JPH05163905A - Combustion chamber structure of two-cycle internal combustion engine - Google Patents

Combustion chamber structure of two-cycle internal combustion engine

Info

Publication number
JPH05163905A
JPH05163905A JP3327636A JP32763691A JPH05163905A JP H05163905 A JPH05163905 A JP H05163905A JP 3327636 A JP3327636 A JP 3327636A JP 32763691 A JP32763691 A JP 32763691A JP H05163905 A JPH05163905 A JP H05163905A
Authority
JP
Japan
Prior art keywords
air supply
valve
supply valve
exhaust
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3327636A
Other languages
Japanese (ja)
Inventor
Koichi Nakae
公一 中江
Toyoichi Umehana
豊一 梅花
Takeshi Sato
武 佐藤
Tadashi Fukuyama
正 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3327636A priority Critical patent/JPH05163905A/en
Publication of JPH05163905A publication Critical patent/JPH05163905A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L2003/25Valve configurations in relation to engine
    • F01L2003/251Large number of valves, e.g. five or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To make new air flow in a loop shape so as to make scavenging in good condition by providing a mask wall opposing to the umbrella part of each exhaust valve on each intake valve which is nearest to the exhaust valve among a plurality of intake valves in a combustion chamber provided with a plurality of exhaust valve. CONSTITUTION:Exhaust valves 9, 10 are provided on the one side of a cylinder head inner wall surface, intake valves 12, 13 are provided on the other side respectively, and also the injection port 6 of an auxiliary chamber is provided on a symmetric position thereof. for example, the distance between the centers of umbrella parts of the intake valve 12 and the exhaust valve 9 is set smaller as compared with that concerning the exhaust valve 10 and the intake valve 12. A mask wall for covering the intake valve 12 is formed by the cylindrical inner wall part 16 of the intake valve 12, and extended along the range of an angle alpha1 (mask wall formed between straight lines L1a, L1b in contact with an outer peripheral edge of the umbrella part of the exhaust valve 9 opposing to the intake valve 12 from the center part on the umbrella part of the intake valve 12. Since new air flows in from the opening port opposite to the mask wall 16 in a loop shape, already burnt gas is scavenged by new air in good condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明の2サイクル内燃機関の燃
焼室構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion chamber structure for a two-cycle internal combustion engine.

【0002】[0002]

【従来の技術】シリンダヘッド内壁面の一側に複数個の
排気弁を配置すると共にシリンダヘッド内壁面の他側に
少くとも1個の給気弁を配置し、排気弁側に位置する給
気弁の開口を給気弁の開弁期間全体に亘ってマスク壁に
より覆うようにした2サイクル内燃機関の燃焼室構造が
公知である(特開平2−153222号公報参照)。こ
の2サイクル内燃機関の燃焼室構造では、排気弁側に位
置する給気弁の開口がマスク壁によって覆われているの
で新気はマスク壁と反対側の給気弁の開口から燃焼室内
に流入し、この新気は給気弁下方のシリンダボア内壁面
に沿い下降し、次いでピストン頂面に沿い進んで排気弁
下方のシリンダボア内壁面に沿い上昇するのでループ掃
気を行うことができる。
2. Description of the Related Art A plurality of exhaust valves are arranged on one side of an inner wall surface of a cylinder head, and at least one air supply valve is arranged on the other side of the inner wall surface of the cylinder head. There is a known combustion chamber structure of a two-cycle internal combustion engine in which the opening of the valve is covered with a mask wall over the entire opening period of the air supply valve (see Japanese Patent Laid-Open No. 2-153222). In the combustion chamber structure of this two-cycle internal combustion engine, since the opening of the intake valve located on the exhaust valve side is covered by the mask wall, fresh air flows into the combustion chamber through the opening of the intake valve on the opposite side of the mask wall. However, this fresh air descends along the inner wall surface of the cylinder bore below the intake valve, then advances along the top surface of the piston and rises along the inner wall surface of the cylinder bore below the exhaust valve, so that loop scavenging can be performed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上述の2
サイクル内燃機関の燃焼室構造では給気弁の周縁部に沿
って延びるマスク壁の範囲、即ち給気弁の周縁方向に沿
ったマスク壁の長さおよび位置について十分な検討がな
されていない。即ち、給気弁の周縁方向に沿ったマスク
壁の範囲を小さく形成しすぎると、マスク壁で覆われて
おらず且つ排気弁側に位置する給気弁の開口部から燃焼
室内に流入した新気がシリンダヘッド内壁面に沿って進
み、次いで排気弁の開口を通って排気ポート内に吹き抜
けてしまう。この場合、この吹き抜ける新気は燃焼室内
の既燃ガスの掃気作用に寄与しないので無駄な空気とな
り、その結果掃気効率が低下してしまうという問題を生
ずる。
[Problems to be Solved by the Invention] However, the above-mentioned 2
In the combustion chamber structure of the cycle internal combustion engine, the range of the mask wall extending along the peripheral portion of the intake valve, that is, the length and position of the mask wall along the peripheral direction of the intake valve have not been sufficiently studied. That is, if the area of the mask wall along the peripheral direction of the air supply valve is made too small, new air flows into the combustion chamber from the opening of the air supply valve which is not covered with the mask wall and is located on the exhaust valve side. Air travels along the inner wall surface of the cylinder head and then blows through the opening of the exhaust valve into the exhaust port. In this case, since the fresh air that blows through does not contribute to the scavenging action of the burnt gas in the combustion chamber, it becomes useless air, resulting in a problem that the scavenging efficiency decreases.

【0004】一方、新気がシリンダヘッド内壁面に沿っ
て排気ポート内に吹き抜けることを確実に阻止しようと
して給気弁の周縁方向に沿ったマスク壁の範囲を大きく
形成しすぎると、今度は給気弁の開口面積が減少するた
めに新気が給気弁開口を通過するときに受ける流れ抵
抗、即ち給気抵抗が増大してしまい、従って給気ポート
から燃焼室内に新気が流入しにくくなる。その結果、給
気ポート上流に配置された機械式過給機が新気を燃焼室
内に送り込むためになす吐出仕事が増大し、斯くして機
関の熱効率が低下してしまうという問題を生ずる。
On the other hand, if the area of the mask wall along the peripheral direction of the air supply valve is made too large in order to surely prevent fresh air from blowing through into the exhaust port along the inner wall surface of the cylinder head, then the air supply will be performed. Since the opening area of the air valve decreases, the flow resistance, that is, the air supply resistance, that the fresh air receives when passing through the air supply valve opening increases, and thus it is difficult for fresh air to flow from the air supply port into the combustion chamber. Become. As a result, the discharge work performed by the mechanical supercharger arranged upstream of the air supply port to send the fresh air into the combustion chamber is increased, and thus the thermal efficiency of the engine is reduced.

【0005】従って良好なループ掃気を行うためには、
給気抵抗をできるだけ小さく抑えつつシリンダヘッド内
壁面に沿って吹き抜ける新気量をできるだけ低減させる
ことができるように、給気弁の周縁方向に沿ったマスク
壁の長さおよび位置を最適な長さおよび最適な位置に形
成することが重要である。しかしながら上述の2サイク
ル内燃機関の燃焼室構造では、このように良好なループ
掃気を確保するために最適なマスク壁の範囲について十
分な検討がなされていない。
Therefore, in order to perform good loop scavenging,
Optimum length and position of the mask wall along the peripheral edge of the air supply valve so that the amount of new air that blows along the inner wall surface of the cylinder head can be reduced as much as possible while keeping the air supply resistance as small as possible. And it is important to form in an optimal position. However, in the above-described combustion chamber structure of the two-cycle internal combustion engine, the optimum range of the mask wall for ensuring such good loop scavenging has not been sufficiently studied.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
めに本発明によれば、シリンダヘッド内壁面の一側に複
数個の排気弁を配置すると共にシリンダヘッド内壁面の
他側に少くとも1個の給気弁を配置し、排気弁側に位置
する給気弁の開口をマスク壁によって覆うようにした2
サイクル内燃機関の燃焼室構造において、給気弁かさ部
の中心と排気弁かさ部の中心との間の距離が最も近い同
士の給気弁と対応する排気弁とについて給気弁のかさ部
の中心から対応する排気弁のかさ部の外周縁に接するよ
うに延びる一対の直線で挟まれた領域内に位置する給気
弁の開口をマスク壁によって覆うようにしている。
In order to solve the above problems, according to the present invention, a plurality of exhaust valves are arranged on one side of the inner wall surface of the cylinder head, and at least on the other side of the inner wall surface of the cylinder head. One air supply valve is arranged, and the opening of the air supply valve located on the exhaust valve side is covered by the mask wall 2
In the structure of the combustion chamber of a cycle internal combustion engine, the air intake valves having the closest distance between the center of the air intake valve and the exhaust valve and the corresponding exhaust valve are The mask wall covers the opening of the air supply valve located in a region sandwiched by a pair of straight lines extending from the center so as to contact the outer peripheral edge of the corresponding exhaust valve.

【0007】更に、上記問題点を解決するために本発明
によれば、シリンダヘッド内壁面の一側に複数個の排気
弁を配置すると共にシリンダヘッド内壁面の他側に少く
とも1個の給気弁を配置し、排気弁側に位置する給気弁
の開口をマスク壁によって覆うようにした2サイクル内
燃機関の燃焼室構造において、上述の複数個の排気弁を
シリンダヘッド内壁面の一側の周辺部に配置すると共に
上述の少くとも1個の給気弁をシリンダヘッド内壁面の
他側周辺部に配置し、給気弁かさ部の中心と排気弁かさ
部の中心との間の距離が最も近い同士の給気弁と対応す
る排気弁とについて給気弁のかさ部の中心から対応する
排気弁のかさ部の外周縁に接するように延びる一対の直
線で挟まれた領域内に位置する給気弁の開口をマスク壁
によって覆い、シリンダヘッド内壁面の中心部に追加の
給気弁を配置して追加の給気弁かち燃焼室内の中央部に
向けて新気を供給するようにしている。
Further, in order to solve the above problems, according to the present invention, a plurality of exhaust valves are arranged on one side of the inner wall surface of the cylinder head, and at least one supply valve is provided on the other side of the inner wall surface of the cylinder head. In a combustion chamber structure of a two-cycle internal combustion engine in which an air valve is arranged and an opening of an intake valve located on the exhaust valve side is covered with a mask wall, the plurality of exhaust valves described above are connected to one side of an inner wall surface of a cylinder head. And the at least one air supply valve described above is arranged on the other side peripheral part of the inner wall surface of the cylinder head, and the distance between the center of the air supply valve and the center of the exhaust valve. Is located within a region sandwiched by a pair of straight lines extending from the center of the air supply valve's bulge to the outer peripheral edge of the corresponding exhaust valve's bulge for the closest air supply valves and the corresponding exhaust valves. Cover the opening of the air supply valve In the center of the inner wall surface cylinder head is adapted to supply fresh air toward a central portion of the combustion chamber Achieved adding of the air supply valve located additional air supply valve.

【0008】[0008]

【作用】請求項1に記載の発明では、給気弁かさ部の中
心と排気弁かさ部の中心との間の距離が最も近い同士の
給気弁と対応する排気弁とについて給気弁のかさ部の中
心から対応する排気弁のかさ部の外周縁に接するように
延びる一対の直線で挟まれた領域内に位置する給気弁の
開口をマスク壁によって覆うことにより、すべての新気
はマスク壁と反対側の給気弁の開口から燃焼室内に流入
し、この燃焼室内に流入した新気は給気弁下方のシリン
ダボア内壁面に沿い下降し、次いでピストン頂面に沿い
進んで排気弁下方のシリンダボア内壁面に沿い上昇す
る。斯くして新気は燃焼室内をループ状に流れる。この
ときマスク壁の範囲を上述の範囲に形成することによ
り、燃焼室内に流入した新気がシリンダヘッド内壁面に
沿って排気ポート内に吹き抜けることが十分に阻止され
ると共に新気が給気弁開口を通過するときに受ける流れ
抵抗、即ち給気抵抗が小さく抑えられる。斯くして燃焼
室内をループ状に流れる新気によって既燃ガスが良好に
掃気される。
According to the first aspect of the present invention, the air supply valve is the same as the air supply valve having the closest distance between the center of the air supply valve and the center of the exhaust valve. By covering the opening of the air supply valve located in the area sandwiched by a pair of straight lines extending from the center of the hood with the outer peripheral edge of the bulge of the corresponding exhaust valve with the mask wall, all fresh air is removed. The fresh air that has flowed into the combustion chamber through the opening of the air supply valve on the side opposite to the mask wall descends along the inner wall of the cylinder bore below the air supply valve, and then proceeds along the top surface of the piston to the exhaust valve. Ascend along the inner wall of the lower cylinder bore. Thus, the fresh air flows in a loop in the combustion chamber. At this time, by forming the range of the mask wall in the above range, it is possible to sufficiently prevent the fresh air that has flowed into the combustion chamber from blowing through the exhaust port along the inner wall surface of the cylinder head, and to supply the fresh air to the intake valve. The flow resistance received when passing through the opening, that is, the air supply resistance is suppressed to be small. Thus, the burned gas is scavenged well by the fresh air flowing in a loop in the combustion chamber.

