壁によって覆い、シンリンダ
ヘッド内壁面の中心部に追加の給気弁を配置して追加の
給気弁から燃焼室内の中央部に向けて新気を供給するよ
うにしている。
Further, in order to solve the above problems, according to the present invention, a pair of air supply valves are arranged symmetrically with respect to a plane of symmetry including the cylinder axis on one side of the inner wall surface of the cylinder head and the inner wall surface of the cylinder head. In the combustion chamber structure of the two-cycle internal combustion engine, in which at least three exhaust valves are arranged on the other side and the openings of the intake valves located on the exhaust valve side are covered by the mask wall, The air valve is arranged on one side peripheral portion of the cylinder head inner wall surface, and at least three exhaust valves described above are arranged on the other side peripheral portion of the cylinder head inner wall surface. A part of or the entire exhaust valve bulkhead is arranged on the side of one intake valve with respect to the plane of symmetry. Regarding the first exhaust valves, one of the intake valves is placed so as to sandwich the entire bulkhead of all the first exhaust valves. A pair of straights extending from the center of the Covered by the mask wall openings of one of the air supply valve included angle formed between the pair of straight lines positioned sandwiched by the regions in the pair of linear such that minimum of,
Of all at least three exhaust valves, a part or all of the exhaust valve bulk is arranged on the other charge valve side with respect to the plane of symmetry For the second exhaust valve All of the bulk of the second exhaust valve The other of which is located in a region sandwiched by a pair of straight lines that minimizes the sandwiching angle formed between the pair of straight lines that extend from the center of the bulge portion of the other air supply valve The opening of the air supply valve is covered with a mask wall, and an additional air supply valve is placed in the center of the inner wall of the cylinder head so that fresh air is supplied from the additional air supply valve toward the center of the combustion chamber. I have to.

【0008】[0008]

【作用】請求項1に記載の発明では、すべての新気はマ
スク壁と反対側の給気弁の開口から燃焼室内に流入し、
この燃焼室内に流入した新気は給気弁下方のシリンダボ
ア内壁面に沿い下降し、次いでピストン頂面に沿い進ん
で排気弁下方のシリンダボア内壁面に沿い上昇する。こ
のとき、燃焼室内に流入した新気がシリンダヘッド内壁
面に沿って排気ポート内に吹き抜けることがマスク壁に
より十分に阻止されると共に新気が給気弁開口を通過す
るときに受ける流れ抵抗、即ち給気抵抗が小さく抑えら
れる。斯くして新気は良好に燃焼室内をループ状に流
れ、このループ状に流れる新気によって既燃ガスが良好
に掃気される。
In the invention described in claim 1, all the fresh air flows into the combustion chamber through the opening of the air supply valve on the side opposite to the mask wall,
The fresh air flowing into the combustion chamber descends along the inner wall surface of the cylinder bore below the intake valve, then advances along the top surface of the piston and rises along the inner wall surface of the cylinder bore below the exhaust valve. At this time, the mask wall is sufficiently prevented from blowing the fresh air flowing into the combustion chamber into the exhaust port along the inner wall surface of the cylinder head, and the flow resistance received when the fresh air passes through the air supply valve opening, That is, the air supply resistance can be suppressed small. Thus, the fresh air satisfactorily flows in a loop in the combustion chamber, and the burned gas is scavenged satisfactorily by the loop fresh air.

【0009】請求項2に記載の発明では、シリンダヘッ
ド内壁面の周辺部に配置された給気弁からは新気がマス
ク壁と反対側に位置する給気弁の開口から燃焼室内に流
入し、この燃焼室内に流入した新気は給気弁下方のシリ
ンダボア内壁面に沿い下降し、次いでピストン頂面に沿
い進んで排気弁下方のシリンダボア内壁面に沿い上昇す
る。このとき、新気がシリンダヘッド内壁面に沿って排
気ポート内に吹き抜けることがマスク壁により十分に阻
止されると共に給気抵抗が小さく抑えられる。斯くして
新気は燃焼室の周縁に沿い良好にループ状に流れ、この
ループ状に流れる新気によって燃焼室の周縁部に存在す
る既燃ガスが良好に掃気される。更に、追加の給気弁か
ら給気された新気によって燃焼室中央部に存在する既燃
ガスが良好に掃気される。
According to the second aspect of the present invention, fresh air flows into the combustion chamber from the opening of the air supply valve located on the side opposite to the mask wall from the air supply valve arranged in the peripheral portion of the inner wall surface of the cylinder head. The fresh air flowing into the combustion chamber descends along the inner wall surface of the cylinder bore below the intake valve, then advances along the top surface of the piston, and rises along the inner wall surface of the cylinder bore below the exhaust valve. At this time, the mask wall sufficiently prevents fresh air from blowing into the exhaust port along the inner wall surface of the cylinder head, and the air supply resistance is suppressed to be small. Thus, the fresh air flows in a good loop shape along the peripheral edge of the combustion chamber, and the burned gas existing in the peripheral edge portion of the combustion chamber is scavenged well by the fresh air flowing in the loop shape. Further, the burned gas existing in the central portion of the combustion chamber is scavenged well by the fresh air supplied from the additional air supply valve.

【0010】[0010]

【実施例】図1から図4に本発明を2サイクルディーゼ
ル機関に適用した場合を示す。しかしながら本発明を2
サイクル火花点火式機関に適用することもできる。図1
から図4を参照すると、1はシリンダブロック、2はシ
リンダブロック1内で往復動するピストン、3はシリン
ダブロック1上に固締されたシリンダヘッド、4はピス
トン2の頂面とシリンダヘッド内壁面3a間に形成され
た主室、5はシリンダヘッド内壁面3aの周縁部上方の
シリンダヘッド3内に形成された副室、6は主室4内に
開口する副室5の噴口、7は副室5内に向けて燃料を噴
射するための燃料噴射弁、8は副室5内に配置されたグ
ロープラグを夫々示す。
1 to 4 show a case where the present invention is applied to a two-cycle diesel engine. However, the present invention
It can also be applied to a cycle spark ignition type engine. Figure 1
4, reference numeral 1 is a cylinder block, 2 is a piston that reciprocates in the cylinder block 1, 3 is a cylinder head fixed on the cylinder block 1, and 4 is the top surface of the piston 2 and the cylinder head inner wall surface. A main chamber formed between 3a, 5 is a sub chamber formed in the cylinder head 3 above the peripheral edge of the cylinder head inner wall surface 3a, 6 is a nozzle of the sub chamber 5 opening in the main chamber 4, and 7 is a sub chamber. Reference numeral 8 denotes a fuel injection valve for injecting fuel into the chamber 5, and reference numeral 8 denotes a glow plug arranged in the sub chamber 5.

【0011】図1から図4に示される実施例では図1お
よび図2に示されるようにシリンダヘッド内壁面3aの
一側周辺部には2個の給気弁9,10が配置され、シリ
ンダヘッド内壁面3aの他側周辺部には3個の排気弁1
2,13,14が配置される。更にシリンダヘッド内壁
面3aの中央部には第3の、即ち追加の給気弁11が配
置される。図1に示されるように給気弁9と給気弁10
はシリンダ軸線を含む対称平面K−Kに関して対称的に
配置され、排気弁12と排気弁13も対称平面K−Kに
関して対称的に配置される。また、3個の給気弁9,1
0,11によって囲まれたシリンダヘッド内壁面3aの
周辺部に副室5の噴口6が配置され、更に排気弁14、
給気弁11および噴口6は対称平面K−K上に配置され
る。従って図1から図4に示す実施例ではシリンダヘッ
ド内壁面3aの周辺部に3個の排気弁12,13,1
4、2個の給気弁9,10および噴口6がほぼ等角度間
隔で配置され、シリンダヘッド内壁面3aのほぼ中央部
に追加の給気弁11が配置されている形となっている。
In the embodiment shown in FIGS. 1 to 4, as shown in FIGS. 1 and 2, two air supply valves 9 and 10 are arranged in the peripheral portion of one side of the cylinder head inner wall surface 3a to form a cylinder. Three exhaust valves 1 are provided around the other side of the head inner wall surface 3a.
2, 13, 14 are arranged. Further, a third or additional air supply valve 11 is arranged at the center of the cylinder head inner wall surface 3a. As shown in FIG. 1, the air supply valve 9 and the air supply valve 10
Are arranged symmetrically with respect to a plane of symmetry KK including the cylinder axis, and the exhaust valves 12 and 13 are also arranged symmetrically with respect to the plane of symmetry KK. Also, three air supply valves 9,1
The injection port 6 of the sub chamber 5 is arranged in the peripheral portion of the cylinder head inner wall surface 3a surrounded by 0 and 11, and the exhaust valve 14,
The air supply valve 11 and the injection port 6 are arranged on the plane of symmetry KK. Therefore, in the embodiment shown in FIGS. 1 to 4, three exhaust valves 12, 13, 1 are provided around the inner wall surface 3a of the cylinder head.
Four or two air supply valves 9 and 10 and the injection port 6 are arranged at substantially equal angular intervals, and an additional air supply valve 11 is arranged substantially in the center of the cylinder head inner wall surface 3a.

【0012】図1および図3に示されるようにシリンダ
ヘッド内壁面3a上には凹部15が形成され、この凹部
15の最奥部に給気弁9が配置される。排気弁12,1
4側に位置する凹部15の内周壁面部分16は給気弁9
の外周縁に極めて近接配置されかつ給気弁9の外周縁に
沿って延びる円筒状をなしており、この円筒状内周壁面
部分16を除く凹部15の内周壁面部分17は主室4内
に向けて拡開する円錐状に形成されている。従って円筒
状内周壁面部分16に対面する給気弁9の開口は円筒状
内周壁面部分16によって覆われることになり、従って
この円筒状内周壁面部分16は排気弁12,14側に形
成される給気弁9の開口を覆うマスク壁を形成してい
る。図1に示されるように排気弁12は対称平面K−K
に関して給気弁9側に配置されており、排気弁14は対
称平面K−K上に配置されている。即ち、排気弁12の
かさ部全体が対称平面K−Kに関して給気弁9側に位置
し、排気弁14のかさ部の半分が対称平面K−Kに関し
て給気弁9側に位置している。給気弁9のかさ部中心か
らこれらの排気弁12,14のかさ部の全体を挟むよう
に延びる一対の直線を考えたときにこの一対の直線間に
形成される挟み角α1 、即ちマスク角α1 が最小となる
ような一対の直線L1a,L1bで挟まれた領域内に位置す
る給気弁9の開口がマスク壁16によって覆われてい
る。即ち、マスク壁16はマスク角α1 の範囲に亘って
給気弁9のかさ部外周縁に沿って円弧状に延びている。
図1から図4に示す実施例ではこのマスク壁16は最大
リフト位置にある給気弁9よりも下方まで延びており、
従って排気弁12,14側に形成される給気弁9の開口
は給気弁9の開弁期間全体に亘ってマスク壁16により
覆われることになる。しかしながらマスク壁の高さを少
し低くして給気弁9のリフト量が小さいときのみ給気弁
9の開口をマスク壁16によって覆うようにすることも
できる。
As shown in FIGS. 1 and 3, a concave portion 15 is formed on the cylinder head inner wall surface 3a, and the air supply valve 9 is arranged at the deepest portion of the concave portion 15. Exhaust valve 12,1
The inner peripheral wall surface portion 16 of the concave portion 15 located on the 4 side is the air supply valve 9
Has a cylindrical shape that is disposed very close to the outer peripheral edge of the air supply valve 9 and extends along the outer peripheral edge of the air supply valve 9. The inner peripheral wall surface portion 17 of the recess 15 excluding the cylindrical inner peripheral wall surface portion 16 is inside the main chamber 4. It is formed in a conical shape that widens toward. Therefore, the opening of the air supply valve 9 facing the cylindrical inner peripheral wall surface portion 16 is covered by the cylindrical inner peripheral wall surface portion 16, and thus the cylindrical inner peripheral wall surface portion 16 is formed on the exhaust valve 12, 14 side. A mask wall that covers the opening of the air supply valve 9 is formed. As shown in FIG. 1, the exhaust valve 12 has a plane of symmetry KK.
Is arranged on the air supply valve 9 side, and the exhaust valve 14 is arranged on the plane of symmetry KK. That is, the entire bulkhead portion of the exhaust valve 12 is located on the intake valve 9 side with respect to the plane of symmetry KK, and half the bulkhead portion of the exhaust valve 14 is located on the intake valve 9 side with respect to the plane of symmetry KK. .. Considering a pair of straight lines extending from the center of the bulk portion of the air supply valve 9 so as to sandwich the entire bulk portions of the exhaust valves 12 and 14, a sandwiching angle α 1 formed between the pair of straight lines, that is, a mask The mask wall 16 covers the opening of the air supply valve 9 located in the region sandwiched by the pair of straight lines L 1a and L 1b such that the angle α 1 is minimized. That is, the mask wall 16 extends in an arc shape along the outer peripheral edge of the bulkhead portion of the air supply valve 9 over the range of the mask angle α 1 .
In the embodiment shown in FIGS. 1 to 4, the mask wall 16 extends below the air supply valve 9 in the maximum lift position,
Therefore, the opening of the air supply valve 9 formed on the side of the exhaust valves 12 and 14 is covered with the mask wall 16 over the entire opening period of the air supply valve 9. However, the height of the mask wall may be slightly lowered so that the opening of the air supply valve 9 is covered with the mask wall 16 only when the lift amount of the air supply valve 9 is small.