【0009】請求項2に記載の発明では、シリンダヘッ
ド内壁面の周辺部に配置された給気弁からは新気がマス
ク壁と反対側に位置する給気弁の開口から燃焼室内に流
入し、この燃焼室内に流入した新気は給気弁下方のシリ
ンダボア内壁面に沿い下降し、次いでピストン頂面に沿
い進んで排気弁下方のシリンダボア内壁面に沿い上昇す
る。斯くしてこの新気は燃焼室の周縁に沿いループ状に
流れる。このとき新気がシリンダヘッド内壁面に沿って
排気ポート内に吹き抜けることがマスク壁により十分に
阻止されると共に給気抵抗が小さく抑えられる。このよ
うに燃焼室の周縁に沿いループ状に流れる新気によって
燃焼室周縁部に存在する既燃ガスが良好に掃気される。
更に、追加の給気弁から供給された新気によって燃焼室
中央部に存在する既燃ガスが良好に掃気される。
According to the second aspect of the present invention, fresh air flows into the combustion chamber from the opening of the air supply valve located on the side opposite to the mask wall from the air supply valve arranged in the peripheral portion of the inner wall surface of the cylinder head. The fresh air flowing into the combustion chamber descends along the inner wall surface of the cylinder bore below the intake valve, then advances along the top surface of the piston, and rises along the inner wall surface of the cylinder bore below the exhaust valve. Thus, this fresh air flows in a loop along the periphery of the combustion chamber. At this time, the fresh air is sufficiently blocked by the mask wall from blowing into the exhaust port along the inner wall surface of the cylinder head, and the air supply resistance is suppressed small. Thus, the burned gas existing in the peripheral portion of the combustion chamber is scavenged well by the fresh air flowing in a loop along the peripheral edge of the combustion chamber.
Further, the burned gas existing in the central portion of the combustion chamber is scavenged well by the fresh air supplied from the additional air supply valve.

【0010】[0010]

【実施例】図1から図3に本発明を2サイクルディーゼ
ル機関に適用した場合を示す。しかしながら本発明を2
サイクル火花点火式機関に適用することもできる。図1
から図3を参照すると、1はシリンダブロック、2はシ
リンダブロック1内で往復動するピストン、3はシリン
ダブロック1上に固締されたシリンダヘッド、4はピス
トン2の頂面とシリンダヘッド内壁面3a間に形成され
た主室、5はシリンダヘッド内壁面3aの周縁部上方の
シリンダヘッド3内に形成された副室、6は主室4内に
開口する副室5の噴口、7は副室5内に向けて燃料を噴
射するための燃料噴射弁、8は副室5内に配置されたグ
ロープラグを夫々示す。
1 to 3 show the case where the present invention is applied to a two-cycle diesel engine. However, the present invention
It can also be applied to a cycle spark ignition type engine. Figure 1
3, reference numeral 1 is a cylinder block, 2 is a reciprocating piston in the cylinder block 1, 3 is a cylinder head fixed on the cylinder block 1, 4 is the top surface of the piston 2 and the inner wall surface of the cylinder head. 3a, a main chamber, 5 is a sub chamber formed in the cylinder head 3 above the peripheral edge of the cylinder head inner wall surface 3a, 6 is a nozzle of the sub chamber 5 opening in the main chamber 4, and 7 is a sub chamber. Reference numeral 8 denotes a fuel injection valve for injecting fuel into the chamber 5, and reference numeral 8 denotes a glow plug arranged in the sub chamber 5.

【0011】図1から図3に示す実施例では図1に示さ
れるようにシリンダヘッド内壁面3aの一側に一対の排
気弁9,10が配置され、シリンダヘッド内壁面3aの
他側に一対の給気弁12,13が配置される。排気弁9
と排気弁10はシリンダ軸線を含む対称平面K−Kに関
して対称的に配置され、給気弁12と給気弁13も対称
平面K−Kに関して対称的に配置される。また、一対の
給気弁12,13の間であって一対の給気弁9,10か
ら最も離れたシリンダヘッド内壁面3aの周辺部に副室
5の噴口6が配置され、この噴口6は対称平面K−K上
に配置されている。
In the embodiment shown in FIGS. 1 to 3, a pair of exhaust valves 9 and 10 are arranged on one side of the cylinder head inner wall surface 3a as shown in FIG. 1, and a pair of exhaust valves 9 and 10 are arranged on the other side of the cylinder head inner wall surface 3a. The air supply valves 12 and 13 are arranged. Exhaust valve 9
And the exhaust valve 10 are arranged symmetrically with respect to a plane of symmetry KK including the cylinder axis, and the intake valves 12 and 13 are also arranged symmetrically with respect to the plane of symmetry KK. In addition, between the pair of air supply valves 12 and 13, and the peripheral portion of the cylinder head inner wall surface 3a farthest from the pair of air supply valves 9 and 10, the injection port 6 of the sub chamber 5 is arranged. It is arranged on the plane of symmetry KK.

【0012】図1および図2に示されるようにシリンダ
ヘッド内壁面3a上には凹部15が形成され、この凹部
15の最奥部に給気弁12が配置される。図1に示され
るように給気弁12のかさ部の中心と排気弁9のかさ部
の中心との間の距離は、給気弁12のかさ部の中心と排
気弁10のかさ部の中心との間の距離よりも近い。この
ように給気弁12に近い方の排気弁9側に位置する凹部
15の内周壁面部分16は給気弁12の外周縁に極めて
近接配置されかつ給気弁12の外周縁に沿って延びる円
筒状をなしており、この円筒状内周壁面部分16を除く
凹部15の内周壁面部分17は主室4内に向けて拡開す
る円錐状に形成されている。従って円筒状内周壁面部分
16に対面する給気弁12の開口は円筒状内周壁面部分
16によって覆われることになり、従ってこの円筒状内
周壁面部分16は排気弁9側に形成される給気弁12の
開口を覆うマスク壁を形成している。図1に示されるよ
うに給気弁12のかさ部の中心から対応する排気弁9の
かさ部の外周縁に接するように延びる一対の直線L1a
1bで挟まれた領域内に位置する給気弁12の開口がマ
スク壁16によって覆われるようになっている。即ち、
マスク壁16は一対の直線L1a,L1bがなす角α1 、即
ちマスク角α1 の範囲に亘って給気弁12のかさ部外周
縁に沿って円弧状に延びている。図1から図3に示す実
施例ではこのマスク壁16は最大リフト位置にある給気
弁12よりも下方まで延びており、従って排気弁9側に
形成される給気弁12の開口は給気弁12の開弁期間全
体に亘ってマスク壁16により覆われることになる。し
かしながらマスク壁16の高さを少し低くして給気弁1
2のリフト量が小さいときのみ給気弁12の開口をマス
ク壁16によって覆うようにすることもできる。
As shown in FIGS. 1 and 2, a recess 15 is formed on the inner wall surface 3a of the cylinder head, and the air supply valve 12 is arranged at the innermost portion of the recess 15. As shown in FIG. 1, the distance between the center of the bulge portion of the intake valve 12 and the center of the bulge portion of the exhaust valve 9 is the center of the bulge portion of the air supply valve 12 and the center of the bulge portion of the exhaust valve 10. Closer than the distance between. Thus, the inner peripheral wall surface portion 16 of the recess 15 located on the exhaust valve 9 side closer to the air supply valve 12 is arranged very close to the outer peripheral edge of the air supply valve 12 and along the outer peripheral edge of the air supply valve 12. The inner peripheral wall surface portion 17 of the recess 15 excluding the cylindrical inner peripheral wall surface portion 16 is formed in a conical shape that expands toward the inside of the main chamber 4. Therefore, the opening of the air supply valve 12 facing the cylindrical inner peripheral wall surface portion 16 is covered by the cylindrical inner peripheral wall surface portion 16, and thus the cylindrical inner peripheral wall surface portion 16 is formed on the exhaust valve 9 side. A mask wall that covers the opening of the air supply valve 12 is formed. As shown in FIG. 1, a pair of straight lines L 1a extending from the center of the bulge portion of the intake valve 12 so as to contact the outer peripheral edge of the bulge portion of the corresponding exhaust valve 9,
The opening of the air supply valve 12 located in the region sandwiched by L 1b is covered with the mask wall 16. That is,
The mask wall 16 extends in an arc shape along the outer peripheral edge of the cap portion of the air supply valve 12 over an angle α 1 formed by the pair of straight lines L 1a and L 1b , that is, a range of the mask angle α 1 . In the embodiment shown in FIGS. 1 to 3, the mask wall 16 extends below the air supply valve 12 in the maximum lift position, so that the opening of the air supply valve 12 formed on the exhaust valve 9 side is the air supply. It will be covered by the mask wall 16 for the entire opening period of the valve 12. However, the height of the mask wall 16 is lowered a little and the air supply valve 1
It is also possible to cover the opening of the air supply valve 12 with the mask wall 16 only when the lift amount of 2 is small.

【0013】一方、図1に示されるようにシリンダヘッ
ド内壁面3a上には対称平面K−Kに関して凹部15と
対称的な形状を有する凹部18が形成され、この凹部1
8の最奥部に給気弁13が配置される。図1に示される
ように給気弁13のかさ部の中心と排気弁10のかさ部
の中心との間の距離は、給気弁13のかさ部の中心と排
気弁9のかさ部の中心との間の距離よりも近い。このよ
うに給気弁13に近い方の排気弁10側に位置する凹部
18の内周壁面部分19は給気弁13の外周縁に極めて
近接配置されかつ給気弁13の外周縁に沿って延びる円
筒状をなしており、この円筒状内周壁面部分19を除く
凹部18の内周壁面部分20は主室4内に向けて拡開す
る円錐状に形成されている。従って円筒状内周壁面部分
19に対面する給気弁13の開口は円筒状内周壁面部分
19によって覆われることになり、従ってこの円筒状内
周壁面部分19は排気弁10側に形成される給気弁13
の開口を覆うマスク壁を形成している。図1に示される
ように給気弁13のかさ部の中心から対応する排気弁1
0のかさ部の外周縁に接するように延びる一対の直線L
2a,L2bで挟まれた領域内に位置する給気弁13の開口
がマスク壁19によって覆われるようになっている。即
ち、マスク壁19は一対の直線L2a,L2bがなす角
α2 、即ちマスク角α2 の範囲に亘って給気弁13のか
さ部外周縁に沿って円弧状に延びている。なお、上述の
ように排気弁9と排気弁10とが対称平面K−Kに関し
て対称的に配置され、給気弁12と給気弁13とが対称
平面K−Kに関して対称的に配置されているので、給気
弁12のマスク角α1 と給気弁13のマスク角α2 とは
等しく形成される。図1から図3に示す実施例ではこの
マスク壁19はマスク壁16と同様に最大リフト位置に
ある給気弁13よりも下方まで延びており、従って排気
弁10側に形成される給気弁13の開口は給気弁13の
開弁期間全体に亘ってマスク壁19により覆われること
になる。しかしながらこのマスク壁19についてもマス
ク壁19の高さを少し低くして給気弁13のリフト量が
小さいときのみ給気弁13の開口をマスク壁19によっ
て覆うようにすることもできる。
On the other hand, as shown in FIG. 1, a recess 18 having a shape symmetrical to the recess 15 with respect to the plane of symmetry KK is formed on the inner wall surface 3a of the cylinder head.
An air supply valve 13 is arranged at the innermost portion of 8. As shown in FIG. 1, the distance between the center of the air intake valve 13 and the center of the exhaust valve 10 is determined by the distance between the center of the air intake valve 13 and the center of the exhaust valve 9. Closer than the distance between. Thus, the inner peripheral wall surface portion 19 of the concave portion 18 located on the exhaust valve 10 side closer to the air supply valve 13 is arranged very close to the outer peripheral edge of the air supply valve 13 and along the outer peripheral edge of the air supply valve 13. The inner peripheral wall surface portion 20 of the recess 18 excluding the cylindrical inner peripheral wall surface portion 19 is formed in a conical shape that expands toward the inside of the main chamber 4. Therefore, the opening of the air supply valve 13 facing the cylindrical inner peripheral wall surface portion 19 is covered by the cylindrical inner peripheral wall surface portion 19, and thus the cylindrical inner peripheral wall surface portion 19 is formed on the exhaust valve 10 side. Air supply valve 13
Forming a mask wall covering the opening. As shown in FIG. 1, the corresponding exhaust valve 1 from the center of the bulk of the air supply valve 13
A pair of straight lines L extending so as to contact the outer peripheral edge of the 0-bulb
2a, the valve opening of the intake valve 13 positioned sandwiched within the area L 2b is adapted to be covered by the mask walls 19. That is, the mask walls 19 extend in an arc shape along the umbrella outer periphery of the pair of linear L 2a, the angle alpha 2 L 2b, ie air-supply valve 13 over a range of mask angle alpha 2. As described above, the exhaust valve 9 and the exhaust valve 10 are arranged symmetrically with respect to the plane of symmetry KK, and the air supply valve 12 and the air supply valve 13 are arranged symmetrically with respect to the plane of symmetry KK. because there are formed equal to the mask angle alpha 2 of the mask angle alpha 1 and an air supply valve 13 of the air supply valve 12. In the embodiment shown in FIGS. 1 to 3, the mask wall 19 extends below the air supply valve 13 in the maximum lift position like the mask wall 16, and therefore the air supply valve formed on the exhaust valve 10 side. The opening of 13 is covered with the mask wall 19 over the entire opening period of the air supply valve 13. However, with respect to the mask wall 19 as well, the height of the mask wall 19 may be slightly lowered so that the opening of the air supply valve 13 is covered by the mask wall 19 only when the lift amount of the air supply valve 13 is small.