【0013】一方、図1に示されるようにシリンダヘッ
ド内壁面3a上には対称平面K−Kに関して凹部15と
対称的な形状を有する凹部18が形成され、この凹部1
8の最奥部に給気弁10が配置される。排気弁13,1
4側に位置する凹部18の内周壁面部分19は給気弁1
0の外周縁に極めて近接配置されかつ給気弁10の外周
縁に沿って延びる円筒状をなしており、この円筒状内周
壁面部分19を除く凹部18の内周壁面部分20は主室
4内に向けて拡開する円錐状に形成されている。従って
円筒状内周壁面部分19に対面する給気弁10の開口は
円筒状内周壁面部分19によって覆われることになり、
従ってこの円筒状内周壁面部分19は排気弁13,14
側に形成される給気弁10の開口を覆うマスク壁を形成
している。図1に示されるように排気弁13は対称平面
K−Kに関して給気弁10側に配置されており、排気弁
14は対称平面K−K上に配置されている。即ち、排気
弁13のかさ部全体が対称平面K−Kに関して給気弁1
0側に位置し、排気弁14のかさ部の半分が対称平面K
−Kに関して給気弁10側に位置している。給気弁10
のかさ部中心からこれらの排気弁13,14のかさ部の
全体を挟むように延びる一対の直線を考えたときにこの
一対の直線間に形成される挟み角α2 、即ちマスク角α
2 が最小となるような一対の直線L2a,L2bで挟まれた
領域内に位置する給気弁10の開口がマスク壁19によ
って覆われている。即ち、マスク壁19はマスク角α2
の範囲に亘って給気弁10のかさ部外周縁に沿って円弧
状に延びている。図1から図4に示す実施例ではこのマ
スク壁19はマスク壁16と同様に最大リフト位置にあ
る給気弁10よりも下方まで延びており、従って排気弁
13,14側に形成される給気弁10の開口は給気弁1
0の開弁期間全体に亘ってマスク壁19により覆われる
ことになる。しかしながらこのマスク壁19についても
マスク壁19の高さを少し低くして給気弁10のリフト
量が小さいときのみ給気弁10の開口をマスク壁19に
よって覆うようにすることもできる。
On the other hand, as shown in FIG. 1, a recess 18 having a shape symmetrical to the recess 15 with respect to the plane of symmetry KK is formed on the inner wall surface 3a of the cylinder head.
The air supply valve 10 is arranged at the innermost portion of the position 8. Exhaust valve 13,1
The inner peripheral wall surface portion 19 of the recess 18 located on the fourth side is the air supply valve 1
0 is arranged very close to the outer peripheral edge of 0 and has a cylindrical shape extending along the outer peripheral edge of the air supply valve 10. The inner peripheral wall surface portion 20 of the recess 18 excluding the cylindrical inner peripheral wall surface portion 19 is the main chamber 4 It is formed in a conical shape that expands inward. Therefore, the opening of the air supply valve 10 facing the cylindrical inner peripheral wall surface portion 19 is covered by the cylindrical inner peripheral wall surface portion 19,
Therefore, the cylindrical inner peripheral wall surface portion 19 is provided with the exhaust valves 13, 14
A mask wall that covers the opening of the air supply valve 10 formed on the side is formed. As shown in FIG. 1, the exhaust valve 13 is arranged on the side of the intake valve 10 with respect to the plane of symmetry KK, and the exhaust valve 14 is arranged on the plane of symmetry KK. That is, the entire bulkhead portion of the exhaust valve 13 is provided with respect to the plane of symmetry KK.
The exhaust valve 14 is located on the 0 side, and half of the cap portion of the exhaust valve 14 is a symmetry plane K.
It is located on the air supply valve 10 side with respect to −K. Air supply valve 10
Considering a pair of straight lines extending from the center of the bulge portion so as to sandwich the entire bulge portions of the exhaust valves 13 and 14, the holding angle α 2 formed between the pair of straight lines, that is, the mask angle α.
The mask wall 19 covers the opening of the air supply valve 10 located in the region sandwiched by the pair of straight lines L 2a and L 2b such that 2 is minimized. That is, the mask wall 19 has a mask angle α 2
The arc shape extends along the outer peripheral edge of the cap portion of the air supply valve 10 over the range. In the embodiment shown in FIGS. 1 to 4, the mask wall 19 extends below the air supply valve 10 in the maximum lift position, like the mask wall 16, and thus the air supply valves formed on the exhaust valves 13 and 14 side. The opening of the air valve 10 is the air supply valve 1
The mask wall 19 covers the entire zero valve opening period. However, with respect to the mask wall 19 as well, the height of the mask wall 19 may be slightly lowered so that the opening of the air supply valve 10 is covered with the mask wall 19 only when the lift amount of the air supply valve 10 is small.

【0014】一方、図1および図4に示されるようにシ
リンダヘッド内壁面3a上には凹部21が形成され、こ
の凹部21の最奥部に給気弁11が配置される。排気弁
12,13,14側に位置する凹部21の内周壁面部分
22は給気弁11の外周縁に極めて近接配置されかつ給
気弁11の外周縁に沿って延びる円筒状をなしており、
この円筒状内周壁面部分22を除く凹部21の内周壁面
部分23は主室4内に向けて拡開する円錐状に形成され
ている。従って円筒状内周壁面部分22に対面する給気
弁11の開口は円筒状内周壁面部分22によって覆われ
ることになり、従ってこの円筒状内周壁面部分22は排
気弁12,13,14側に形成される給気弁11の開口
を覆うマスク壁を形成している。図1に示されるよう
に、給気弁11のかさ部中心から全排気弁12,13,
14のかさ部の全体を挟むように延びる一対の直線を考
えたときにこの一対の直線間に形成される挟み角β、即
ちマスク角βが最小となるような一対の直線Ma ,Mb
で挟まれた領域内に位置する給気弁11の開口がマスク
壁22によって覆われている。即ち、マスク壁22はマ
スク角βの範囲に亘って給気弁11のかさ部外周縁に沿
って円弧状に延びている。図1から図4に示す実施例で
はこのマスク壁22はマスク壁16,19と同様に最大
リフト位置にある給気弁11よりも下方まで延びてお
り、従って排気弁12,13,14側に形成される給気
弁11の開口は給気弁11の開弁期間全体に亘ってマス
ク壁22により覆われることになる。しかしながらこの
マスク壁22についてもマスク壁22の高さを少し低く
して給気弁11のリフト量が小さいときのみ給気弁11
の開口をマスク壁22によって覆うようにすることもで
きる。
On the other hand, as shown in FIGS. 1 and 4, a recess 21 is formed on the inner wall surface 3a of the cylinder head, and the air supply valve 11 is arranged at the innermost portion of the recess 21. The inner peripheral wall surface portion 22 of the concave portion 21 located on the exhaust valve 12, 13, 14 side is arranged in the vicinity of the outer peripheral edge of the air supply valve 11 and has a cylindrical shape extending along the outer peripheral edge of the air supply valve 11. ,
The inner peripheral wall surface portion 23 of the recess 21 excluding the cylindrical inner peripheral wall surface portion 22 is formed in a conical shape that widens toward the inside of the main chamber 4. Therefore, the opening of the air supply valve 11 facing the cylindrical inner peripheral wall surface portion 22 is covered by the cylindrical inner peripheral wall surface portion 22, and thus the cylindrical inner peripheral wall surface portion 22 is on the exhaust valve 12, 13, 14 side. A mask wall is formed to cover the opening of the air supply valve 11 formed in. As shown in FIG. 1, the exhaust valves 12, 13,
14 included angle β formed between the pair of straight line when considering a pair of straight line extending so as to sandwich the entire bulk portion, i.e. the pair, such as the mask angle β is minimum straight M a, M b
The opening of the air supply valve 11 located in the region sandwiched by is covered with the mask wall 22. That is, the mask wall 22 extends in an arc shape along the outer peripheral edge of the bulkhead portion of the air supply valve 11 over the range of the mask angle β. In the embodiment shown in FIGS. 1 to 4, the mask wall 22 extends below the air supply valve 11 in the maximum lift position, like the mask walls 16 and 19, and therefore, on the exhaust valve 12, 13 and 14 side. The formed opening of the air supply valve 11 is covered with the mask wall 22 over the entire opening period of the air supply valve 11. However, with respect to the mask wall 22 as well, the height of the mask wall 22 is made slightly lower, and the air supply valve 11 is provided only when the lift amount of the air supply valve 11 is small.
It is also possible to cover the openings of the above with the mask wall 22.