【0014】これに対して各排気弁9,10に対しては
マスク壁が設けられておらず、従って排気弁9,10が
開弁すると排気弁9,10は全周に亘って主室4内に開
口する。図1から図3に示す実施例では一対の排気弁
9,10がシリンダヘッド3内に摺動可能に挿入された
対応するバルブリフタ24を介して共通のカムシャフト
25により駆動され、一対の給気弁12,13がシリン
ダヘッド3内に摺動可能に挿入された対応するバブルリ
フタ26を介して共通のカムシャフト27により駆動さ
れる。即ち、全排気弁9,10はロッカーアームを介す
ることなく各排気弁9,10の軸線上に位置する共通の
カムシャフト25によって直接駆動され、全給気弁1
2,13はロッカーアームを介することなく各給気弁1
2,13の軸線上に位置する共通のカムシャフト27に
よって直接駆動される。
On the other hand, no mask wall is provided for each of the exhaust valves 9 and 10. Therefore, when the exhaust valves 9 and 10 are opened, the exhaust valves 9 and 10 are provided with the main chamber 4 over the entire circumference. Open inside. In the embodiment shown in FIGS. 1 to 3, a pair of exhaust valves 9 and 10 are driven by a common camshaft 25 via corresponding valve lifters 24 slidably inserted into the cylinder head 3 to provide a pair of air supplies. The valves 12, 13 are driven by a common camshaft 27 via corresponding bubble lifters 26 slidably inserted in the cylinder head 3. That is, all the exhaust valves 9 and 10 are directly driven by the common camshaft 25 located on the axis of each exhaust valve 9 and 10 without passing through the rocker arm, and all the intake valves 1
2 and 13 are air supply valves 1 without a rocker arm
It is directly driven by a common cam shaft 27 located on the axis of 2, 13.

【0015】図1および図2に示されるようにシリンダ
ヘッド3内には各排気弁9,10に対して排気ポート2
8,29が夫々形成され、各給気弁12,13に対して
給気ポート30,31が夫々形成される。図4は排気弁
9,10および給気弁12,13の開弁時期を示してい
る。図4に示されるように各排気弁9,10は各給気弁
12,13よりも先に開弁し、先に閉弁する。
As shown in FIGS. 1 and 2, the exhaust port 2 is provided for each exhaust valve 9 and 10 in the cylinder head 3.
8 and 29 are formed respectively, and air supply ports 30 and 31 are formed to the air supply valves 12 and 13, respectively. FIG. 4 shows the opening timing of the exhaust valves 9 and 10 and the air supply valves 12 and 13. As shown in FIG. 4, the exhaust valves 9 and 10 are opened prior to the air supply valves 12 and 13 and closed prior to the intake valves 12 and 13.

【0016】次に図5を参照しつつ図1から図3に示す
2サイクルディーゼル機関の作動について説明する。上
述したように各排気弁9,10は各給気弁12,13よ
りも先に開弁する。各排気弁9,10が開弁すると主室
4内の既燃ガスが急激に排気ポート28,29内に排出
され、即ちブローダウンを生じ、その結果主室4内の圧
力が急激に低下する。主室4内の圧力が低下すると副室
5内の既燃ガスが噴口6を介して主室4内に流出する。
Next, the operation of the two-stroke diesel engine shown in FIGS. 1 to 3 will be described with reference to FIG. As described above, the exhaust valves 9 and 10 are opened before the air supply valves 12 and 13. When the exhaust valves 9 and 10 are opened, the burned gas in the main chamber 4 is rapidly discharged into the exhaust ports 28 and 29, that is, blowdown occurs, and as a result, the pressure in the main chamber 4 sharply decreases. .. When the pressure in the main chamber 4 decreases, the burnt gas in the sub chamber 5 flows into the main chamber 4 via the injection port 6.

【0017】次いで各給気弁12,13が開弁すると機
関駆動の機械式過給機(図示せず)から各給気ポート3
0,31内に送り込まれた新気が各給気弁12,13を
介して主室4内に供給される。このとき上述したように
排気弁9側に位置するマスク角α1 の範囲内の給気弁1
2の開口がマスク壁16によって覆われていると共に排
気弁10側に位置するマスク角α2 の範囲内の給気弁1
3の開口がマスク壁19によって覆われているので、新
気はマスク壁16と反対側の給気弁12の開口およびマ
スク壁19と反対側の給気弁13の開口を通って主室4
内に流入する。これら給気弁12,13から流入した新
気は図5において矢印Wで示すように夫々対応する給気
弁12,13下方のシリンダボア内壁面1aに沿って下
降し、次いでピストン2の頂面に沿って進行し、次いで
排気弁9,10下方のシリンダボア内壁面1aに沿って
上昇する。即ち、各給気弁12,13から流入した新気
は主室4内をループ状に流れ、このループに流れる新気
Wによって主室4内の既燃ガスが各排気弁9,10から
排出される。
Next, when the air supply valves 12 and 13 are opened, a mechanical supercharger (not shown) driven by the engine causes each air supply port 3 to be opened.
The fresh air sent into the chambers 0 and 31 is supplied into the main chamber 4 through the air supply valves 12 and 13. Intake valve 1 in this case the range of mask angle alpha 1 is located in the exhaust valve 9 side as described above
The opening 2 is covered by the mask wall 16 and is located on the side of the exhaust valve 10 within the range of the mask angle α 2
Since the opening 3 is covered by the mask wall 19, the fresh air passes through the opening of the air supply valve 12 on the side opposite to the mask wall 16 and the opening of the air supply valve 13 on the side opposite to the mask wall 19 to the main chamber 4.
Flows in. The fresh air flowing in from these air supply valves 12 and 13 descends along the corresponding cylinder bore inner wall surface 1a below the corresponding air supply valves 12 and 13, as indicated by arrow W in FIG. 5, and then to the top surface of the piston 2. And then rises along the cylinder bore inner wall surface 1a below the exhaust valves 9 and 10. That is, the fresh air flowing in from the air supply valves 12 and 13 flows in a loop in the main chamber 4, and the burned gas in the main chamber 4 is discharged from the exhaust valves 9 and 10 by the fresh air W flowing in the loop. To be done.

【0018】ところで、もし給気弁12,13に対して
マスク壁16,19を設けずに各給気弁12,13が全
周に亘って主室4内に開口するようにした場合には、排
気弁9,10に形成される各給気弁12,13の開口か
ら主室4内に流入した新気がシリンダヘッド内壁面3a
に沿って進み、次いで排気弁9,10の開口を通って排
気ポート28,29内に吹き抜けてしまう。この場合、
各給気弁12,13から流入する新気の内でこのように
吹き抜けてしまう新気の大部分は、各給気弁12,13
のかさ部の中心から排気弁かさ部の中心までの距離が最
も近い夫々対応する排気弁9,10の開口を介して吹き
抜ける。即ち、給気弁12から流入する新気は給気弁1
2に対して最も距離が近い排気弁9を介して吹き抜けや
すく、一方給気弁13から流入する新気は給気弁13に
対して最も距離が近い排気弁10を介して吹き抜けやす
い。このように新気が吹き抜けてしまうとこの吹き抜け
る新気は主室4内の掃気作用に寄与しないので無駄な空
気となり、その結果良好な掃気効率が得られない。しか
しながら、図1から図3に示す実施例では上述のように
給排気弁間の距離が最も近い同士の給排気弁について給
気弁12,13のかさ部の中心から対応する排気弁9,
10のかさ部の外周縁に接するように延びる一対の直線
(L1a, 1b),(L2a,L2b)で挟まれた領域内に位
置する給気弁12,13の開口が夫々マスク壁16,1
9によって覆われているので、新気がシリンダヘッド内
壁面3aに沿って排気ポート28,29内に吹き抜ける
ことがほぼ完全に阻止される。従って給気弁12,13
から流入したほぼすべての新気をループ掃気流Wの発生
に有効に寄与させることができる。
By the way, if the air supply valves 12 and 13 are not provided with the mask walls 16 and 19 and the air supply valves 12 and 13 are opened in the main chamber 4 over the entire circumference, The fresh air that has flowed into the main chamber 4 through the openings of the air supply valves 12 and 13 formed in the exhaust valves 9 and 10 is the cylinder head inner wall surface 3a.
And then blows through the openings of the exhaust valves 9 and 10 into the exhaust ports 28 and 29. in this case,
Most of the fresh air that blows through in this way out of the fresh air that flows in from the respective air supply valves 12 and 13.
The distance from the center of the bulge portion to the center of the exhaust valve bulge portion is the shortest and blows through the corresponding openings of the exhaust valves 9 and 10. That is, the fresh air flowing in from the air supply valve 12 is the air supply valve 1
2 is easily blown through the exhaust valve 9 that is closest to the air supply valve 2, while fresh air that flows in from the air supply valve 13 is easily blown through the exhaust valve 10 that is closest to the air supply valve 13. When the fresh air blows through in this way, the fresh air that blows through does not contribute to the scavenging action in the main chamber 4, so that it becomes useless air, and as a result, good scavenging efficiency cannot be obtained. However, in the embodiment shown in FIG. 1 to FIG. 3, as described above, regarding the supply / exhaust valves whose distances between the supply / exhaust valves are the shortest, the corresponding exhaust valves 9, 13 from the center of the bulk part of the intake valves 12, 13
The openings of the air supply valves 12 and 13 located in the region sandwiched by the pair of straight lines (L 1a, L 1b ), (L 2a , L 2b ) extending so as to contact the outer peripheral edge of the bulkhead 10 are respectively masks. Wall 16,1
Since it is covered with 9, fresh air is almost completely prevented from blowing through the exhaust ports 28, 29 along the cylinder head inner wall surface 3a. Therefore, the intake valves 12, 13
Almost all the fresh air flowing in from can be effectively contributed to the generation of the loop scavenging airflow W.