【0015】これに対して各排気弁12,13,14に
対してはマスク壁が設けられておらず、従って排気弁1
2,13,14が開弁すると排気弁12,13,14は
全周に亘って主室4内に開口する。図1から図4に示す
実施例では全給気弁9,10,11がシリンダヘッド3
内に摺動可能に挿入された対応するバルブリフタ24を
介して共通のカムシャフト25により駆動され、全排気
弁12,13,14がシリンダヘッド3内に摺動可能に
挿入された対応するバルブリフタ26を介して共通のカ
ムシャフト27により駆動される。即ち、全給気弁9,
10,11はロッカーアームを介することなく各給気弁
9,10,11の軸線上に位置する共通のカムシャフト
25によって直接駆動され、全排気弁12,13,14
はロッカーアームを介することなく各排気弁12,1
3,14の軸線上に位置する共通のカムシャフト27に
よって直接駆動される。
On the other hand, no mask wall is provided for each of the exhaust valves 12, 13, 14 and therefore the exhaust valve 1
When the valves 2, 13, 14 are opened, the exhaust valves 12, 13, 14 are opened in the main chamber 4 over the entire circumference. In the embodiment shown in FIGS. 1 to 4, all the intake valves 9, 10, 11 are the cylinder head 3
A corresponding valve lifter 26, driven by a common camshaft 25 via a corresponding valve lifter 24 slidably inserted therein, with all exhaust valves 12, 13, 14 slidably inserted in the cylinder head 3. It is driven by a common cam shaft 27 via. That is, the full charge valve 9,
10 and 11 are directly driven by a common cam shaft 25 located on the axis of each air supply valve 9, 10, 11 without using a rocker arm, and all exhaust valves 12, 13, 14 are driven.
Each exhaust valve 12, 1 without going through a rocker arm
It is directly driven by a common camshaft 27 located on the axis of 3,14.

【0016】シリンダヘッド3内には各排気弁12,1
3,14まで延びる全排気弁12,13,14に対して
共通の排気ポート28が形成され、更にシリンダヘッド
3内には副室5の両側において各給気弁9,10まで延
びる一対の給気ポート29,30が形成される。また、
シリンダヘッド3内には各給気ポート29,30から夫
々分岐して給気弁11まで延びかつ給気弁11の近傍に
おいて互いに合流する一対の給気枝通路31,32が形
成される。従って給気弁9,10からは夫々対応する給
気ポート29,30を介して新気が供給され、給気弁1
1からは各給気ポート29,30から各給気枝通路3
1,32内に分流された新気が供給される。
Inside the cylinder head 3, exhaust valves 12, 1 are provided.
A common exhaust port 28 is formed for all the exhaust valves 12, 13, 14 extending to 3, 3 and 14, and a pair of supply valves extending to each supply valve 9, 10 on both sides of the sub chamber 5 in the cylinder head 3. Air ports 29, 30 are formed. Also,
In the cylinder head 3, a pair of air supply branch passages 31 and 32 are formed to branch from the air supply ports 29 and 30 to extend to the air supply valve 11 and join each other in the vicinity of the air supply valve 11. Therefore, fresh air is supplied from the air supply valves 9 and 10 through the corresponding air supply ports 29 and 30, respectively.
1 to each air supply port 29, 30 to each air supply branch passage 3
The fresh air that has been diverted into the inside of 1, 32 is supplied.

【0017】図5は給気弁9,10,11および排気弁
12,13,14の開弁時期を示している。図5に示さ
れるように各排気弁12,13,14は各給気弁9,1
0,11よりも先に開弁し、先に閉弁する。次に図6か
ら図8を参照しつつ図1から図4に示す2サイクルディ
ーゼル機関の作動について説明する。
FIG. 5 shows the opening timing of the intake valves 9, 10, 11 and the exhaust valves 12, 13, 14. As shown in FIG. 5, each exhaust valve 12, 13, 14 is connected to each intake valve 9, 1
It opens before 0 and 11, and closes before it. Next, the operation of the two-stroke diesel engine shown in FIGS. 1 to 4 will be described with reference to FIGS. 6 to 8.

【0018】前述したように各排気弁12,13,14
は各給気弁9,10,11よりも先に開弁する。各排気
弁12,13,14が開弁すると主室4内の既燃ガスが
急激に排気ポート28内に排出され、即ちブローダウン
を生じ、その結果主室4内の圧力が急激に低下する。主
室4内の圧力が低下すると副室5内の既燃ガスが噴口6
を介して主室4内に流出する。
As described above, each exhaust valve 12, 13, 14
Is opened before the air supply valves 9, 10, 11 are opened. When the exhaust valves 12, 13, 14 are opened, the burned gas in the main chamber 4 is rapidly discharged into the exhaust port 28, that is, blowdown occurs, and as a result, the pressure in the main chamber 4 is rapidly reduced. .. When the pressure in the main chamber 4 drops, the burnt gas in the sub chamber 5 is discharged from the injection port 6
Through the main chamber 4.

【0019】次いで各給気弁9,10,11が開弁する
と機関駆動の機械式過給機(図示しない)から各給気ポ
ート29,30内に送り込まれた新気が各給気弁9,1
0,11を介して主室4内に供給される。このとき上述
したように排気弁12,14側に位置する給気弁9の開
口がマスク壁16によって覆われており、排気弁13,
14側に位置する給気弁10の開口がマスク壁19によ
って覆われており、排気弁12,13,14側に位置す
る給気弁11の開口がマスク壁22によって覆われてい
るので、新気はマスク壁16,19,22と反対側に位
置する各給気弁9,10,11の開口を通って主室4内
に流入する。この場合、給気弁9,10はシリンダヘッ
ド内壁面3aの周辺部に配置されているのでこれら給気
弁9,10から流入した新気は図6および図8において
矢印Xa ,Xb で示すように夫々対応する給気弁9,1
0下方のシリンダボア内壁面1aに沿って下降し、次い
でピストン2の頂面に沿って進行し、次いで排気弁1
2,13下方のシリンダボア内壁面1aに沿って上昇す
る。即ち、各給気弁9,10から流入した新気は主室4
の周縁部に沿ってループ状に流れ、このループ状に流れ
る新気Xa ,Xb によって主室4内の既燃ガスが各排気
弁12,13,14から排出される。従って各給気弁
9,10から流入する新気Xa ,Xb によって主室4の
周縁部が掃気されることになる。このとき給気弁9から
流入する新気Xa は対称平面K−Kに関して給気弁9側
に位置する主室4の周縁部を掃気する役目を果たし、一
方給気弁10から流入する新気Xb は対称平面K−Kに
関して給気弁10側に位置する主室4の周縁部を掃気す
る役目を果たす。
Next, when the air supply valves 9, 10, 11 are opened, the fresh air sent from the engine-driven mechanical supercharger (not shown) into the air supply ports 29, 30 is supplied to the air supply valves 9. , 1
It is supplied into the main chamber 4 via 0 and 11. At this time, as described above, the opening of the air supply valve 9 located on the exhaust valve 12, 14 side is covered with the mask wall 16, and the exhaust valve 13,
Since the opening of the air supply valve 10 located on the 14 side is covered by the mask wall 19 and the opening of the air supply valve 11 located on the exhaust valve 12, 13, 14 side is covered by the mask wall 22, Air flows into the main chamber 4 through the openings of the air supply valves 9, 10, 11 located on the opposite side of the mask walls 16, 19, 22. In this case, since the air supply valves 9 and 10 are arranged in the peripheral portion of the cylinder head inner wall surface 3a, the fresh air flowing in from the air supply valves 9 and 10 is indicated by arrows Xa and Xb in FIGS . As shown, the corresponding intake valves 9, 1
0 down along the inner wall surface 1a of the cylinder bore, then proceed along the top surface of the piston 2, and then the exhaust valve 1
2, 13 rises along the inner wall surface 1a of the cylinder bore. That is, the fresh air flowing in from each air supply valve 9 and 10 is transferred to the main chamber 4
The burnt gas in the main chamber 4 is discharged from the exhaust valves 12, 13, 14 by the fresh air X a , X b flowing in a loop along the peripheral edge of the. Hence the fresh air X a flowing from the feed valves 9 and 10, the peripheral edge portion of the main chamber 4 by X b is scavenged. At this time, the fresh air X a flowing in from the air supply valve 9 serves to scavenge the peripheral portion of the main chamber 4 located on the air supply valve 9 side with respect to the plane of symmetry KK, while fresh air flowing in from the air supply valve 10 is introduced. The air Xb plays a role of scavenging the peripheral portion of the main chamber 4 located on the air supply valve 10 side with respect to the plane of symmetry KK.

【0020】上述のように排気弁12のかさ部全体およ
び排気弁14のかさ部の半分が対称平面K−Kに関して
給気弁9側に位置しており、これら2個の排気弁12,
14側に位置するマスク角α1 の範囲内の給気弁9の開
口がマスク壁16によって覆われている。従って、上述
のように給気弁9から流入する新気は対称平面K−Kに
関して給気弁9側に位置する主室4の周縁部を掃気する
役目を果たすが、このときに給気弁9から流入した新気
がシリンダヘッド内壁面3aに沿って進行し排気弁1
2,14を介して排気ポート28内に吹き抜けることが
マスク壁16によって阻止される。なお、凹部15の円
錐状内周壁面部分17の内で排気弁13側に位置する円
錐状内周壁面部分17aと給気弁9の周縁部間に形成さ
れた給気弁9の開口部分から主室4内に流入した新気の
一部はシリンダヘッド内壁面3aに沿って排気弁13の
方向に進行しようとする。しかしながらこの排気弁13
方向に進行しようとする新気は、給気弁9側の凹部21
の円錐状内周壁面部分23aと給気弁11の周縁部間に
形成された給気弁11の開口部分から主室4内に流入し
た新気の流れと衝突して図8において矢印Xc で示すよ
うに主室4内を下降する。従って凹部15の円錐状内周
壁面部分17aから流入した新気も排気ポート28内に
吹き抜けない。斯くして給気弁9から流入した新気がシ
リンダヘッド内壁面に沿って排気ポート28内に吹き抜
けることがほぼ完全に阻止され、従って給気弁9から流
入したほぼすべての新気が主室4の周縁部に沿ってルー
プ状に流れる新気流Xa ,Xc の発生に有効に寄与せし
められる。また、給気弁9のマスク角α1 はシリンダヘ
ッド内壁面3aに沿った新気の吹き抜けを良好に阻止し
うる必要最小限の角度に形成されているので新気が給気
弁9の開口を通過するときに受ける流れ抵抗、即ち給気
抵抗が小さく抑えられ、従って新気が給気弁9の開口を
介して円滑に主室4内に流入する。斯くして給気弁9か
ら流入する新気により対称平面K−Kに関して給気弁9
側に位置する主室4の周縁部に沿ってループ状に流れる
強力な新気流Xa ,Xc が形成される。
As described above, the entire bulkhead portion of the exhaust valve 12 and half the bulkhead portion of the exhaust valve 14 are located on the air supply valve 9 side with respect to the plane of symmetry KK, and these two exhaust valves 12,
The opening of the air supply valve 9 within the range of the mask angle α 1 located on the 14th side is covered with the mask wall 16. Therefore, as described above, the fresh air flowing in from the air supply valve 9 serves to scavenge the peripheral portion of the main chamber 4 located on the air supply valve 9 side with respect to the plane of symmetry KK. The fresh air flowing from 9 advances along the inner wall surface 3a of the cylinder head, and the exhaust valve 1
Blowing through the exhaust port 28 through 2, 14 is blocked by the mask wall 16. In addition, from the opening portion of the air supply valve 9 formed between the conical inner peripheral wall surface portion 17 a located on the exhaust valve 13 side of the conical inner peripheral wall surface portion 17 of the recess 15 and the peripheral edge portion of the air supply valve 9. A part of the fresh air that has flowed into the main chamber 4 tends to travel toward the exhaust valve 13 along the inner wall surface 3a of the cylinder head. However, this exhaust valve 13
The fresh air which is going to move in the direction is the concave portion 21 on the air supply valve 9 side.
8 confronts the flow of fresh air flowing into the main chamber 4 through the opening of the air supply valve 11 formed between the conical inner peripheral wall surface portion 23a of the air supply valve 11 and the peripheral portion of the air supply valve 11, and the arrow X c in FIG. As shown by, the inside of the main chamber 4 is lowered. Therefore, the fresh air that has flowed in from the conical inner peripheral wall surface portion 17a of the recess 15 does not blow into the exhaust port 28. Thus, the fresh air flowing from the air supply valve 9 is almost completely prevented from blowing through the exhaust port 28 along the inner wall surface of the cylinder head. 4 of the peripheral edge new stream X a flowing in a loop along, are effectively caused to contribute to the generation of X c. Further, since the mask angle α 1 of the air supply valve 9 is formed at the minimum necessary angle capable of satisfactorily preventing blow-through of fresh air along the inner wall surface 3a of the cylinder head, the fresh air is opened by the air supply valve 9. The flow resistance, that is, the air supply resistance, which is received when the air passes through is suppressed small, so that the fresh air smoothly flows into the main chamber 4 through the opening of the air supply valve 9. Thus, the fresh air flowing in from the intake valve 9 causes the intake valve 9 to move with respect to the plane of symmetry KK.
Strong new airflows Xa and Xc flowing in a loop are formed along the peripheral portion of the main chamber 4 located on the side.