【0019】一方、各給気弁のマスク角α1 ,α2 を大
きく形成しすぎると新気の吹き抜けは阻止できるもの
の、給気弁12,13の開口面積が減少するために新気
が給気弁12,13の開口を通過するときに受ける流れ
抵抗、即ち給気抵抗が増大してしまう。このように給気
抵抗が増大すると機械式過給機が新気を主室4内に送り
込むためになす吐出仕事が増大し、その結果機関の熱効
率が低下してしまう。しかしながら図1から図3に示す
実施例ではマスク角α1 ,α2 が新気の吹き抜けを良好
に阻止しうる必要最小限の角度に形成されているので給
気抵抗が小さく抑えられ、従って新気が各給気弁12,
13の開口を介して主室4内に円滑に流入せしめられ
る。斯くして、新気の吹き抜けが良好に阻止されると共
に給気抵抗が小さく抑えられるので主室4内をループ状
に流れる強力な新気流Wが形成され、この強力な新気流
Wによって主室4内全体が良好に掃気される。
On the other hand, if the mask angles α 1 and α 2 of each air supply valve are made too large, blow-through of fresh air can be prevented, but the opening area of the air supply valves 12 and 13 is reduced, so that fresh air is supplied. The flow resistance received when passing through the openings of the air valves 12 and 13, that is, the air supply resistance increases. When the air supply resistance increases in this way, the discharge work performed by the mechanical supercharger for sending fresh air into the main chamber 4 increases, and as a result, the thermal efficiency of the engine decreases. However, in the embodiment shown in FIGS. 1 to 3, since the mask angles α 1 and α 2 are formed to be the minimum necessary angles capable of satisfactorily preventing the fresh air from passing through, the air supply resistance can be suppressed to a small level, and therefore the new Qi each air supply valve 12,
It is allowed to smoothly flow into the main chamber 4 through the opening of 13. In this way, the blow-through of fresh air is satisfactorily prevented and the air supply resistance is suppressed to a small value, so that a strong new air flow W flowing in a loop in the main chamber 4 is formed. The inside of 4 is scavenged well.

【0020】次いで排気弁9,10が閉弁し、給気弁1
2,13が閉弁するとピストン2の上昇作用により主室
4内のガスが噴口6を介して副室5内に送り込まれる。
上述したように主室4内全体が良好に掃気されるので副
室5内には多量の新気を含んだガスが送り込まれ、斯く
して燃料噴射弁7から副室5内に噴射された燃料が良好
に燃焼せしめられることになる。
Next, the exhaust valves 9 and 10 are closed, and the air supply valve 1
When valves 2 and 13 are closed, the gas in the main chamber 4 is sent into the sub chamber 5 through the injection port 6 by the ascending action of the piston 2.
As described above, since the entire main chamber 4 is scavenged well, a gas containing a large amount of fresh air is sent into the sub chamber 5 and thus injected from the fuel injection valve 7 into the sub chamber 5. The fuel will be burned well.

【0021】ところで、給気弁12,13が開弁したと
きに主室4内の圧力が高いと主室4内の既燃ガスが給気
ポート30,31内に逆流する。ところがこのような逆
流が生じると逆流した既燃ガスを主室4内に戻しかつ排
気ポート28,29内に排出させるために機械式過給機
が余分な仕事をしなければならず、斯くしてその分だけ
機関の出力損失が増大することになる。従ってこのよう
な既燃ガスの逆流を阻止するためには給気弁12,13
が開弁したときの主室4内の圧力を低くしなければなら
ず、そのためには排気弁9,10が開弁したときにでき
るだけすみやかに既燃ガスを排気ポート28,29内に
排出させることが必要となる。
If the pressure in the main chamber 4 is high when the air supply valves 12 and 13 are opened, the burnt gas in the main chamber 4 flows back into the air supply ports 30 and 31. However, when such backflow occurs, the mechanical supercharger must do extra work in order to return the backburnt burned gas into the main chamber 4 and discharge it into the exhaust ports 28, 29. Therefore, the output loss of the engine will increase accordingly. Therefore, in order to prevent such a backflow of burnt gas, the intake valves 12, 13
When the valve is opened, the pressure in the main chamber 4 must be lowered, and therefore, when the exhaust valves 9 and 10 are opened, burned gas is discharged into the exhaust ports 28 and 29 as quickly as possible. Will be required.

【0022】ところが排気弁9,10が開弁してから給
気弁12,13が開弁するまでの期間は極めて短かく、
この短かい期間の間に既燃ガスをすみやかに排出するに
は排気弁9,10を高速度で開弁せしめなければならな
い。この場合、ロッカーアームを介して排気弁9,10
を駆動するとロッカーアームの弾性変形等により排気弁
9,10の開弁時の開弁速度が遅くなる。そこで本発明
による実施例では排気弁9,10の開弁時における開弁
速度を速めるために各排気弁9,10をロッカーアーム
を介することなくカムシャフト25により直接駆動する
ようにしている。
However, the period from the opening of the exhaust valves 9 and 10 to the opening of the air supply valves 12 and 13 is extremely short,
In order to promptly discharge the burnt gas during this short period, the exhaust valves 9 and 10 must be opened at high speed. In this case, the exhaust valves 9, 10 are connected via the rocker arm.
When is driven, the valve opening speed at the time of opening the exhaust valves 9 and 10 becomes slow due to elastic deformation of the rocker arm and the like. Therefore, in the embodiment according to the present invention, in order to increase the valve opening speed when the exhaust valves 9 and 10 are opened, the exhaust valves 9 and 10 are directly driven by the cam shaft 25 without the rocker arm.

【0023】図6に第2の実施例を示す。なお、図1か
ら図3に示す実施例と同様に構成要素に対しては同一の
参照符号を用いる。図6に示す実施例ではシリンダヘッ
ド内壁面3aの一側の周辺部に3個の排気弁40,4
1,42が配置され、シリンダヘッド内壁面3aの他側
に一対の給気弁12,13が配置される。図1から図3
に示す実施例と同様に各給気弁12,13はシリンダヘ
ッド内壁面3a上に形成された対応する凹部15,18
内に夫々配置される。図6に示されるように給気弁12
のかさ部中心に対しては全排気弁40,41,42の内
で排気弁40のかさ部が最も近くに配置されている。給
気弁12のかさ部の中心からこの対応する排気弁40の
かさ部の外周縁に接するように延びる一対の直線L1a
1bで挟まれた領域内に位置する給気弁12の開口がマ
スク壁16によって覆われている。一方、給気弁13の
かさ部中心に対しては全排気弁40,41,42の内で
排気弁41のかさ部が最も近くに配置されている。給気
弁13のかさ部の中心からこの対応する排気弁41のか
さ部の外周縁に接するように延びる一対の直線L2a,L
2bで挟まれた領域内に位置する給気弁13の開口がマス
ク壁19によって覆われている。
FIG. 6 shows a second embodiment. The same reference numerals are used for components as in the embodiment shown in FIGS. 1 to 3. In the embodiment shown in FIG. 6, three exhaust valves 40, 4 are provided in the peripheral portion on one side of the cylinder head inner wall surface 3a.
1, 42 are arranged, and a pair of air supply valves 12, 13 are arranged on the other side of the cylinder head inner wall surface 3a. 1 to 3
Similar to the embodiment shown in FIG. 5, each air supply valve 12, 13 has a corresponding recess 15, 18 formed on the inner wall surface 3a of the cylinder head.
Located inside each. As shown in FIG. 6, the air supply valve 12
Of all the exhaust valves 40, 41, 42, the bulge portion of the exhaust valve 40 is arranged closest to the center of the bulge portion. A pair of straight lines L 1a extending from the center of the cap portion of the air supply valve 12 so as to contact the outer peripheral edge of the cap portion of the corresponding exhaust valve 40,
The opening of the air supply valve 12 located in the region sandwiched by L 1b is covered with the mask wall 16. On the other hand, of the exhaust valves 40, 41, 42, the cap portion of the exhaust valve 41 is disposed closest to the center of the cap portion of the air supply valve 13. A pair of straight lines L 2a , L extending from the center of the cap portion of the air supply valve 13 to contact the outer peripheral edge of the cap portion of the corresponding exhaust valve 41.
The opening of the air supply valve 13 located in the area sandwiched by 2b is covered by the mask wall 19.

【0024】図7に第3の実施例を示す。図7に示す実
施例ではシリンダヘッド内壁面3aの一側の周辺部に4
個の排気弁44,45,46,47が配置され、シリン
ダヘッド内壁面3aの他側に一対の給気弁12,13が
配置される。図7に示されるように給気弁12のかさ部
中心に対しては全排気弁44,45,46,47の内で
排気弁44のかさ部が最も近くに配置されている。給気
弁12のかさ部の中心からこの対応する排気弁44のか
さ部の外周縁に接するように延びる一対の直線L1a,
1bで挟まれた領域内に位置する給気弁12の開口がマス
ク壁16によって覆われている。一方、給気弁13のか
さ部中心に対しては全排気弁44,45,46,47の
内で排気弁45のかさ部が最も近くに配置されている。
給気弁13のかさ部の中心からこの対応する排気弁45
のかさ部の外周縁に接するように延びる一対の直線
2a,L2bで挟まれた領域内に位置する給気弁13の開
口がマスク壁19によって覆われている。
FIG. 7 shows a third embodiment. In the embodiment shown in FIG. 7, the cylinder head inner wall surface 3a is provided with 4
Individual exhaust valves 44, 45, 46, 47 are arranged, and a pair of air supply valves 12, 13 are arranged on the other side of the cylinder head inner wall surface 3a. As shown in FIG. 7, among the exhaust valves 44, 45, 46, 47, the exhaust valve 44 is located closest to the center of the intake valve 12. A pair of straight lines L 1a, L extending from the center of the cap portion of the air supply valve 12 to contact the outer peripheral edge of the corresponding cap portion of the exhaust valve 44.
The opening of the air supply valve 12 located in the region sandwiched by 1b is covered with the mask wall 16. On the other hand, of the all exhaust valves 44, 45, 46, 47, the bulk part of the exhaust valve 45 is arranged closest to the center of the bulk part of the air supply valve 13.
From the center of the cap portion of the air supply valve 13, the corresponding exhaust valve 45
The mask wall 19 covers the opening of the air supply valve 13 located in the region sandwiched by the pair of straight lines L 2a and L 2b extending so as to contact the outer peripheral edge of the bulge portion.

【0025】図8に第4の実施例を示す。図8に示す実
施例ではシリンダヘッド内壁面3aの一側周辺部に4個
の排気弁44,45,46,47が配置され、シリンダ
ヘッド内壁面3aの他側周辺部に3個の給気弁56,5
7,58が配置される。排気弁44と排気弁45はシリ
ンダ軸線を含む対称平面K−Kに関して対称的に配置さ
れ、排気弁46と排気弁47も対称平面K−Kに関して
対称的に配置され、給気弁56と給気弁57も対称平面
K−Kに関して対称的に配置される。また給気弁58は
対称平面K−K上に配置される。図8に示す実施例にお
いても図1から図3に示す実施例と同様に各給気弁5
6,57,58はシリンダヘッド内壁面3a上に形成さ
れた対応する凹部59,62,65内に夫々配置され
る。各凹部59,62,65の円筒状内周壁面部分6
0,63,66は排気弁側に形成される各給気弁56,
57,58の開口を覆うマスク壁を夫々形成している。
また、円筒状内周壁面部分60,63,66を除く各凹
部59,62,65の内周壁面部分61,64,67は
夫々主室4内または燃焼室内に向けて拡開する円錐状に
形成されている。
FIG. 8 shows a fourth embodiment. In the embodiment shown in FIG. 8, four exhaust valves 44, 45, 46, 47 are arranged on one side peripheral portion of the cylinder head inner wall surface 3a, and three air supply valves are provided on the other side peripheral portion of the cylinder head inner wall surface 3a. Valves 56,5
7,58 are arranged. The exhaust valve 44 and the exhaust valve 45 are arranged symmetrically with respect to the plane of symmetry KK including the cylinder axis, the exhaust valve 46 and the exhaust valve 47 are also arranged symmetrically with respect to the plane of symmetry KK, and the supply valve 56 and the supply valve 56 are provided. The air valve 57 is also arranged symmetrically with respect to the plane of symmetry KK. Further, the air supply valve 58 is arranged on the plane of symmetry KK. Also in the embodiment shown in FIG. 8, each air supply valve 5 is similar to the embodiment shown in FIGS.
6, 57 and 58 are arranged in corresponding recesses 59, 62 and 65 formed on the cylinder head inner wall surface 3a. Cylindrical inner peripheral wall surface portion 6 of each recess 59, 62, 65
0, 63, 66 are each air supply valve 56 formed on the exhaust valve side,
Mask walls are formed to cover the openings 57 and 58, respectively.
Further, the inner peripheral wall surface portions 61, 64, 67 of the respective concave portions 59, 62, 65 excluding the cylindrical inner peripheral wall surface portions 60, 63, 66 have a conical shape that expands toward the main chamber 4 or the combustion chamber, respectively. Has been formed.

【0026】図8に示されるように給気弁56のかさ部
中心に対しては全排気弁44,45,46,47の内で
排気弁44のかさ部が最も近くに配置されている。給気
弁56のかさ部の中心からこの対応する排気弁44のか
さ部の外周縁に接するように延びる一対の直線L1a,L
1bで挟まれた領域内に位置する給気弁56の開口がマス
ク壁60によって覆われている。一方、給気弁57のか
さ部中心に対しては全排気弁44,45,46,47の
内で排気弁45のかさ部が最も近くに配置されている。
給気弁57のかさ部の中心からこの対応する排気弁45
のかさ部の外周縁に接するように延びる一対の直線
2a,L2bで挟まれた領域内に位置する給気弁57の開
口がマスク壁63によって覆われている。一方、給気弁
58のマスク壁66については、対称平面K−Kの近く
に配置された2個の排気弁46,47のかさ部の全体を
挟むように給気弁58のかさ部の中心から延びる一対の
直線を考えたときにこの一対の直線間に形成される挟み
角α3 、即ちマスク角α3 が最小となるような一対の直
線L3a,L3bで挟まれた領域内に位置する給気弁58の
開口がマスク壁66によって覆われている。
As shown in FIG. 8, among the exhaust valves 44, 45, 46, 47, the exhaust valve 44 is located closest to the center of the intake valve 56. A pair of straight lines L 1a , L extending from the center of the cap portion of the air supply valve 56 to contact the outer peripheral edge of the corresponding cap portion of the exhaust valve 44.
The opening of the air supply valve 56 located in the region sandwiched by 1b is covered with the mask wall 60. On the other hand, with respect to the center of the air intake valve 57, the air exhaust valve 45 has the air outlet closest to the air outlet of all the exhaust valves 44, 45, 46, 47.
From the center of the bulk of the air supply valve 57 to the corresponding exhaust valve 45
The mask wall 63 covers the opening of the air supply valve 57 located in the region sandwiched by the pair of straight lines L 2a and L 2b extending so as to contact the outer peripheral edge of the bulge portion. On the other hand, with respect to the mask wall 66 of the air supply valve 58, the center of the air supply valve 58 is located so as to sandwich the entire air exhaust valve 46, 47 located near the plane of symmetry KK. included angle alpha 3 is formed between this pair of straight line when considering a pair of straight line extending from, i.e. a pair of straight lines L 3a as masks angle alpha 3 is minimized, sandwiched by the area L 3b The opening of the located air supply valve 58 is covered by the mask wall 66.

【0027】なお、図8に示す実施例において全排気弁
44,45,46,47から全体的に遠くに離れている
給気弁58に対してはマスク壁66を設けずに、給気弁
58が開弁したときに給気弁58の開口が給気弁58の
全周に亘って主室4内または燃焼室内に開口するように
することもできる。このように給気弁58に対してマス
ク壁66を設けないことにより、給気弁58の開口から
流入する新気が受ける給気抵抗が低減される。一方、こ
のように給気弁58に対してマスク壁66を設けない
と、給気弁58の開口から流入した新気の内でシリンダ
ヘッド内壁面3aに沿って進行して排気ポート内に吹き
抜ける新気量が増大する。この場合、この吹き抜ける新
気は既燃ガスの掃気作用に寄与しないので無駄な新気と
なるが、給気弁58は全排気弁44,45,46,47
から全体的に遠く離れているので吹き抜ける新気量はさ
ほど多くはならない。
It should be noted that in the embodiment shown in FIG. 8, the mask wall 66 is not provided for the air supply valve 58 which is far away from all the exhaust valves 44, 45, 46, 47, but the air supply valve is not provided. When the valve 58 is opened, the opening of the air supply valve 58 may be opened in the main chamber 4 or the combustion chamber over the entire circumference of the air supply valve 58. By not providing the mask wall 66 for the air supply valve 58 in this manner, the air supply resistance received by the fresh air flowing from the opening of the air supply valve 58 is reduced. On the other hand, if the mask wall 66 is not provided for the air supply valve 58 in this way, the fresh air that has flowed in through the opening of the air supply valve 58 advances along the cylinder head inner wall surface 3a and blows into the exhaust port. The amount of fresh air increases. In this case, since the fresh air that blows through does not contribute to the scavenging action of the burned gas, it becomes useless fresh air, but the air supply valve 58 has all the exhaust valves 44, 45, 46, 47.
Since it is far away from, the amount of fresh air blown through does not increase so much.

【0028】図9から図15に第5の実施例を示す。こ
の実施例では図9および図10に示されるようにシリン
ダヘッド内壁面3aの一側周辺部には3個の排気弁9
0,91,92が配置され、シリンダヘッド内壁面3a
の他側周辺部には2個の給気弁93,94が配置され
る。更にシリンダヘッド内壁面3aの中央部には第3
の、即ち追加の給気弁95が配置される。図9に示され
るように排気弁90と排気弁91はシリンダ軸線を含む
対称平面K−Kに関して対称的に配置され、給気弁93
と給気弁94も対称平面K−Kに関して対称的に配置さ
れる。また、3個の給気弁93,94,95によって囲
まれたシリンダヘッド内壁面3aの周辺部に副室5の噴
口6が配置され、更に排気弁92、給気弁95および噴
口6は対称平面K−K上に配置される。従って図9から
図12に示す実施例ではシリンダヘッド内壁面3aの周
辺部に3個の排気弁90,91,92、2個の給気弁9
3,94および噴口6がほぼ等角度間隔で配置され、シ
リンダヘッド内壁面3aのほぼ中央部に追加の給気弁9
5が配置されている形となっている。
A fifth embodiment is shown in FIGS. 9 to 15. In this embodiment, as shown in FIGS. 9 and 10, three exhaust valves 9 are provided in the peripheral portion on one side of the cylinder head inner wall surface 3a.
0, 91, 92 are arranged, and the cylinder head inner wall surface 3a
Two air supply valves 93 and 94 are arranged on the other side peripheral portion. Further, a third part is provided at the center of the cylinder head inner wall surface 3a.
, I.e. an additional air supply valve 95 is arranged. As shown in FIG. 9, the exhaust valve 90 and the exhaust valve 91 are arranged symmetrically with respect to a plane of symmetry KK including the cylinder axis, and the intake valve 93 is provided.
And the air supply valve 94 are also arranged symmetrically with respect to the plane of symmetry KK. Further, the injection port 6 of the sub chamber 5 is arranged in the peripheral portion of the cylinder head inner wall surface 3a surrounded by the three supply valves 93, 94, 95, and the exhaust valve 92, the supply valve 95 and the injection port 6 are symmetrical. It is arranged on the plane KK. Therefore, in the embodiment shown in FIGS. 9 to 12, three exhaust valves 90, 91, 92 and two air supply valves 9 are provided around the inner wall surface 3a of the cylinder head.
3, 94 and the injection port 6 are arranged at substantially equal angular intervals, and an additional air supply valve 9 is provided at approximately the center of the cylinder head inner wall surface 3a.
5 is arranged.

【0029】図9および図11に示されるようにシリン
ダヘッド内壁面3a上には凹部97が形成され、この凹
部97の最奥部に給気弁93が配置される。図9に示さ
れるように給気弁93のかさ部中心に対しては全排気弁
90,91,92の内で排気弁90のかさ部が最も近く
に配置されている。この排気弁90側に位置する凹部9
7の内周壁面部分98は給気弁93の外周縁に極めて近
接配置されかつ給気弁93の外周縁に沿って延びる円筒
状をなしており、この円筒状内周壁面部分98を除く凹
部97の内周壁面部分99は主室4内に向けて拡開する
円錐状に形成されている。従って円筒状内周壁面部分9
8に対面する給気弁93の開口は円筒状内周壁面部分9
8によって覆われることになり、従ってこの円筒状内周
壁面部分98は排気弁90側に形成される給気弁93の
開口を覆うマスク壁を形成している。図9に示されるよ
うに給気弁93のかさ部の中心から対応する排気弁90
のかさ部の外周縁に接するように延びる一対の直線L
1a, 1bで挟まれた領域内に位置する給気弁93の開口
がマスク壁98によって覆われている。即ち、マスク壁
98は一対の直線L1a, 1bがなす角α1 、即ちマスク
角α1 の範囲に亘って給気弁93のかさ部外周縁に沿っ
て円弧状に延びている。図9から図12に示す実施例で
はこのマスク壁98は最大リフト位置にある給気弁93
よりも下方まで延びており、従って排気弁90側に形成
される給気弁93の開口は給気弁93の開弁期間全体に
亘ってマスク壁98により覆われることになる。しかし
ながらマスク壁98の高さを少し低くして給気弁93の
リフト量が小さいときのみ給気弁93の開口をマスク壁
98によって覆うようにすることもできる。
As shown in FIGS. 9 and 11, a recess 97 is formed on the inner wall surface 3a of the cylinder head, and the air supply valve 93 is disposed at the innermost part of the recess 97. As shown in FIG. 9, of all the exhaust valves 90, 91, 92, the cap portion of the exhaust valve 90 is disposed closest to the center of the cap portion of the air supply valve 93. The recess 9 located on the exhaust valve 90 side
The inner peripheral wall surface portion 98 of 7 has a cylindrical shape that is arranged very close to the outer peripheral edge of the air supply valve 93 and extends along the outer peripheral edge of the air supply valve 93. The inner peripheral wall surface portion 99 of 97 is formed in a conical shape that expands toward the inside of the main chamber 4. Therefore, the cylindrical inner peripheral wall surface portion 9
The opening of the air supply valve 93 facing 8 is a cylindrical inner peripheral wall surface portion 9
Therefore, the cylindrical inner peripheral wall surface portion 98 forms a mask wall that covers the opening of the air supply valve 93 formed on the exhaust valve 90 side. As shown in FIG. 9, a corresponding exhaust valve 90 is provided from the center of the cap portion of the air supply valve 93.
A pair of straight lines L extending so as to contact the outer peripheral edge of the
1a, the valve opening of the intake valve 93 located at the sandwiched within the area L 1b is covered by the mask walls 98. That is, the mask walls 98 extend a pair of straight lines L 1a, the angle alpha 1 is L 1b, i.e. the shape of a circular arc along the umbrella outer periphery of the air supply valve 93 over a range of mask angle alpha 1. In the embodiment shown in FIGS. 9 to 12, the mask wall 98 is located at the maximum lift position of the air supply valve 93.
Therefore, the opening of the air supply valve 93 formed on the exhaust valve 90 side is covered by the mask wall 98 over the entire opening period of the air supply valve 93. However, the height of the mask wall 98 may be slightly lowered so that the opening of the air supply valve 93 is covered with the mask wall 98 only when the lift amount of the air supply valve 93 is small.

【0030】一方、図9に示されるようにシリンダヘッ
ド内壁面3a上には対称平面K−Kに関して凹部97と
対称的な形状を有する凹部100が形成され、この凹部
100の最奥部に給気弁94が配置される。図9に示さ
れるように給気弁94のかさ部中心に対しては全排気弁
90,91,92の内で排気弁91のかさ部が最も近く
に配置されている。この排気弁91側に位置する凹部1
00の内周壁面部分101は給気弁94の外周縁に極め
て近接配置されかつ給気弁94の外周縁に沿って延びる
円筒状をなしており、この円筒状内周壁面部分101を
除く凹部100の内周壁面部分102は主室4内に向け
て拡開する円錐状に形成されている。従って円筒状内周
壁面部分101に対面する給気弁94の開口は円筒状内
周壁面部分101によって覆われることになり、従って
この円筒状内周壁面部分101は排気弁91側に形成さ
れる給気弁94の開口を覆うマスク壁を形成している。
図9に示されるように給気弁94のかさ部の中心から対
応する排気弁91のかさ部の外周縁に接するように延び
る一対の直線L2a, 2bで挟まれた領域内に位置する給
気弁94の開口がマスク壁101によって覆われてい
る。即ち、マスク壁101は一対の直線L2a, 2bがな
す角α2 、即ちマスク角α2 の範囲に亘って給気弁94
のかさ部外周縁に沿って円弧状に延びている。なお、上
述のように排気弁90と排気弁91とが対称平面K−K
に関して対称的に配置され、給気弁93と給気弁94と
が対称平面K−Kに関して対称的に配置されているの
で、給気弁93のマスク角α1 と給気弁94のマスク角
α2 とは等しく形成される。図9から図12に示す実施
例ではこのマスク壁101はマスク壁98と同様に最大
リフト位置にある給気弁94よりも下方まで延びてお
り、従って排気弁91側に形成される給気弁94の開口
は給気弁94の開弁期間全体に亘ってマスク壁101に
より覆われることになる。しかしながらこのマスク壁1
01についてもマスク壁101の高さを少し低くして給
気弁94のリフト量が小さいときのみ給気弁94の開口
をマスク壁101によって覆うようにすることもでき
る。
On the other hand, as shown in FIG. 9, a recess 100 having a shape symmetrical to the recess 97 with respect to the plane of symmetry KK is formed on the inner wall surface 3a of the cylinder head. An air valve 94 is arranged. As shown in FIG. 9, among the exhaust valves 90, 91, 92, the cap portion of the exhaust valve 91 is disposed closest to the center of the cap portion of the air supply valve 94. The concave portion 1 located on the exhaust valve 91 side
The inner peripheral wall surface portion 101 of 00 has a cylindrical shape which is arranged very close to the outer peripheral edge of the air supply valve 94 and extends along the outer peripheral edge of the air supply valve 94. An inner peripheral wall surface portion 102 of 100 is formed in a conical shape that expands toward the inside of the main chamber 4. Therefore, the opening of the air supply valve 94 facing the cylindrical inner peripheral wall surface portion 101 is covered by the cylindrical inner peripheral wall surface portion 101, and thus the cylindrical inner peripheral wall surface portion 101 is formed on the exhaust valve 91 side. A mask wall that covers the opening of the air supply valve 94 is formed.
As shown in FIG. 9, it is located in a region sandwiched by a pair of straight lines L 2a and L 2b extending from the center of the air supply valve 94 to the outer peripheral edge of the corresponding exhaust valve 91. The opening of the air supply valve 94 is covered by the mask wall 101. That is, the air supply valve 94 mask wall 101 a pair of straight lines L 2a, the angle alpha 2 L 2b, ie over a range of mask angle alpha 2
It extends in an arc shape along the outer peripheral edge of the bulge portion. In addition, as described above, the exhaust valve 90 and the exhaust valve 91 have the symmetrical plane KK.
They are symmetrically arranged with respect, since the intake valve 93 and the air supply valve 94 are symmetrically arranged with respect to the symmetry plane K-K, the mask angle of mask angle alpha 1 and an air supply valve 94 of the air supply valve 93 It is formed equal to α 2 . In the embodiment shown in FIGS. 9 to 12, the mask wall 101 extends below the air supply valve 94 in the maximum lift position like the mask wall 98, and thus the air supply valve formed on the exhaust valve 91 side. The opening of 94 is covered with the mask wall 101 over the entire opening period of the air supply valve 94. However, this mask wall 1
Also for 01, the height of the mask wall 101 may be slightly lowered so that the opening of the air supply valve 94 is covered with the mask wall 101 only when the lift amount of the air supply valve 94 is small.