【0021】一方、排気弁13のかさ部全体および排気
弁14のかさ部の半分が対称平面K−Kに関して給気弁
10側に位置しており、これら2個の排気弁13,14
側に位置するマスク角α2 の範囲内の給気弁10の開口
がマスク壁19によって覆われている。従って、上述の
ように給気弁10から流入する新気は対称平面K−Kに
関して給気弁10側に位置する主室4の周縁部を掃気す
る役目を果たすが、このときに給気弁10から流入した
新気がシリンダヘッド内壁面3aに沿って進行し排気弁
13,14を介して排気ポート28内に吹き抜けること
がマスク壁19によって阻止される。なお、凹部15の
円錐状内周壁面部分17aから流入する新気の場合と同
様に排気弁12側の凹部18の円錐状内周壁面部分20
aと給気弁10の周縁部間に形成された給気弁10の開
口部分から主室4内に流入した新気の一部はシリンダヘ
ッド内壁面3aに沿って排気弁12の方向に進行しよう
とするが、この排気弁12方向に進行しようとする新気
は、給気弁10側の凹部21の円錐状内周壁面部分23
bと給気弁11の周縁部間に形成された給気弁11の開
口部分から主室4内に流入した新気の流れと衝突して図
8において矢印Xd で示すように主室4内を下降する。
従って凹部18の円錐状内周壁面部分20aから流入し
た新気も排気ポート28内に吹き抜けない。斯くして給
気弁10から流入した新気がシリンダヘッド内壁面に沿
って排気ポート28内に吹き抜けることがほぼ完全に阻
止され、従って給気弁10から流入したほぼすべての新
気が主室4の周縁部に沿ってループ状に流れる新気流X
b ,Xd の発生に有効に寄与せしめられる。また、給気
弁10のマスク角α2 はシリンダヘッド内壁面3aに沿
った新気の吹き抜けを良好に阻止しうる必要最小限の角
度に形成されているので給気抵抗が小さく抑えられ、従
って新気が給気弁10の開口を介して円滑に主室4内に
流入する。斯くして給気弁10から流入する新気により
対称平面K−Kに関して給気弁10側に位置する主室4
の周縁部に沿ってループ状に流れる強力な新気流Xb
d が形成される。このように給気弁9,10から流入
する新気により主室4の周縁部全体に沿ってループ状に
流れる強力な新気流Xa ,Xb ,X c ,Xd が形成さ
れ、この強力な新気流Xa ,Xb ,Xc ,Xd によって
主室4の周縁部が良好に掃気される。
On the other hand, the entire bulk of the exhaust valve 13 and the exhaust
Half of the bulb of valve 14 is an air supply valve with respect to plane of symmetry KK
Located on the 10 side, these two exhaust valves 13, 14
Mask angle α located on the side2Of the intake valve 10 within the range of
Are covered by the mask wall 19. Therefore, the above
As described above, the fresh air flowing in from the air supply valve 10 is on the symmetrical plane KK.
The peripheral portion of the main chamber 4 located on the air supply valve 10 side is scavenged.
Functioning as an exhaust gas, but at this time, the gas entered from the air supply valve 10.
Fresh air travels along the inner wall surface 3a of the cylinder head and the exhaust valve
Blow through the exhaust port 28 through 13, 14
Are blocked by the mask wall 19. In addition,
Same as the case of fresh air flowing in from the conical inner peripheral wall surface portion 17a
Similarly, the conical inner peripheral wall surface portion 20 of the recess 18 on the exhaust valve 12 side
a of the air supply valve 10 formed between a and the peripheral portion of the air supply valve 10.
A part of the fresh air flowing from the mouth into the main chamber 4 is transferred to the cylinder.
Let's move toward the exhaust valve 12 along the inner wall surface 3a of the hood.
However, the fresh air that is going to progress toward the exhaust valve 12
Is a conical inner peripheral wall surface portion 23 of the concave portion 21 on the air supply valve 10 side.
b, the opening of the air supply valve 11 formed between the periphery of the air supply valve 11
Figure colliding with the flow of fresh air flowing into the main chamber 4 from the mouth
Arrow X at 8dAs shown by, the inside of the main chamber 4 is lowered.
Therefore, it flows in from the conical inner peripheral wall surface portion 20a of the concave portion 18.
Fresh air also does not blow into the exhaust port 28. Thus salary
The fresh air flowing in from the air valve 10 moves along the inner wall surface of the cylinder head.
Therefore, it is almost completely prevented that the air blows into the exhaust port 28.
Almost all new air that has been turned off and therefore flowed in from the intake valve 10.
A new air flow X in which air flows in a loop along the peripheral edge of the main chamber 4.
b, XdCan be effectively contributed to the occurrence of. Also air supply
Mask angle α of valve 102Along the inner wall surface 3a of the cylinder head
The minimum necessary corners that can prevent the blow of fresh air
Since it is formed every time, the air supply resistance is suppressed to a small
Therefore, fresh air smoothly enters the main chamber 4 through the opening of the air supply valve 10.
Inflow. Thus, by the fresh air flowing from the air supply valve 10,
Main chamber 4 located on the side of the air supply valve 10 with respect to the plane of symmetry KK
Strong new air flow X flowing in a loop along the peripheral edge of theb
XdIs formed. In this way, inflow from the intake valves 9 and 10
By the fresh air to form a loop along the entire periphery of the main chamber 4
A powerful new airflow Xa, Xb, X c, XdFormed
This powerful new airflow Xa, Xb, Xc, XdBy
The peripheral portion of the main chamber 4 is scavenged well.

【0022】これに対して給気弁11はシリンダヘッド
内壁面3aの中央部に配置されているので給気弁11か
ら流入した新気は図7および図8において矢印Yで示す
ように主室4の中央部を下降し、次いでピストン2の頂
面において向きを変えた後に排気弁12,13,14下
方のシリンダボア内壁面1aに沿って上昇する。主室4
の中央部に存在する既燃ガスはこの新気流Yによって排
気ポート28内に排出され、従って主室4内の中央部は
給気弁11から流入する新気Yによって掃気されること
になる。このとき、上述のように全排気弁12,13,
14側に位置するマスク角βの範囲内の給気弁11の開
口がマスク壁22によって覆われているので、給気弁1
1から流入した新気がシリンダヘッド内壁面に沿って排
気ポート28内に吹き抜けることがほぼ完全に阻止され
る。従って給気弁11から流入したほぼすべての新気が
主室4の中央部を下降する新気流Yの発生に有効に寄与
せしめられる。また、マスク角βがシリンダヘッド内壁
面3aに沿った新気の吹き抜けを良好に阻止しうる必要
最小限の角度に形成されているので給気抵抗が小さく抑
えられる。斯くして主室4の中央部を下降する強力な新
気流Yが形成され、この強力な新気流Yによって出室4
の中央部が良好に掃気される。
On the other hand, since the air supply valve 11 is arranged at the center of the inner wall surface 3a of the cylinder head, the fresh air flowing from the air supply valve 11 is supplied to the main chamber as shown by an arrow Y in FIGS. 4 descends in the central portion of the piston 4, then changes direction at the top surface of the piston 2, and then ascends along the inner wall surface 1a of the cylinder bore below the exhaust valves 12, 13, 14. Main room 4
The burnt gas existing in the central portion of the air is discharged into the exhaust port 28 by the new airflow Y, and therefore the central portion in the main chamber 4 is scavenged by the fresh air Y flowing from the air supply valve 11. At this time, as described above, all exhaust valves 12, 13,
Since the opening of the air supply valve 11 located on the 14 side within the range of the mask angle β is covered by the mask wall 22, the air supply valve 1
It is almost completely prevented that the fresh air flowing in from No. 1 blows into the exhaust port 28 along the inner wall surface of the cylinder head. Therefore, almost all the fresh air flowing in from the air supply valve 11 can be effectively contributed to the generation of the new air flow Y descending in the central portion of the main chamber 4. Further, since the mask angle β is formed at the minimum necessary angle that can favorably prevent the fresh air from passing through along the inner wall surface 3a of the cylinder head, the air supply resistance can be suppressed to be small. Thus, a strong new air flow Y descending in the central portion of the main chamber 4 is formed, and the strong new air flow Y causes the exit chamber 4 to exit.
The central part of is scavenged well.

【0023】このように給気弁9,10から流入する新
気によって主室4の周縁部が良好に掃気され、給気弁1
1から流入する新気によって主室4の中央部が掃気され
るので各給気弁9,10,11から流入する新気によっ
て主室4内全体が良好に掃気されることになる。次いで
排気弁12,13,14が閉弁し、給気弁9,10,1
1が閉弁するとピストン2の上昇作用により主室4内の
ガスが噴口6を介して副室5内に送り込まれる。上述し
たように主室4内全体が良好に掃気されるので副室5内
には多量の新気を含んだガスが送り込まれ、斯くして燃
料噴射弁7から副室5内に噴射された燃料が良好に燃焼
せしめられることになる。
As described above, the fresh air flowing from the air supply valves 9 and 10 scavenges the peripheral portion of the main chamber 4 well, and the air supply valve 1
Since the central portion of the main chamber 4 is scavenged by the fresh air flowing in from 1, the whole inside of the main chamber 4 is scavenged well by the fresh air flowing in from each of the air supply valves 9, 10, 11. Next, the exhaust valves 12, 13, 14 are closed, and the air supply valves 9, 10, 1
When the valve 1 is closed, the gas in the main chamber 4 is sent into the sub chamber 5 through the nozzle 6 by the ascending action of the piston 2. As described above, since the entire main chamber 4 is scavenged well, a gas containing a large amount of fresh air is sent into the sub chamber 5 and thus injected from the fuel injection valve 7 into the sub chamber 5. The fuel will be burned well.

【0024】給気弁9,10,11が開弁したときに主
室4内の圧力が高いと主室4内の既燃ガスが給気ポート
29,30内に逆流する。ところがこのような逆流が生
じると逆流した既燃ガスを主室4内に戻しかつ排気ポー
ト28内に排出させるために機械式過給機が余分な仕事
をしなければならず、斯くしてその分だけ機関の出力損
失が増大することになる。従ってこのような既燃ガスの
逆流を阻止するためには給気弁9,10,11が開弁し
たときの主室4内の圧力を低くしなければならず、その
ためには排気弁12,13,14が開弁したときにでき
るだけすみやかに既燃ガスを排気ポート28内に排出さ
せることが必要となる。
If the pressure in the main chamber 4 is high when the intake valves 9, 10, 11 are opened, the burnt gas in the main chamber 4 flows back into the intake ports 29, 30. However, when such a backflow occurs, the mechanical supercharger must do extra work in order to return the backburnt burned gas into the main chamber 4 and discharge it into the exhaust port 28. The output loss of the engine will increase accordingly. Therefore, in order to prevent such a backflow of burnt gas, the pressure in the main chamber 4 when the intake valves 9, 10, 11 are opened must be lowered, and for that purpose, the exhaust valve 12, It is necessary to discharge burnt gas into the exhaust port 28 as soon as possible when the valves 13 and 14 are opened.

【0025】ところが排気弁12,13,14が開弁し
てから給気弁9,10,11が開弁するまでの期間は極
めて短かく、この短かい期間の間に既燃ガスをすみやか
に排出するには排気弁12,13,14を高速度で開弁
せしめなければならない。この場合、ロッカーアームを
介して排気弁12,13,14を駆動するとロッカーア
ームの弾性変形等により排気弁12,13,14の開弁
時の開弁速度が遅くなる。そこで本発明による実施例で
は排気弁12,13,14の開弁時における開弁速度を
速めるために各排気弁12,13,14をロッカーアー
ムを介することなくカムシャフト27により直接駆動す
るようにしている。
However, the period from the opening of the exhaust valves 12, 13, 14 to the opening of the intake valves 9, 10, 11 is extremely short, and the burned gas is promptly released during this short period. In order to discharge, the exhaust valves 12, 13, 14 must be opened at high speed. In this case, when the exhaust valves 12, 13, 14 are driven via the rocker arm, the valve opening speed at the time of opening the exhaust valves 12, 13, 14 becomes slow due to elastic deformation of the rocker arm. Therefore, in the embodiment of the present invention, in order to increase the valve opening speed when the exhaust valves 12, 13, 14 are opened, each exhaust valve 12, 13, 14 is directly driven by the cam shaft 27 without the rocker arm. ing.

【0026】また、シリンダヘッド内壁面3aについて
みると副室5内の温度はかなり高くなるので噴口6周り
のシリンダヘッド内壁面3aの温度が他の部分に比べて
かなり高くなり、従って噴口6周りのシリンダヘッド内
壁面3aに最も亀裂が発生しやすくなる。しかしながら
本発明による実施例では図1に示されるように噴口6は
3個の給気弁9,10,11により囲まれた形となって
いるので噴口6周りのシリンダヘッド内壁面3aは各給
気弁9,10,11から流入する新気によって冷却さ
れ、斯くして噴口6周りのシリンダヘッド内壁面3aに
亀裂が発生するのを阻止することができる。
As for the cylinder head inner wall surface 3a, the temperature in the sub chamber 5 is considerably high, so that the temperature of the cylinder head inner wall surface 3a around the nozzle hole 6 is considerably higher than that of other portions, and therefore the temperature around the nozzle hole 6 is increased. The crack is most likely to occur on the inner wall surface 3a of the cylinder head. However, in the embodiment according to the present invention, as shown in FIG. 1, the injection port 6 is surrounded by the three air supply valves 9, 10 and 11, so that the cylinder head inner wall surface 3a around the injection port 6 is supplied to each supply port. It is possible to prevent the generation of cracks in the cylinder head inner wall surface 3a around the nozzle 6 by being cooled by the fresh air flowing in from the air valves 9, 10, 11.

【0027】図9に第2の実施例を示す。なお、以下に
述べる各実施例では図1から図4に示す実施例と同様の
構成要素に対しては同一の参照符号を用いる。図9に示
す実施例は図1から図4に示す実施例とほぼ同じ構造を
有するが、シリンダヘッド内壁面3aの中央部に配置さ
れた給気弁11のマスク角βが異なっている。即ち、図
9に示されるように対称平面K−Kに関して給気弁9側
に位置する排気弁12のかさ部中心と給気弁11のかさ
部中心とを結ぶ直線Ma と、対称平面K−Kに関して給
気弁10側に位置する排気弁13のかさ部中心と給気弁
11のかさ部中心とを結ぶ直線Mb とで挟まれた領域内
に位置する給気弁11の開口がマスク壁22によって覆
われている。このように図9に示す実施例では図1から
図4に示す実施例に比べて給気弁11のマスク角βが小
さく形成されており、従って給気弁11が開弁したとき
の給気弁11の開口面積が増大せしめられ、その結果給
気抵抗がより低減せしめられる。
FIG. 9 shows a second embodiment. In each embodiment described below, the same reference numerals are used for the same components as those in the embodiment shown in FIGS. The embodiment shown in FIG. 9 has substantially the same structure as the embodiment shown in FIGS. 1 to 4, but the mask angle β of the air supply valve 11 arranged at the center of the cylinder head inner wall surface 3a is different. That is, as shown in FIG. 9, a straight line Ma connecting the center of the bulge portion of the exhaust valve 12 and the center of the bulge portion of the air supply valve 11 located on the intake valve 9 side with respect to the plane of symmetry KK, and the plane of symmetry K With respect to −K, the opening of the air supply valve 11 located in the region sandwiched by the straight line M b connecting the center of the exhaust valve 13 located on the air supply valve 10 side and the center of the air supply valve 11 It is covered by the mask wall 22. As described above, in the embodiment shown in FIG. 9, the mask angle β of the air supply valve 11 is formed smaller than that in the embodiment shown in FIGS. 1 to 4, and therefore, the air supply when the air supply valve 11 is opened. The opening area of the valve 11 is increased, and as a result, the air supply resistance is further reduced.

【0028】図10に第3の実施例を示す。図10に示
す実施例は図1から図4に示す実施例および図9に示す
実施例とほぼ同じ構造を有するが、シリンダヘッド内壁
面3aの中央部に配置された給気弁11のマスク角βが
異なっている。即ち、図10に示されるように対称平面
K−K上に配置された排気弁14のかさ部外周縁に接す
るように給気弁11のかさ部中心から延びる一対の直線
a ,Mb で挟まれた領域内に位置する給気弁11の開
口がマスク壁22によって覆われている。このように図
10に示す実施例では図1から図4に示す実施例および
図9に示す実施例に比べて給気弁11のマスク角βが更
に小さく形成されており、従って給気抵抗が更に低減せ
しめられる。
FIG. 10 shows a third embodiment. The embodiment shown in FIG. 10 has substantially the same structure as the embodiment shown in FIGS. 1 to 4 and the embodiment shown in FIG. 9, but the mask angle of the air supply valve 11 arranged at the center of the cylinder head inner wall surface 3a. β is different. That is, the pair of straight lines M a which extends from the bevel portion center of the air supply valve 11 so as to be in contact with the bulk outer periphery of the exhaust valve 14 disposed on the plane of symmetry K-K as shown in FIG. 10, in M b The opening of the air supply valve 11 located in the sandwiched region is covered with the mask wall 22. As described above, in the embodiment shown in FIG. 10, the mask angle β of the air supply valve 11 is formed to be smaller than that in the embodiment shown in FIGS. 1 to 4 and the embodiment shown in FIG. It can be further reduced.

【0029】図11から図15に第4の実施例を示す。
この実施例において排気弁12,13,14および排気
ポート28は図1から図4に示す実施例と同じ構造を有
し、給気弁9,10およびマスク壁16,19も図1か
ら図4に示す実施例と同じ構造を有し、副室5および噴
口6も図1から図4に示す実施例と同じ構造を有する。
即ち、シリンダヘッド内壁面3a上に形成された各凹部
15、18内には夫々給気弁9,10が配置され、排気
弁12,14側に形成される給気弁9の開口および排気
弁13,14側に形成される給気弁10の開口が夫々対
応するマスク壁16,19によって覆われている。
A fourth embodiment is shown in FIGS. 11 to 15.
In this embodiment, the exhaust valves 12, 13, 14 and the exhaust port 28 have the same structure as the embodiment shown in FIGS. 1 to 4, and the air supply valves 9 and 10 and the mask walls 16 and 19 are also shown in FIGS. 1 has the same structure as that of the embodiment shown in FIG. 4, and the sub chamber 5 and the injection port 6 also have the same structure as that of the embodiment shown in FIGS.
That is, the air supply valves 9 and 10 are arranged in the respective recesses 15 and 18 formed on the cylinder head inner wall surface 3a, and the openings of the air supply valve 9 formed on the exhaust valve 12 and 14 side and the exhaust valve are formed. The openings of the air supply valve 10 formed on the 13 and 14 sides are covered with corresponding mask walls 16 and 19, respectively.

【0030】一方、この実施例では給気弁11aが図1
から図4に示す実施例の給気弁11に比べてかなり小さ
い弁径を有し、また給気枝通路31a,32aは図1か
ら図4に示す実施例の給気枝通路31,32に比べてか
なり小さな断面積を有する。また、この実施例では給気
弁11aに対してマスク壁は設けられていない。従って
この実施例では図1から図4に示す実施例に比べて少量
の新気が給気弁11aを介して主室4内に供給され、次
いでこの新気は図15において矢印Yaで示すように主
室4の中央部に向けて流れる。従ってこの場合でも給気
弁11aから流入する新気によって主室4内の中心部が
掃気され、更に他の給気弁9,10から流入する新気に
よって主室4の周縁部が掃気されるので主室4内全体が
掃気されることになる。この実施例では給気弁11aに
対してマスク壁が設けられていないので給気弁11aか
ら流入した新気の一部が排気ポート28内に吹き抜け
る。この場合、この吹き抜ける空気は既燃ガスの掃気作
用に寄与しないので無駄な空気となるが給気弁11aか
ら流入する空気量自体が少ないので無駄となる空気量は
さほど多くはならない。
On the other hand, in this embodiment, the air supply valve 11a is shown in FIG.
1 to 4 have a considerably smaller valve diameter than the air supply valve 11 of the embodiment shown in FIG. 4, and the air supply branch passages 31a and 32a are provided in the air supply branch passages 31 and 32 of the embodiment shown in FIGS. It has a considerably smaller cross-sectional area. Further, in this embodiment, no mask wall is provided for the air supply valve 11a. Therefore, in this embodiment, a small amount of fresh air is supplied into the main chamber 4 via the air supply valve 11a as compared with the embodiment shown in FIGS. 1 to 4, and this fresh air is then indicated by the arrow Ya in FIG. Flow toward the center of the main chamber 4. Therefore, even in this case, the central portion of the main chamber 4 is scavenged by the fresh air flowing from the air supply valve 11a, and the peripheral portion of the main chamber 4 is scavenged by the fresh air flowing from the other air supply valves 9 and 10. Therefore, the entire main chamber 4 is scavenged. In this embodiment, since the mask wall is not provided for the air supply valve 11a, part of the fresh air flowing in from the air supply valve 11a blows into the exhaust port 28. In this case, the blown air does not contribute to the scavenging action of the burnt gas and is wasted air, but the amount of air flowing in from the air supply valve 11a is small and the amount of wasted air does not increase so much.