【0031】一方、図9および図12に示されるように
シリンダヘッド内壁面3a上には凹部103が形成さ
れ、この凹部103の最奥部に給気弁95が配置され
る。排気弁90,91,92側に位置する凹部103の
内周壁面部分104は給気弁95の外周縁に極めて近接
配置されかつ給気弁95の外周縁に沿って延びる円筒状
をなしており、この円筒状内周壁面部分104を除く凹
部103の内周壁面部分105は主室4内に向けて拡開
する円錐状に形成されている。従って円筒状内周壁面部
分104に対面する給気弁95の開口は円筒状内周壁面
部分104によって覆われることになり、従ってこの円
筒状内周壁面部分104は排気弁90,91,92側に
形成される給気弁95の開口を覆うマスク壁を形成して
いる。図9において対称平面K−Kに対して下方に配置
された排気弁90のかさ部中心と給気弁95のかさ部と
を結ぶ直線Ma と、対称平面K−Kに対して上方に配置
された排気弁91のかさ部中心と給気弁95のかさ部中
心とを結ぶ直線Mb 、とで挟まれた領域内に位置する給
気弁95の開口がマスク壁104によって覆われてい
る。即ち、マスク壁104は一対の直線Ma,Mb がな
す角β、即ちマスク角βの範囲に亘って給気弁95のか
さ部外周縁に沿って円弧状に延びている。図9から図1
2に示す実施例ではこのマスク壁104はマスク壁9
8,101と同様に最大リフト位置にある給気弁95よ
りも下方まで延びており、従って排気弁90,91,9
2側に形成される給気弁95の開口は給気弁95の開弁
期間全体に亘ってマスク壁104により覆われることに
なる。しかしながらこのマスク壁104についてもマス
ク壁104の高さを少し低くして給気弁95のリフト量
が小さいときのみ給気弁95の開口をマスク壁104に
よって覆うようにすることもできる。
On the other hand, as shown in FIGS. 9 and 12, a recess 103 is formed on the inner wall surface 3a of the cylinder head, and the air supply valve 95 is arranged at the innermost portion of the recess 103. The inner peripheral wall surface portion 104 of the recess 103 located on the exhaust valve 90, 91, 92 side is arranged in the vicinity of the outer peripheral edge of the air supply valve 95 and has a cylindrical shape extending along the outer peripheral edge of the air supply valve 95. The inner peripheral wall surface portion 105 of the recess 103 excluding the cylindrical inner peripheral wall surface portion 104 is formed in a conical shape that expands toward the inside of the main chamber 4. Therefore, the opening of the air supply valve 95 facing the cylindrical inner peripheral wall surface portion 104 is covered by the cylindrical inner peripheral wall surface portion 104. Therefore, the cylindrical inner peripheral wall surface portion 104 is on the exhaust valve 90, 91, 92 side. A mask wall is formed so as to cover the opening of the air supply valve 95 formed in the above. In FIG. 9, a straight line Ma connecting the center of the bulge portion of the exhaust valve 90 and the bulge portion of the intake valve 95, which is arranged below the plane of symmetry KK, and above the plane of symmetry KK. The mask wall 104 covers the opening of the air supply valve 95 located in a region sandwiched by a straight line M b connecting the center of the air valve of the exhaust valve 91 and the center of the air valve of the air supply valve 95. .. That is, the mask wall 104 extends in an arc shape along the umbrella outer periphery of the pair of straight M a, M b is the angle beta, ie air supply valve 95 over a range of mask angle beta. 9 to 1
In the embodiment shown in FIG. 2, the mask wall 104 is the mask wall 9
As with Nos. 8 and 101, it extends below the intake valve 95 at the maximum lift position, and therefore the exhaust valves 90, 91, 9
The opening of the air supply valve 95 formed on the second side is covered with the mask wall 104 over the entire opening period of the air supply valve 95. However, also with respect to the mask wall 104, the height of the mask wall 104 may be slightly lowered so that the opening of the air supply valve 95 is covered with the mask wall 104 only when the lift amount of the air supply valve 95 is small.

【0032】これに対して各排気弁90,91,92に
対してはマスク壁が設けられておらず、従って排気弁9
0,91,92が開弁すると排気弁90,91,92は
全周に亘って主室4内に開口する。図9から図12に示
す実施例では全排気弁90,91,92がシリンダヘッ
ド3内に摺動可能に挿入された対応するバルブリフタ2
4を介して共通のカムシャフト25により駆動され、全
給気弁93,94,95がシリンダヘッド3内に摺動可
能に挿入された対応するバルブリフタ26を介して共通
のカムシャフト27により駆動される。即ち、全排気弁
90,91,92はロッカーアームを介することなく各
排気弁90,91,92の軸線上に位置する共通のカム
シャフト25によって直接駆動され、全給気弁93,9
4,95はロッカーアームを介することなく各給気弁9
3,94,95の軸線上に位置する共通のカムシャフト
27によって直接駆動される。
On the other hand, no mask wall is provided for each of the exhaust valves 90, 91, 92, and therefore the exhaust valve 9
When the valves 0, 91, 92 are opened, the exhaust valves 90, 91, 92 are opened in the main chamber 4 over the entire circumference. In the embodiment shown in FIGS. 9 to 12, all the exhaust valves 90, 91, 92 corresponding to the valve lifter 2 slidably inserted in the cylinder head 3.
4 is driven by a common camshaft 25, and all air supply valves 93, 94, 95 are driven by a common camshaft 27 via corresponding valve lifters 26 slidably inserted in the cylinder head 3. It That is, all the exhaust valves 90, 91, 92 are directly driven by the common camshaft 25 located on the axis of each exhaust valve 90, 91, 92 without the rocker arm, and all the intake valves 93, 9 are provided.
4 and 95 are each air supply valve 9 without a rocker arm.
It is directly driven by a common camshaft 27 located on the axis of 3,94,95.

【0033】シリンダヘッド3内には各排気弁90,9
1,92まで延びる全排気弁90,91,92に対して
共通の排気ポート107が形成され、更にシリンダヘッ
ド3内には副室5の両側において各給気弁93,94ま
で延びる一対の給気ポート108,109が形成され
る。また、シリンダヘッド3内には各給気弁ポート10
8,109から夫々分岐して給気弁95まで延びかつ給
気弁95の近傍において互いに合流する一対の給気枝通
路110,111が形成される。従って給気弁93,9
4からは夫々対応する給気ポート108,109を介し
て新気が供給され、給気弁95からは各給気ポート10
8,109から各給気枝通路110,111内に分流さ
れた新気が供給される。
In the cylinder head 3, exhaust valves 90, 9 are provided.
A common exhaust port 107 is formed for all the exhaust valves 90, 91, 92 extending to 1, 92, and a pair of air supply valves 93, 94 extending on both sides of the sub chamber 5 in the cylinder head 3 are provided. Air ports 108 and 109 are formed. In addition, each air supply valve port 10 is provided in the cylinder head 3.
A pair of air supply branch passages 110 and 111, which branch from 8 and 109 respectively, extend to the air supply valve 95 and merge with each other in the vicinity of the air supply valve 95, are formed. Therefore, the air supply valves 93, 9
4, fresh air is supplied via the corresponding air supply ports 108 and 109, and from the air supply valve 95, each air supply port 10 is supplied.
The fresh air that has been branched is supplied from each of the air supply branch passages 110 and 111 from 8,109.

【0034】次に図13から図15を参照しつつ図9か
ら図12に示す2サイクルディーゼル機関の作動につい
て説明する。なお、排気弁90,91,92および給気
弁93,94,95の開弁時期は図1から図3に示す実
施例の場合と同じであって、図4に示されるように各排
気弁90,91,92は各給気弁93,94,95より
も先に開弁し、先に閉弁する。
Next, the operation of the two-stroke diesel engine shown in FIGS. 9 to 12 will be described with reference to FIGS. 13 to 15. The opening timings of the exhaust valves 90, 91, 92 and the air supply valves 93, 94, 95 are the same as those in the embodiment shown in FIGS. 1 to 3, and as shown in FIG. 90, 91, and 92 are opened before the air supply valves 93, 94, and 95, and closed first.

【0035】各排気弁90,91,92が開弁すると主
室4内の既燃ガスが急激に排気ポート107内に排出さ
れ、即ちブローダウンを生じ、その結果主室4内の圧力
が急激に低下する。主室4内の圧力が低下すると副室5
内の既燃ガスが噴口6を介して主室4内に流出する。次
いで各給気弁93,94,95が開弁すると機関駆動の
機械式過給機(図示せず)から各給気ポート108,1
09内に送り込まれた新気が各給気弁93,94,95
を介して主室4内に供給される。このとき上述したよう
に排気弁90側に位置するマスク角α1 の範囲内の給気
弁93の開口がマスク壁98によって覆われており、排
気弁91側に位置するマスク角α2 の範囲内の給気弁9
4の開口がマスク壁101によって覆われており、排気
弁90,91,92側に位置するマスク角βの範囲内の
給気弁95の開口がマスク壁104によって覆われてい
るので、新気はマスク壁98と反対側の給気弁93の開
口、マスク壁101と反対側の給気弁94の開口および
マスク壁104と反対側の給気弁95の開口を通って主
室4内に流入する。この場合、給気弁93,94はシリ
ンダヘッド内壁面3aの周辺部に配置されているのでこ
れら給気弁93,94から流入した新気は図13および
図15において矢印Xで示すように夫々対応する給気弁
93,94下方のシリンダボア内壁面1aに沿って下降
し、次いでピストン2の頂面に沿って進行し、次いで排
気弁90,91下方のシリンダボア内壁面1aに沿って
上昇する。即ち、各給気弁93,94から流入した新気
は主室4内の周縁部に沿ってループ状に流れ、このルー
プ状に流れる新気Xによって主室4内の既燃ガスが各排
気弁90,91,92から排出される。従って各給気弁
93,94から流入する新気Xによって主室4の周縁部
が掃気されることになる。
When the exhaust valves 90, 91, 92 are opened, the burnt gas in the main chamber 4 is rapidly discharged into the exhaust port 107, that is, blowdown occurs, and as a result, the pressure in the main chamber 4 is sharply increased. Fall to. When the pressure in the main chamber 4 drops, the sub chamber 5
The burnt gas inside flows out into the main chamber 4 through the injection port 6. Next, when the air supply valves 93, 94, 95 are opened, the engine-driven mechanical supercharger (not shown) causes the air supply ports 108, 1 to open.
The fresh air sent to the inside of 09 is each supply valve 93,94,95.
Is supplied into the main chamber 4 via. At this time, as described above, the opening of the air supply valve 93 within the range of the mask angle α 1 located on the exhaust valve 90 side is covered by the mask wall 98, and the range of the mask angle α 2 located on the exhaust valve 91 side. Air supply valve 9 inside
4 is covered by the mask wall 101, and the opening of the air supply valve 95 located on the exhaust valve 90, 91, 92 side within the range of the mask angle β is covered by the mask wall 104. Into the main chamber 4 through the opening of the air supply valve 93 opposite to the mask wall 98, the opening of the air supply valve 94 opposite to the mask wall 101, and the opening of the air supply valve 95 opposite to the mask wall 104. Inflow. In this case, since the air supply valves 93, 94 are arranged in the peripheral portion of the cylinder head inner wall surface 3a, the fresh air flowing in from these air supply valves 93, 94 is respectively indicated by the arrow X in FIGS. 13 and 15. It descends along the cylinder bore inner wall surface 1a below the corresponding air supply valves 93, 94, then advances along the top surface of the piston 2, and then rises along the cylinder bore inner wall surface 1a below the exhaust valves 90, 91. That is, the fresh air that has flowed in from the air supply valves 93, 94 flows in a loop along the peripheral edge of the main chamber 4, and the burned gas in the main chamber 4 is exhausted by the fresh air X that flows in the loop. It is discharged from the valves 90, 91 and 92. Therefore, the peripheral portion of the main chamber 4 is scavenged by the fresh air X flowing from the air supply valves 93, 94.