【0031】図16に第5の実施例を示す。図16に示
す実施例においても図1から図4に示す実施例と同様に
シリンダヘッド内壁面3aの一側周辺部には対称平面K
−Kに関して対称的に一対の給気弁9,10が配置さ
れ、シリンダヘッド内壁面3aの中央部には追加の給気
弁11が配置され、これら3個の給気弁9,10,11
によって囲まれたシリンダヘッド内壁面3aの周辺部に
は副室の噴口6が配置され、各給気弁9,10,11は
シリンダヘッド内壁面3a上に形成された対応する凹部
15,18,21内に配置されている。一方、この実施
例ではシリンダヘッド内壁面3aの他側周辺部には4個
の排気弁40,41,42,43が配置される。図16
に示されるように排気弁40と排気弁41は対称平面K
−Kに関して対称的に配置され、排気弁42と排気弁4
3も対称平面K−Kに関して対称的に配置される。また
排気弁40,42は対称平面K−Kに関して給気弁9側
に配置されており、排気弁40の方が排気弁42よりも
対称平面K−Kから離れて配置されている。一方、排気
弁41,43は対称平面K−Kに関して給気弁10側に
配置されており、排気弁41の方が排気弁43よりも対
称平面K−Kから離れて配置されている。
FIG. 16 shows a fifth embodiment. In the embodiment shown in FIG. 16 as well, as in the embodiment shown in FIGS. 1 to 4, a symmetry plane K is formed on one peripheral portion of the cylinder head inner wall surface 3a.
A pair of air supply valves 9 and 10 are arranged symmetrically with respect to −K, and an additional air supply valve 11 is arranged in the central portion of the cylinder head inner wall surface 3a, and these three air supply valves 9, 10, 11 are arranged.
The injection port 6 of the sub chamber is arranged in the peripheral portion of the cylinder head inner wall surface 3a surrounded by, and each of the air supply valves 9, 10, 11 has a corresponding recessed portion 15, 18, formed on the cylinder head inner wall surface 3a. It is arranged in 21. On the other hand, in this embodiment, four exhaust valves 40, 41, 42, 43 are arranged on the other side peripheral portion of the cylinder head inner wall surface 3a. FIG.
As shown in, the exhaust valve 40 and the exhaust valve 41 have a symmetry plane K.
The exhaust valve 42 and the exhaust valve 4 are arranged symmetrically with respect to K
3 are also arranged symmetrically with respect to the plane of symmetry KK. Further, the exhaust valves 40 and 42 are arranged on the air supply valve 9 side with respect to the plane of symmetry KK, and the exhaust valve 40 is arranged farther from the plane of symmetry KK than the exhaust valve 42. On the other hand, the exhaust valves 41 and 43 are arranged on the air supply valve 10 side with respect to the plane of symmetry KK, and the exhaust valve 41 is arranged farther from the plane of symmetry KK than the exhaust valve 43.

【0032】図16に示されるようにこの実施例では排
気弁40のかさ部全体および排気弁42のかさ部全体が
対称平面K−Kに関して給気弁9側に位置している。給
気弁9のかさ部中心からこれら2個の排気弁40,42
のかさ部の全体を挟むように延びる一対の直線を考えた
ときにこの一対の直線間に形成される挟み角α1 、即ち
マスク角α1 が最小となるような一対の直線L1a,L1b
で挟まれた領域内に位置する給気弁9の開口がマスク壁
16によって覆われている。一方、排気弁41のかさ部
全体および排気弁43のかさ部全体が対称平面K−Kに
関して給気弁10側に位置している。給気弁10のかさ
部中心からこれら2個の排気弁41,43のかさ部の全
体を挟むように延びる一対の直線を考えたときにこの一
対の直線間に形成される挟み角α2 、即ちマスク角α2
が最小となるような一対の直線、L2a,L2bで挟まれた
領域内に位置する給気弁10の開口がマスク壁19によ
って覆われている。一方、給気弁11のかさ部中心から
全排気弁40,41,42,43のかさ部の全体を挟む
ように延びる一対の直線を考えたときにこの一対の直線
間に形成される挟み角β、即ちマスク角βが最小となる
ような一対の直線M a ,Mb で挟まれた領域内に位置す
る給気弁11の開口がマスク壁22によって覆われてい
る。
In this embodiment, as shown in FIG.
The entire bulge of the air valve 40 and the entire bulge of the exhaust valve 42
It is located on the side of the air supply valve 9 with respect to the plane of symmetry KK. Salary
These two exhaust valves 40, 42 from the center of the air valve 9
Considered a pair of straight lines that extend across the entire bulge
Sometimes the included angle α formed between this pair of straight lines1, Ie
Mask angle α1A pair of straight lines L such that1a, L1b
The opening of the air supply valve 9 located in the area sandwiched by
It is covered by 16. On the other hand, the cap of the exhaust valve 41
The whole and the bulk of the exhaust valve 43 are in the plane of symmetry KK
It is located on the air supply valve 10 side. Bulk of air supply valve 10
From the center of the part, the whole of the bulk part of these two exhaust valves 41, 43
When you think of a pair of straight lines that extend to sandwich the body, this one
The included angle α formed between the pair of straight lines2, Ie mask angle α2
A pair of straight lines that minimize2a, L2bSandwiched between
The opening of the air supply valve 10 located in the area is defined by the mask wall 19.
Is covered. On the other hand, from the center of the air supply valve 11
Holds the entire bulk of all exhaust valves 40, 41, 42, 43
When you think of a pair of straight lines that extend like
The included angle β formed between them, that is, the mask angle β is minimized.
A pair of straight lines M a, MbLocated in the area sandwiched between
The opening of the air supply valve 11 is covered by the mask wall 22.
It

【0033】図17に第6の実施例を示す。図17に示
す実施例は図16に示す実施例とほぼ同じ構造を有する
が、シリンダヘッド内壁面3aの中央部に配置された給
気弁11のマスク角βが異なっている。即ち、図17に
示されるように排気弁40のかさ部中心と給気弁11の
かさ部中心とを結ぶ直線Ma と、排気弁41のかさ部中
心と給気弁11のかさ部中心とを結ぶ直線Mb とで挟ま
れた領域内に位置する給気弁11の開口がマスク壁22
によって覆われている。
FIG. 17 shows a sixth embodiment. The embodiment shown in FIG. 17 has substantially the same structure as the embodiment shown in FIG. 16, but the mask angle β of the air supply valve 11 arranged at the center of the cylinder head inner wall surface 3a is different. That is, as shown in FIG. 17, a straight line Ma connecting the center of the exhaust valve 40 and the center of the intake valve 11, the center of the exhaust valve 41 and the center of the intake valve 11. The opening of the air supply valve 11 located in the area sandwiched between the straight line M b and the mask wall 22.
Is covered by.

【0034】図18に第7の実施例を示す。図18に示
す実施例は図16に示す実施例および図17に示す実施
例とほぼ同じ構造を有するが、シリンダヘッド内壁面3
aの中央部に配置された給気弁11のマスク角βが異な
っている。即ち、図18に示されるように対称平面K−
Kの近傍に配置された2個の排気弁42,43のかさ部
の全体を挟むように給気弁11のかさ部中心から延びる
一対の直線を考えたときにこの一対の直線間に形成され
る挟み角β、即ちマスク角βが最小となるような一対の
直線Ma ,Mb で挟まれた領域内に位置する給気弁11
の開口がマスク壁22によって覆われている。
FIG. 18 shows a seventh embodiment. The embodiment shown in FIG. 18 has substantially the same structure as the embodiment shown in FIG. 16 and the embodiment shown in FIG.
The mask angle β of the air supply valve 11 arranged at the center of a is different. That is, as shown in FIG. 18, the plane of symmetry K−
When considering a pair of straight lines extending from the center of the bulk portion of the air supply valve 11 so as to sandwich the entire bulk portion of the two exhaust valves 42, 43 arranged in the vicinity of K, they are formed between the pair of straight lines. that included angle beta, i.e. pair of straight M a as a mask angle beta is minimized, air supply valve 11 located in the region between the M b
Is covered with a mask wall 22.

【0035】図19に第8の実施例を示す。図19に示
す実施例において給気弁9,10、排気弁40,41,
42,43およびマスク壁16,19は図16から図1
8に示す各実施例と同じ構造を有する。一方、この実施
例では図11から図15に示す実施例と同様に、給気弁
11aが図16から図18に示す各実施例の給気弁11
に比べてかなり小さい弁径を有し、給気枝通路31a,
32a(図11および図12参照)がかなり小さな断面
積を有し、また給気弁11aに対してマスク壁は設けら
れていない。
FIG. 19 shows an eighth embodiment. In the embodiment shown in FIG. 19, air supply valves 9 and 10, exhaust valves 40 and 41,
42 and 43 and the mask walls 16 and 19 are shown in FIGS.
It has the same structure as each embodiment shown in FIG. On the other hand, in this embodiment, similarly to the embodiment shown in FIG. 11 to FIG. 15, the air supply valve 11a is the air supply valve 11 of each embodiment shown in FIG. 16 to FIG.
Has a valve diameter considerably smaller than that of the air supply branch passage 31a,
32a (see FIGS. 11 and 12) has a fairly small cross-sectional area, and no mask wall is provided for the intake valve 11a.

【0036】図20に第9の実施例を示す。図20に示
す実施例において排気弁12,13,14、給気弁9,
10およびマスク壁16,19は図1から図4に示す実
施例と同様の構造を有する。即ち、シリンダヘッド内壁
面3a上に形成された各凹部15,18内には夫々給気
弁9,10が配置され、排気弁12,14側に位置する
マスク角α1 の範囲内の給気弁9の開口がマスク壁16
によって覆われており、排気弁13,14側に位置する
マスク角α2 の範囲内の給気弁10の開口がマスク壁1
9によって覆われている。一方、この実施例ではシリン
ダヘッド内壁面3aの中央部には図1に示すような給気
弁11が配置されていない。
FIG. 20 shows a ninth embodiment. In the embodiment shown in FIG. 20, the exhaust valves 12, 13, 14 and the air supply valve 9,
10 and the mask walls 16 and 19 have the same structure as the embodiment shown in FIGS. That is, the air supply valves 9 and 10 are arranged in the recesses 15 and 18 formed on the cylinder head inner wall surface 3a, respectively, and the air supply in the range of the mask angle α 1 located on the side of the exhaust valves 12 and 14 is performed. The opening of the valve 9 is the mask wall 16
The opening of the air supply valve 10 within the range of the mask angle α 2 located on the exhaust valve 13 or 14 side is covered by the mask wall 1
Covered by 9. On the other hand, in this embodiment, the air supply valve 11 as shown in FIG. 1 is not arranged at the center of the cylinder head inner wall surface 3a.

【0037】図20に示す実施例においても図1から図
4に示す実施例と同様に、給気弁9,10が開弁すると
各給気弁9,10から主室4内に流入した新気は図6お
よび図8において矢印Xa ,Xb で示すように主室4の
周縁部に沿ってループ状に流れ、このループ状に流れる
新気Xa ,Xb によって主室4内の既燃ガスが各排気弁
12,13,14から排出される。
In the embodiment shown in FIG. 20, as in the embodiment shown in FIGS. 1 to 4, when the air supply valves 9 and 10 are opened, new air flows into the main chamber 4 through the air supply valves 9 and 10. The air flows in a loop along the peripheral portion of the main chamber 4 as shown by arrows X a and X b in FIGS. 6 and 8, and the fresh air X a and X b flowing in the loop causes the inside of the main chamber 4 to flow. Burned gas is exhausted from each exhaust valve 12, 13, 14.