【0036】なお、各給気弁93,94から流入する新
気は各給気弁93,94に対して夫々最も距離が近い排
気弁90,91を介して排気ポート107内に吹き抜け
やすい。しかしながら図9から図12に示す実施例では
上述のように給排気弁間の距離が最も近い同士の給排気
弁について給気弁93,94のかさ部中心から対応する
排気弁90,91のかさ部外周縁に接するように延びる
一対の直線(L1a, 1b),(L2a, 2b)で挟まれた
領域内に位置する給気弁93,94の開口が夫々マスク
壁98,101によって覆われているので、各給気弁9
3,94の開口から流入した新気がシリンダヘッド内壁
面3aに沿って排気ポート107内に吹き抜けることが
ほぼ完全に阻止される。なお、凹部97の円錐状内周壁
面部分99の内で排気弁91,92側に位置する円錐状
内周壁面部分99a(図9参照)と給気弁93の周縁部
との間に形成された開口部から主室4内に流入した新気
の一部は、シリンダヘッド内壁面3aに沿って排気弁9
1,92の方向に進行しようとする。しかしながら、こ
の排気弁91,92に向けて進行しようとする新気は、
排気弁90側に位置する凹部103の円錐状内周壁面1
05aと給気弁95の周縁部との間に形成された開口部
分から主室4内に流入した新気の流れと衝突して図15
において矢印Xaで示すように主室4内を下降すること
になる。従って、凹部97の円錐状内周壁面99aから
主室4内に流入した新気も排気ポート107内にほとん
ど吹き抜けない。同様に、凹部100の円錐状内周壁面
部分102の内で排気弁90,92側に位置する円錐状
内周壁面部分102aと給気弁94の周縁部との間に形
成された開口部分から主室4内に流入した新気の一部
は、シリンダヘッド内壁面3aに沿って排気弁90,9
2の方向に進行しようとする。しかしながら、この排気
弁90,92に向けて進行しようとする新気は、排気弁
91側に位置する凹部103の円錐状内周壁面部分10
5bと給気弁95の周縁部との間に形成された開口部分
から主室4内に流入した新気の流れと衝突して図15に
おいて矢印Xb で示すように主室4内を下降することに
なる。従って、凹部100の円錐状内周壁面部分102
aから主室4内に流入した新気も排気ポート107内に
ほとんど吹き抜けない。斯くして各給気弁93,94か
ら流入した新気がシリンダヘッド内壁面に沿って排気ポ
ート107内に吹き抜けることがほぼ完全に阻止され、
従って給気弁93,94の開口から流入したほぼすべて
の新気が主室4の周縁部に沿ってループ状に流れる新気
流Xの発生に有効に寄与せしめられる。また、給気弁9
3のマスク角α1 および給気弁94のマスク角α 2 がシ
リンダヘッド内壁面3aに沿った新気の吹き抜けを阻止
しうる必要最小限の角度に形成されているので給気抵抗
が小さく抑えられ、従って新気が各給気弁93,94の
開口を介して主室4内に円滑に流入する。斯くして、主
室4の周縁部に沿ってループ状に流れる強力な新気流X
が形成され、この強力な新気流Xによって主室4の周縁
部が良好に掃気される。
It should be noted that the new air flowing in from each air supply valve 93, 94
Qi is the exhaust gas closest to each air supply valve 93, 94.
Blows into the exhaust port 107 through the air valves 90 and 91
Cheap. However, in the embodiment shown in FIGS.
As described above, the air supply / exhaust with the closest distance between the air supply / exhaust valves
About the valve Corresponding from the center of the air supply valve 93, 94
Extends so as to contact the outer peripheral edges of the exhaust valves 90, 91
A pair of straight lines (L1a,L 1b), (L2a,L2b)
The openings of the air supply valves 93 and 94 located in the area are masks, respectively.
Each air supply valve 9 is covered by the walls 98 and 101.
The fresh air flowing in through the openings of 3,94 is the inner wall of the cylinder head.
It may blow through the exhaust port 107 along the surface 3a.
Almost completely blocked. The conical inner peripheral wall of the recess 97
Conical shape located on the exhaust valve 91, 92 side within the surface portion 99
Inner peripheral wall surface portion 99a (see FIG. 9) and a peripheral portion of the air supply valve 93
Fresh air flowing into the main chamber 4 through the opening formed between
Of the exhaust valve 9 along the inner wall surface 3a of the cylinder head.
Attempts to proceed in the direction of 1,92. However, this
The fresh air trying to progress toward the exhaust valves 91 and 92 of
Conical inner peripheral wall surface 1 of the concave portion 103 located on the exhaust valve 90 side
Opening formed between 05a and the peripheral portion of the air supply valve 95
15 and colliding with the flow of fresh air flowing into the main chamber 4 from FIG.
In the main chamber 4 as indicated by the arrow Xa in FIG.
become. Therefore, from the conical inner peripheral wall surface 99a of the recess 97,
Most of the fresh air that has flowed into the main chamber 4 also enters the exhaust port 107.
It doesn't blow through. Similarly, the conical inner peripheral wall surface of the recess 100
Conical shape located on the exhaust valve 90, 92 side in the portion 102
Between the inner peripheral wall surface portion 102a and the peripheral portion of the air supply valve 94,
Part of the fresh air flowing into the main chamber 4 through the created opening
Are exhaust valves 90, 9 along the inner wall surface 3a of the cylinder head.
Trying to proceed in the direction of 2. However, this exhaust
The fresh air trying to progress toward the valves 90 and 92 is the exhaust valve.
The conical inner peripheral wall surface portion 10 of the concave portion 103 located on the 91 side
5b and an opening formed between the peripheral portion of the air supply valve 95
Figure 15 shows a collision with the flow of fresh air flowing into the main chamber 4 from
Leave arrow XbAs shown in, descending in the main chamber 4
Become. Therefore, the conical inner peripheral wall surface portion 102 of the recess 100 is
The fresh air flowing into the main chamber 4 from a also enters the exhaust port 107.
It hardly blows through. Thus, the respective air supply valves 93, 94
The fresh air flowing in from the exhaust port flows along the inner wall surface of the cylinder head.
Almost completely prevented from blowing through into the hood 107,
Therefore, almost all the gas that has flowed in through the openings of the air supply valves 93 and 94
Of fresh air flowing in a loop along the peripheral edge of the main chamber 4.
This effectively contributes to the generation of the flow X. Also, the air supply valve 9
Mask angle α of 31And mask angle α of the air supply valve 94 2Is
Prevents fresh air from passing through along the Linda head inner wall surface 3a
Since it is formed at the minimum necessary angle,
Is kept small, so that fresh air is supplied to each air supply valve 93, 94.
It smoothly flows into the main chamber 4 through the opening. Thus, the Lord
A powerful new air flow X flowing in a loop along the peripheral edge of the chamber 4.
Is formed, and the powerful new air flow X causes the periphery of the main chamber 4 to
The part is scavenged well.

【0037】これに対して給気弁95はシリンダヘッド
内壁面3aの中央部に配置されているので給気弁95か
ら流入した新気は図14および図15において矢印Yで
示すように主室4の中央部を下降し、次いでピストン2
の頂面において向きを変えた後に排気弁90,91,9
2下方のシリンダボア内壁面1aに沿って上昇する。主
室4の中央部に存在する既燃ガスはこの新気Yによって
排気ポート107内に排出され、従って主室4内の中央
部は給気弁95から流入する新気Yによって掃気される
ことになる。このとき、上述のように給気弁95のかさ
部中心と排気弁90のかさ部中心とを結ぶ直線Ma と、
給気弁95のかさ部中心と排気弁91のかさ部中心とを
結ぶ直線Mb とで挟まれた領域内に位置する給気弁95
の開口がマスク壁104によって覆われているので、給
気弁95の開口から流入した新気がシリンダヘッド内壁
面3aに沿って排気ポート107内に吹き抜けることが
ほぼ完全に阻止される。従って給気弁95の開口から流
入したほぼすべての新気が主室4の中央部を下降する掃
気流Yの発生に有効に寄与せしめられる。また、マスク
角βがシリンダヘッド内壁面3aに沿った新気の吹き抜
けを良好に阻止しうる必要が最小限の角度に形成されて
いるので給気抵抗が小さく抑えられ、従って新気が給気
弁95の開口を介して主室4内に円滑に流入する。斯く
して、主室4の中央部を下降する強力な新気流Yが形成
され、この強力な新気流Yによって主室4の中央部が良
好に掃気される。
On the other hand, since the air supply valve 95 is arranged at the center of the cylinder head inner wall surface 3a, the fresh air flowing from the air supply valve 95 is supplied to the main chamber as shown by the arrow Y in FIGS. 4 down the center, then piston 2
Exhaust valves 90, 91, 9 after changing direction on the top surface of
2 Ascend along the inner wall surface 1a of the lower cylinder bore. The burnt gas existing in the central portion of the main chamber 4 is discharged into the exhaust port 107 by this fresh air Y, and therefore the central portion in the main chamber 4 is scavenged by the fresh air Y flowing from the air supply valve 95. become. In this case, the straight line M a connecting the bulk portion center of the bevel portion centered exhaust valve 90 of the intake valve 95 as described above,
Air supply valve 95 located in a region sandwiched by a straight line M b connecting the center of the air supply valve 95 and the center of the exhaust valve 91.
Since the opening is covered with the mask wall 104, the fresh air flowing in from the opening of the air supply valve 95 is almost completely prevented from blowing through the exhaust port 107 along the cylinder head inner wall surface 3a. Therefore, almost all the fresh air flowing in from the opening of the air supply valve 95 can be effectively contributed to the generation of the scavenging airflow Y that descends in the central portion of the main chamber 4. Further, since the mask angle β is formed at the minimum angle required to satisfactorily prevent the fresh air from passing through along the inner wall surface 3a of the cylinder head, the air supply resistance is suppressed to be small, and thus the fresh air is supplied. It smoothly flows into the main chamber 4 through the opening of the valve 95. Thus, a strong new airflow Y that descends the central portion of the main chamber 4 is formed, and the central portion of the main chamber 4 is scavenged well by the strong new airflow Y.

【0038】このように給気弁93,94から流入する
新気Xによって主室4の周縁部が良好に掃気され、給気
弁95から流入する新気Yによって主室4の中央部が良
好に掃気されるので各給気弁93,94,95から流入
する新気によって主室4内全体が良好に掃気されること
になる。次いで排気弁90,91,92が閉弁し、給気
弁93,94,95が閉弁するとピストン2の上昇作用
により主室4内のガスが噴口6を介して副室5内に送り
込まれる。上述したように主室4内全体が良好に掃気さ
れるので副室5内には多量の新気を含んだガスが送り込
まれ、斯くして燃料噴射弁7から副室5内に噴射された
燃料が良好に燃焼せしめられることになる。
As described above, the fresh air X flowing in from the air supply valves 93 and 94 scavenges the peripheral portion of the main chamber 4 favorably, and the fresh air Y flowing in from the air supply valve 95 favors the central portion of the main chamber 4. Since the air is scavenged, the entire main chamber 4 is satisfactorily scavenged by the fresh air flowing in from the air supply valves 93, 94, and 95. Next, when the exhaust valves 90, 91, 92 are closed and the air supply valves 93, 94, 95 are closed, the gas in the main chamber 4 is sent into the sub chamber 5 via the nozzle 6 by the ascending action of the piston 2. .. As described above, since the entire main chamber 4 is scavenged well, a gas containing a large amount of fresh air is sent into the sub chamber 5 and thus injected from the fuel injection valve 7 into the sub chamber 5. The fuel will be burned well.