【0038】このとき給気弁9から流入する新気は対称
平面K−Kに関して給気弁9側に位置する主室4内を掃
気する役目を果たし、一方給気弁10から流入する新気
は対称平面K−Kに関して給気弁10側に位置する主室
4内を掃気する役目を果たす。図20に示されるように
排気弁12のかさ部全体および排気弁14のかさ部の半
分が対称平面K−Kに関して給気弁9側に位置してい
る。従って、給気弁9に対してマスク壁を設けないと給
気弁9から流入した新気の一部がシリンダヘッド内壁面
3aに沿い進行して排気弁12,14から吹き抜けやす
い。しかしながら図20に示されるようにこれら排気弁
12,14側に位置するマスク角α1 の範囲内の給気弁
9の開口がマスク壁16によって覆われているので、給
気弁9から流入した新気が排気弁12,14を介して排
気ポート内に吹き抜けることが阻止される。同様に、給
気弁10から流入した新気が排気弁13,14を介して
排気ポート内に吹き抜けることがマスク壁19によって
阻止される。なお、排気弁13側の凹部15の円錐状内
周壁面部分17aと給気弁9の周縁部間に形成された給
気弁9の開口部分から主室4内に流入した新気の一部は
シリンダヘッド内壁面3aに沿って排気弁13の方向に
進行し、一方排気弁12側の凹部18の円錐状内周壁面
部分20aと給気弁10の周縁部間に形成された給気弁
10の開口部分から主室4内に流入した新気の一部はシ
リンダヘッド内壁面3aに沿って排気弁12の方向に進
行する。しかしながらこのようにシリンダヘッド内壁面
3aに沿って円錐状内周壁面部分17aから排気弁13
に向かう新気と円錐状内周壁面部分20aから排気弁1
2に向かう新気とはシリンダヘッド内壁面3aの中央部
付近において互いに衝突干渉し、次いで主室4内を下降
することになる。従って凹部15の円錐状内周壁面部分
17aから流入する新気および凹部18の円錐状内周壁
面部分20aから流入する新気も排気ポート内に吹き抜
けない。斯くして各給気弁9,10から流入した新気が
シリンダヘッド内壁面3aに沿って排気ポート内に吹き
抜けることがほぼ完全に阻止され、従って給気弁9,1
0から流入したほぼすべての新気が主室4内をループ状
に流れる新気流Xa ,Xb の発生に有効に寄与せしめら
れる。また給気弁9のマスク角α1 および給気弁10の
マスク角α2 は新気の吹き抜けを良好に阻止しうる必要
最小限の角度に形成されているので給気抵抗が小さく抑
えられる。斯くして主室4内をループ状に流れる強力な
新気流Xa ,Xb が形成され、この強力な新気流Xa
b により主室4内が良好に掃気される。
At this time, the fresh air flowing from the air supply valve 9 serves to scavenge the inside of the main chamber 4 located on the air supply valve 9 side with respect to the plane of symmetry KK, while the fresh air flowing from the air supply valve 10 flows. Plays a role of scavenging the inside of the main chamber 4 located on the air supply valve 10 side with respect to the plane of symmetry KK. As shown in FIG. 20, the entire bulge portion of the exhaust valve 12 and half of the bulge portion of the exhaust valve 14 are located on the intake valve 9 side with respect to the plane of symmetry KK. Therefore, if the mask wall is not provided for the air supply valve 9, a part of the fresh air flowing from the air supply valve 9 easily travels along the cylinder head inner wall surface 3a and is easily blown out from the exhaust valves 12, 14. However, as shown in FIG. 20, since the opening of the air supply valve 9 located on the exhaust valve 12, 14 side within the range of the mask angle α 1 is covered with the mask wall 16, the gas flows in from the air supply valve 9. Fresh air is prevented from passing through the exhaust valves 12 and 14 into the exhaust port. Similarly, the mask wall 19 prevents fresh air flowing from the air supply valve 10 from passing through the exhaust valves 13 and 14 into the exhaust port. It should be noted that a part of the fresh air flowing into the main chamber 4 from the opening portion of the air supply valve 9 formed between the conical inner peripheral wall surface portion 17a of the concave portion 15 on the exhaust valve 13 side and the peripheral portion of the air supply valve 9. Advances in the direction of the exhaust valve 13 along the inner wall surface 3a of the cylinder head, while the air supply valve formed between the conical inner peripheral wall surface portion 20a of the recess 18 on the exhaust valve 12 side and the peripheral portion of the air supply valve 10. A part of the fresh air flowing into the main chamber 4 through the opening portion 10 advances toward the exhaust valve 12 along the cylinder head inner wall surface 3a. However, in this way, along the cylinder head inner wall surface 3a from the conical inner peripheral wall surface portion 17a to the exhaust valve 13
To the exhaust valve 1 from the fresh air toward the inner conical wall surface 20a
The fresh air toward 2 collides and interferes with each other in the vicinity of the center of the cylinder head inner wall surface 3a, and then descends in the main chamber 4. Therefore, the fresh air flowing in from the conical inner peripheral wall surface portion 17a of the concave portion 15 and the fresh air flowing in from the conical inner peripheral wall surface portion 20a of the concave portion 18 are not blown into the exhaust port. Thus, the fresh air that has flowed in from the air supply valves 9 and 10 is almost completely prevented from blowing through the exhaust port along the inner wall surface 3a of the cylinder head.
Almost all the fresh air flowing from 0 is effectively contributed to the generation of the new airflows X a and X b flowing in the main chamber 4 in a loop shape. Further, since the mask angle α 1 of the air supply valve 9 and the mask angle α 2 of the air supply valve 10 are formed at the necessary minimum angles that can favorably prevent the blow-through of fresh air, the air supply resistance can be suppressed to be small. Thus to powerful new stream X a flowing primary chamber 4 in a loop, X b is formed, this powerful new stream X a,
The inside of the main chamber 4 is scavenged well by Xb .

【0039】図21に第10の実施例を示す。図21に
示す実施例において排気弁40,41,42,43、給
気弁9,10およびマスク壁16,19は図16に示す
実施例と同様の構造を有する。即ち、シリンダヘッド内
壁面3a上に形成された各凹部15,18内には夫々給
気弁9,10が配置され、排気弁40,42側に位置す
るマスク角α1 の範囲内の給気弁9の開口がマスク壁1
6によって覆われており、給気弁41,43側に位置す
るマスク角α2 の範囲内の給気弁10の開口がマスク壁
19によって覆われている。一方、この実施例ではシリ
ンダヘッド内壁面3aの中央部には図16に示すような
給気弁11が配置されていない。この実施例においても
図20に示す実施例と同様に給気弁9,10が開弁する
と主室4内をループ状に流れる強力な新気流Xa ,Xb
が形成され、この強力な新気流X a ,Xb により主室4
内が良好に掃気される。
FIG. 21 shows a tenth embodiment. In Figure 21
In the embodiment shown, the exhaust valves 40, 41, 42, 43,
Air valves 9,10 and mask walls 16,19 are shown in FIG.
It has the same structure as the embodiment. That is, in the cylinder head
The recesses 15 and 18 formed on the wall surface 3a are respectively supplied with
Air valves 9 and 10 are arranged and located on the side of exhaust valves 40 and 42
Mask angle α1The opening of the air supply valve 9 within the range of the mask wall 1
6 and is located on the side of the air supply valves 41 and 43
Mask angle α2The opening of the air supply valve 10 within the range is the mask wall
Covered by 19. On the other hand, in this embodiment,
As shown in FIG. 16, the central portion of the inner wall surface 3a
The air supply valve 11 is not arranged. Also in this example
As in the embodiment shown in FIG. 20, the air supply valves 9 and 10 are opened.
And powerful new airflow X flowing in a loop in the main chamber 4a, Xb
Is formed, this powerful new air flow X a, XbMain room 4
The inside is scavenged well.

【0040】なお、これまで述べた各実施例ではマスク
壁がシリンダヘッド上に形成されているがこのマスク壁
をシリンダヘッドとは別体の部材上に形成することがで
きる。この場合には給気弁シート或いは排気弁シートの
形状を工夫してマスク壁をこれら弁シート上に形成する
こともできる。
In each of the embodiments described above, the mask wall is formed on the cylinder head, but the mask wall can be formed on a member separate from the cylinder head. In this case, the mask wall may be formed on these valve seats by devising the shape of the air supply valve seat or the exhaust valve seat.

【0041】[0041]

【発明の効果】請求項1に記載の発明によれば新気がシ
リンダヘッド内壁面に沿って排気ポート内に吹き抜ける
ことがほぼ完全に阻止されると共に給気抵抗が小さく抑
えられ、斯くして良好なループ掃気を確保することがで
きるので燃焼室内を良好に掃気することができる。
According to the first aspect of the present invention, it is possible to almost completely prevent fresh air from blowing through the exhaust port along the inner wall surface of the cylinder head, and to suppress the air supply resistance to a small value. Since good loop scavenging can be ensured, the combustion chamber can be scavenged satisfactorily.

【0042】請求項2に記載の発明によればシリンダヘ
ッド内壁面の周辺部に配置された給気弁から供給された
新気が排気ポート内に吹き抜けることがほぼ完全に阻止
されると共に給気抵抗が小さく抑えられ、斯くして燃焼
室の周縁に沿って流れる良好なループ掃気流が確保さ
れ、燃焼室の周縁部が良好に掃気される。また追加の給
気弁から供給された新気によって燃焼室の中央部が良好
に掃気される。斯くして燃焼室内全体を良好に掃気する
ことができる。
According to the second aspect of the present invention, the fresh air supplied from the air supply valve arranged at the peripheral portion of the inner wall surface of the cylinder head is almost completely prevented from being blown into the exhaust port, and the air is supplied. The resistance is suppressed to a low level, so that a good loop scavenging airflow flowing along the peripheral edge of the combustion chamber is secured, and the peripheral edge portion of the combustion chamber is scavenged well. In addition, the central portion of the combustion chamber is scavenged well by the fresh air supplied from the additional air supply valve. Thus, the entire combustion chamber can be scavenged well.

【図面の簡単な説明】[Brief description of drawings]

【図1】シリンダヘッド内壁面の底面図である。FIG. 1 is a bottom view of an inner wall surface of a cylinder head.

【図2】図1に示すシリンダヘッドの平面断面図であ
る。
FIG. 2 is a plan sectional view of the cylinder head shown in FIG.

【図3】図2のIII −III 線に沿ってみた内燃機関の側
面断面図である。
FIG. 3 is a side sectional view of the internal combustion engine taken along line III-III in FIG.

【図4】図2のIV−IV線に沿ってみた内燃機関の側面断
面図である。
FIG. 4 is a side sectional view of the internal combustion engine taken along line IV-IV in FIG.

【図5】給気弁および排気弁の開弁時期を示す線図であ
る。
FIG. 5 is a diagram showing a valve opening timing of an air supply valve and an exhaust valve.

【図6】図3と同一断面に沿ってみた掃気作用を説明す
るための内燃機関の側面断面図である。
6 is a side sectional view of the internal combustion engine for explaining the scavenging action as viewed along the same section as FIG.

【図7】図4と同一断面に沿ってみた掃気作用を説明す
るための内燃機関の側面断面図である。
FIG. 7 is a side sectional view of the internal combustion engine for explaining the scavenging action as viewed along the same section as FIG.

【図8】図解的に示した内燃機関の斜視図である。FIG. 8 is a schematic perspective view of an internal combustion engine.

【図9】第2の実施例のシリンダヘッド内壁面の底面図
である。
FIG. 9 is a bottom view of the inner wall surface of the cylinder head of the second embodiment.

【図10】第3の実施例のシリンダヘッド内壁面の底面
図である。
FIG. 10 is a bottom view of an inner wall surface of a cylinder head according to a third embodiment.

【図11】第4の実施例のシリンダヘッド内壁面の底面
図である。
FIG. 11 is a bottom view of the inner wall surface of the cylinder head of the fourth embodiment.

【図12】図11に示すシリンダヘッドの平面断面図で
ある。
12 is a plan sectional view of the cylinder head shown in FIG.

【図13】図12のXIII−XIII線に沿ってみた内燃機関
の側面断面図である。
13 is a side sectional view of the internal combustion engine taken along line XIII-XIII in FIG.

【図14】図12のXIV −XIV 線に沿ってみた内燃機関
の側面断面図である。
FIG. 14 is a side sectional view of the internal combustion engine taken along line XIV-XIV in FIG.

【図15】図14と同一断面に沿ってみた掃気作用を説
明するための内燃機関の側面断面図である。
FIG. 15 is a side sectional view of the internal combustion engine for explaining the scavenging action taken along the same section as FIG.

【図16】第5の実施例のシリンダヘッド内壁面の底面
図である。
FIG. 16 is a bottom view of the inner wall surface of the cylinder head of the fifth embodiment.

【図17】第6の実施例のシリンダヘッド内壁面の底面
図である。
FIG. 17 is a bottom view of the inner wall surface of the cylinder head of the sixth embodiment.

【図18】第7の実施例のシリンダヘッド内壁面の底面
図である。
FIG. 18 is a bottom view of an inner wall surface of a cylinder head according to a seventh embodiment.

【図19】第8の実施例のシリンダヘッド内壁面の底面
図である。
FIG. 19 is a bottom view of the inner wall surface of the cylinder head of the eighth embodiment.

【図20】第9の実施例のシリンダヘッド内壁面の底面
図である。
FIG. 20 is a bottom view of the inner wall surface of the cylinder head of the ninth embodiment.

【図21】第10の実施例のシリンダヘッド内壁面の底
面図である。
FIG. 21 is a bottom view of the inner wall surface of the cylinder head according to the tenth embodiment.

【符号の説明】[Explanation of symbols]

3a…シリンダヘッド内壁面 5…副室 6…噴口 9,10,11,11a…給気弁 12,13,14…排気弁 16,19,22…マスク壁 40,41,42,43…排気弁 α1 ,α2 ,β…マスク角 K−K…対称平面3a ... Cylinder head inner wall surface 5 ... Sub chamber 6 ... Injection port 9, 10, 11, 11a ... Air supply valve 12, 13, 14 ... Exhaust valve 16, 19, 22 ... Mask wall 40, 41, 42, 43 ... Exhaust valve α 1 , α 2 , β ... Mask angle KK ... Symmetric plane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福山 正 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaru Fukuyama 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリンダヘッド内壁面の一側にシリンダ
軸線を含む対称平面に関して対称的に一対の給気弁を配
置すると共にシリンダヘッド内壁面の他側に少くとも3
個の排気弁を配置し、排気弁側に位置する各給気弁の開
口をマスク壁によって覆うようにした2サイクル内燃機
関の燃焼室構造において、上記少くとも3個の排気弁の
内で排気弁かさ部の一部または全体が上記対称平面に関
して一方の給気弁側に配置されている第1の排気弁につ
いてすべての該第1排気弁のかさ部全体を挟むように該
一方の給気弁のかさ部中心から延びる一対の直線の内で
該一対の直線間に形成される挟み角が最小となるような
一対の直線で挟まれた領域内に位置する該一方の給気弁
の開口を上記マスク壁によって覆い、上記少くとも3個
の排気弁の内で排気弁かさ部の一部または全体が上記対
称平面に関して他方の給気弁側に配置されている第2の
排気弁についてすべての該第2排気弁のかさ部全体を挟
むように該他方の給気弁のかさ部中心から延びる一対の
直線の内で該一対の直線間に形成される挟み角が最小と
なるような一対の直線で挟まれた領域内に位置する該他
方の給気弁の開口を上記マスク壁によって覆うようにし
た2サイクル内燃機関の燃焼室構造。
1. A pair of air supply valves are arranged symmetrically with respect to a plane of symmetry including a cylinder axis on one side of the inner wall surface of the cylinder head, and at least 3 on the other side of the inner wall surface of the cylinder head.
In a combustion chamber structure of a two-cycle internal combustion engine in which a plurality of exhaust valves are arranged and the openings of the intake valves located on the exhaust valve side are covered with a mask wall, the exhaust gas is exhausted from among the at least three exhaust valves. For one of the first exhaust valves, a part or the whole of which is arranged on one side of the air supply valve with respect to the plane of symmetry, the one air supply is provided so as to sandwich the whole of the first exhaust valve. The opening of the one air supply valve located in the region sandwiched by the pair of straight lines that minimizes the sandwiching angle formed between the pair of straight lines extending from the center of the bulb portion of the valve Of the second exhaust valve, which is covered by the mask wall and in which at least three of the exhaust valves have a part or the whole of the exhaust valve bulge arranged on the other intake valve side with respect to the plane of symmetry. Of the other of the second exhaust valves so as to sandwich the entire bulkhead of the second exhaust valve. Of the pair of straight lines extending from the center of the bulge portion of the air valve, the other air supply valve located in the region sandwiched by the pair of straight lines such that the sandwiching angle formed between the pair of straight lines is minimized A combustion chamber structure of a two-cycle internal combustion engine in which an opening is covered by the mask wall.
【請求項2】 シリンダヘッド内壁面の一側にシリンダ
軸線を含む対称平面に関して対称的に一対の給気弁を配
置すると共にシリンダヘッド内壁面の他側に少くとも3
個の排気弁を配置し、排気弁側に位置する各給気弁の開
口をマスク壁によって覆うようにした2サイクル内燃機
関の燃焼室構造において、上記一対の給気弁をシリンダ
ヘッド内壁面の上記一側の周辺部に配置すると共に上記
少くとも3個の排気弁をシリンダヘッド内壁面の他側周
辺部に配置し、上記少くとも3個の排気弁の内で排気弁
かさ部の一部または全体が上記対称平面に関して一方の
給気弁側に配置されている第1の排気弁についてすべて
の該第1排気弁のかさ部全体を挟むように該一方の給気
弁のかさ部中心から延びる一対の直線の内で該一対の直
線間に形成される挟み角が最小となるような一対の直線
で挟まれた領域内に位置する該一方の給気弁の開口を上
記マスク壁によって覆い、上記少くとも3個の排気弁の
内で排気弁かさ部の一部または全体が上記対称平面に関
して他方の給気弁側に配置されている第2の排気弁につ
いてすべての該第2排気弁のかさ部全体を挟むように該
他方の給気弁のかさ部中心から延びる一対の直線の内で
該一対の直線間に形成される挟み角が最小となるような
一対の直線で挟まれた領域内に位置する該他方の給気弁
の開口を上記マスク壁によって覆い、シリンダヘッド内
壁面の中心部に追加の給気弁を配置して該追加の給気弁
から燃焼室内の中央部に向けて新気を供給するようにし
た2サイクル内燃機関の燃焼室構造。
2. A pair of air supply valves are arranged symmetrically with respect to a plane of symmetry including a cylinder axis on one side of the inner wall surface of the cylinder head, and at least 3 on the other side of the inner wall surface of the cylinder head.
In a combustion chamber structure of a two-cycle internal combustion engine in which a plurality of exhaust valves are arranged and the openings of the intake valves located on the exhaust valve side are covered with a mask wall, the pair of intake valves are connected to the inner wall surface of the cylinder head. The exhaust valve is arranged at the peripheral portion on one side, and the at least three exhaust valves are arranged at the peripheral portion on the other side of the inner wall surface of the cylinder head, and a part of the exhaust valve cap portion is included in the exhaust valve at least three exhaust valves. Alternatively, with respect to the first exhaust valves which are arranged on the side of the one intake valve with respect to the plane of symmetry as a whole, from the center of the bulk of the one exhaust valve so as to sandwich the entire bulk of all the first exhaust valves. The mask wall covers the opening of the one air supply valve located in the region sandwiched by the pair of straight lines that minimizes the sandwiching angle formed between the pair of straight lines. Of the above at least three exhaust valves, the exhaust valve cap A second exhaust valve, which is partially or wholly disposed on the other intake valve side with respect to the plane of symmetry, sandwiches the entire bulk of all the second exhaust valves so as to sandwich the bulk of the other intake valve. Of the pair of straight lines extending from the center, the opening of the other air supply valve located in the region sandwiched by the pair of straight lines such that the sandwiching angle formed between the pair of straight lines is minimized is the mask wall. Combustion chamber of a two-cycle internal combustion engine in which an additional air supply valve is arranged in the center of the inner wall surface of the cylinder head to supply fresh air from the additional air supply valve toward the center of the combustion chamber. Construction.
JP3328803A 1991-12-12 1991-12-12 Combustion chamber structure of two-cycle internal combustion engine Pending JPH05163906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3328803A JPH05163906A (en) 1991-12-12 1991-12-12 Combustion chamber structure of two-cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3328803A JPH05163906A (en) 1991-12-12 1991-12-12 Combustion chamber structure of two-cycle internal combustion engine

Publications (1)

Publication Number Publication Date
JPH05163906A true JPH05163906A (en) 1993-06-29

Family

ID=18214277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3328803A Pending JPH05163906A (en) 1991-12-12 1991-12-12 Combustion chamber structure of two-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JPH05163906A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9038592B2 (en) 2013-04-16 2015-05-26 Deere & Company Cylinder head comprising a shroud

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9038592B2 (en) 2013-04-16 2015-05-26 Deere & Company Cylinder head comprising a shroud

Similar Documents

Publication Publication Date Title
JPH02153222A (en) Combustion chamber construction of two-cycle internal combustion engine
JPH04330329A (en) Crank chamber pre-compression type 2-cycle internal combustion engine
EP0602649B1 (en) A two-stroke engine
US5230312A (en) Two-stroke engine
JPH07117019B2 (en) 2-cycle internal combustion engine
JPH05163906A (en) Combustion chamber structure of two-cycle internal combustion engine
JPH05163905A (en) Combustion chamber structure of two-cycle internal combustion engine
JP3799183B2 (en) Engine intake system
JPH05179905A (en) Combusting chamber structure in two-cycle internal combustion engine
JPS59231120A (en) Three-valve head type internal-combustion engine
JPH06193446A (en) Sub-chamber type diesel engine
JPH06346739A (en) Combustion chamber of two-cycle engine
JPH0681613A (en) Combustion chamber of 2-cycle engine
JPH05156945A (en) Combustion chamber structure in two-cycle internal combustion engine
JPH05340253A (en) Combustion chamber of two-cycle engine
JPH05280344A (en) Two cycle internal combustion engine
JPH0232826Y2 (en)
JPH087059Y2 (en) 2-cycle diesel engine
JPH01277619A (en) Combustion chamber of two-cycle internal combustion engine
JP2906854B2 (en) Diesel engine with sub-chamber
JPH05340251A (en) Combustion chamber of two-cycle engine
JPH06159047A (en) Two-cycle interinal combustion engine
JPH05340252A (en) Combustion chamber of two-cycle engine
JPH04287828A (en) Two cycle internal combustion engine
JPH01280624A (en) Combustion chamber for two-cycle internal combustion engine