【0039】また、シリンダヘッド内壁面3aについて
みると副室5内の温度はかなり高くなるので噴口6周り
のシリンダヘッド内壁面3aの温度が他の部分に比べて
かなり高くなり、従って噴口6周りのシリンダヘッド内
壁面3aに最も亀裂が発生しやすくなる。したしながら
本発明による実施例では図9に示されるように噴口6は
3個の給気弁93,94,95により囲まれた形となっ
ているので噴口6周りのシリンダヘッド内壁面3aは各
給気弁93,94,95から流入する新気によって冷却
され、斯くして噴口6周りのシリンダヘッド内壁面3a
に亀裂が発生するのを阻止することができる。
As for the cylinder head inner wall surface 3a, the temperature in the sub chamber 5 is considerably high, so that the temperature of the cylinder head inner wall surface 3a around the nozzle 6 is considerably higher than that of the other portions, and therefore the temperature around the nozzle 6 is small. The crack is most likely to occur on the inner wall surface 3a of the cylinder head. However, in the embodiment according to the present invention, as shown in FIG. 9, the injection port 6 is surrounded by the three air supply valves 93, 94, 95, so that the cylinder head inner wall surface 3a around the injection port 6 is The cylinder head inner wall surface 3a around the injection port 6 is cooled by the fresh air flowing from the air supply valves 93, 94, 95.
It is possible to prevent cracks from occurring in the.

【0040】図16に第6の実施例を示す。図16に示
す実施例は図9から図12に示す実施例とほぼ同一の構
造を有するが、シリンダヘッド内壁面3aの中央部に配
置された給気弁95のマスク角βが異なっている。即
ち、図16に示されるように対称平面K−K上に配置さ
れた排気弁92のかさ部の外周縁に接するように給気弁
95のかさ部中心から延びる一対の直線Ma ,Mb で挟
まれた領域内に位置する給気弁95の開口がマスク壁1
04によって覆われている。このように図16に示す実
施例では図9から図12に示す実施例に比べてマスク角
βが小さくなっているので給気弁95が開弁したときの
給気弁95の開口面積が増大せしめられ、その結果給気
抵抗がより低減せしめられる。
FIG. 16 shows a sixth embodiment. The embodiment shown in FIG. 16 has substantially the same structure as the embodiment shown in FIGS. 9 to 12, but the mask angle β of the air supply valve 95 arranged at the center of the cylinder head inner wall surface 3a is different. That is, as shown in FIG. 16, a pair of straight lines M a and M b extending from the center of the air intake valve 95 so as to contact the outer peripheral edge of the air exhaust valve 92 disposed on the plane of symmetry KK. The opening of the air supply valve 95 located in the area sandwiched by
Covered by 04. As described above, in the embodiment shown in FIG. 16, the mask angle β is smaller than that in the embodiment shown in FIGS. 9 to 12, so that the opening area of the air supply valve 95 is increased when the air supply valve 95 is opened. As a result, the air supply resistance is further reduced.

【0041】図17に第7の実施例を示す。図17に示
す実施例は図9から図12に示す実施例とほぼ同一の構
造を有するが、シリンダヘッド内壁面3aの中央部に配
置された給気弁95のマスク角βが異なっている。即
ち、図17に示されるように給気弁95のかさ部中心か
ら全排気弁90,91,92のかさ部の全体を挟むよう
に延びる一対の直線を考えたときにこの一対の直線間に
形成される挟み角β、即ちマスク角βが最小となるよう
な一対の直線Ma ,Mb で挟まれた領域内に位置する給
気弁95の開口がマスク壁104によって覆われてい
る。このように図17に示す実施例では図9から図12
に示す実施例に比べてマスク角βが大きくなっており、
従って給気弁95から流入した新気がシリンダヘッド内
壁面3aに沿って排気ポート107内に吹き抜けること
をより良好に阻止できる。
FIG. 17 shows a seventh embodiment. The embodiment shown in FIG. 17 has substantially the same structure as the embodiment shown in FIGS. 9 to 12, but the mask angle β of the air supply valve 95 arranged at the center of the cylinder head inner wall surface 3a is different. That is, as shown in FIG. 17, when considering a pair of straight lines extending from the center of the bulk portion of the air supply valve 95 so as to sandwich the entire bulk portion of all the exhaust valves 90, 91, 92, between the pair of straight lines. included angle β formed, i.e. a pair of straight lines M a as a mask angle β is minimized, the valve opening of the intake valve 95 located in the region between the M b is covered by the mask wall 104. As described above, in the embodiment shown in FIG. 17, FIG. 9 to FIG.
The mask angle β is larger than that in the embodiment shown in
Therefore, fresh air flowing in from the air supply valve 95 can be better prevented from blowing through the exhaust port 107 along the cylinder head inner wall surface 3a.

【0042】図18から図22に第8の実施例を示す。
この実施例において排気弁90,91,92および排気
ポート107は図9から図12に示す実施例と同じ構造
を有し、給気弁93,94、給気ポート108,109
およびマスク壁98,101も図9から図12に示す実
施例と同じ構造を有し、副室5および噴口6も図9から
図12に示す実施例と同じ構造を有する。即ち、シリン
ダヘッド内壁面3a上に形成された各凹部97,100
内には夫々給気弁93,94が配置され、排気弁90側
に形成される給気弁93の開口および排気弁91側に形
成される給気弁94の開口は夫々対応するマスク壁9
8,101によって覆われている。
The eighth embodiment is shown in FIGS. 18 to 22.
In this embodiment, the exhaust valves 90, 91, 92 and the exhaust port 107 have the same structure as the embodiment shown in FIGS. 9 to 12, and the air supply valves 93, 94 and the air supply ports 108, 109.
The mask walls 98 and 101 also have the same structure as the embodiment shown in FIGS. 9 to 12, and the sub chamber 5 and the injection port 6 also have the same structure as the embodiment shown in FIGS. That is, the recesses 97, 100 formed on the inner wall surface 3a of the cylinder head.
Air supply valves 93 and 94 are respectively arranged therein, and the opening of the air supply valve 93 formed on the exhaust valve 90 side and the opening of the air supply valve 94 formed on the exhaust valve 91 side respectively correspond to the mask wall 9.
It is covered by 8, 101.

【0043】一方、この実施例では給気弁95aが図9
から図12に示す実施例の給気弁95に比べてかなり小
さい弁径を有し、また給気枝通路110a,111aは
図9から図12に示す実施例の給気枝通路110,11
1に比べてかなり小さな断面積を有する。また、この実
施例では給気弁95aに対してマスク壁は設けられてい
ない。
On the other hand, in this embodiment, the air supply valve 95a is shown in FIG.
9 to 12 has a valve diameter considerably smaller than that of the air supply valve 95 of the embodiment shown in FIG. 12, and the air supply branch passages 110a and 111a are air supply branch passages 110 and 11 of the embodiment shown in FIGS.
It has a considerably smaller cross-sectional area than unity. Further, in this embodiment, no mask wall is provided for the air supply valve 95a.

【0044】従ってこの実施例では図9から図12に示
す実施例に比べて少量の新気が給気弁95aを介して主
室4内に供給され、次いでこの新気は図22において矢
印Yaで示すように主室4の中央部に向けて流れる。従
ってこの場合でも給気弁95aから流入する新気によっ
て主室4内の中心部が掃気され、更に他の給気弁93,
94から流入する新気によって主室4の周縁部が掃気さ
れるので主室4内全体が掃気されることになる。この実
施例では給気弁95aに対してマスク壁が設けられてい
ないので給気弁95aから流入した新気の一部が排気ポ
ート107内に吹き抜ける。この場合、この吹き抜ける
空気は既燃ガスの掃気作用に寄与しないので無駄な空気
となる給気弁95aから流入する空気量自体が少ないの
で無駄となる空気量はさほど多くはならない。
Therefore, in this embodiment, a small amount of fresh air is supplied into the main chamber 4 via the air supply valve 95a as compared with the embodiment shown in FIGS. 9 to 12, and this fresh air is then indicated by the arrow Ya in FIG. Flows toward the central portion of the main chamber 4 as shown by. Therefore, even in this case, the central portion of the main chamber 4 is scavenged by the fresh air flowing from the air supply valve 95a, and the other air supply valves 93,
Since the peripheral portion of the main chamber 4 is scavenged by the fresh air flowing from 94, the entire interior of the main chamber 4 is scavenged. In this embodiment, since the mask wall is not provided for the air supply valve 95a, a part of the fresh air flowing from the air supply valve 95a blows into the exhaust port 107. In this case, since the blown-through air does not contribute to the scavenging action of the burnt gas, the amount of air flowing from the air supply valve 95a, which is wasted air, is small, so the amount of wasted air does not increase so much.

【0045】図23に第9の実施例を示す。図23に示
される実施例ではシリンダヘッド内壁面3aの一側周辺
部に4個の排気弁113,114,115,116が配
置され、シリンダヘッド内壁面3aの他側周辺部に2個
の給気弁93,94が配置される。更にシリンダヘッド
内壁面3aの中央部には第3の、即ち追加の給気弁95
が配置される。また、3個の給気弁93,94,95に
よって囲まれたシリンダヘッド内壁面3aの周辺部に副
室5の噴口6が配置される。図23に示されるように給
気弁93のかさ部中心に対しては全排気弁113,11
4,115,116の内で排気弁113のかさ部が最も
近くに配置されている。給気弁93のかさ部中心からこ
の対応する排気弁113のかさ部の外周縁に接するよう
に延びる一対の直線L1a,L1bで挟まれた領域内に位置
する給気弁93の開口がマスク壁98によって覆われて
いる。また、給気弁94のかさ部中心に対しては全排気
弁113,114,115,116の内で排気弁114
のかさ部が最も近くに配置されている。給気弁94のか
さ部中心からこの対応する排気弁114のかさ部の外周
縁に接するように延びる一対の直線L2a,L2bで挟まれ
た領域内に位置する給気弁94の開口がマスク壁101
によって覆われている。また、給気弁95のかさ部中心
から各排気弁113,114,115,116のかさ部
中心を通って延びる4本の直線を考えると、排気弁11
3のかさ部中心を通って延びる直線M a と排気弁114
のかさ部中心を通って延びる直線Mb とが両外側に位置
する。この2本の直線Ma ,Mb で挟まれた領域内に位
置する給気弁95の開口がマスク壁104によって覆わ
れている。
FIG. 23 shows a ninth embodiment. Shown in Figure 23
In the illustrated embodiment, around one side of the cylinder head inner wall surface 3a
4 exhaust valves 113, 114, 115, 116 are installed in the
Placed on the other side of the cylinder head inner wall surface 3a.
The air supply valves 93 and 94 are arranged. Further cylinder head
A third or additional air supply valve 95 is provided at the center of the inner wall surface 3a.
Are placed. In addition, the three air supply valves 93, 94, 95
Therefore, in the peripheral portion of the cylinder head inner wall surface 3a surrounded by
The nozzle 6 of the chamber 5 is arranged. As shown in FIG.
All exhaust valves 113, 11 are provided for the center of the air valve 93.
Of 4,115,116, the bulk of the exhaust valve 113 is the most
It is located nearby. From the center of the air supply valve 93
So that it touches the outer peripheral edge of the corresponding exhaust valve 113
A pair of straight lines L extending to1a, L1bLocated in the area sandwiched between
The opening of the air supply valve 93 is covered by the mask wall 98.
There is. In addition, the exhaust air is exhausted to the center of the air supply valve 94.
Exhaust valve 114 out of valves 113, 114, 115, 116
The bulge is located closest to it. Is the air supply valve 94
From the center of the bulge to the outer circumference of the corresponding bulge of the exhaust valve 114
A pair of straight lines L extending so as to contact the edges2a, L2bSandwiched between
The opening of the air supply valve 94 located in the closed area is the mask wall 101.
Is covered by. The center of the air supply valve 95
To the cap of each exhaust valve 113, 114, 115, 116
Considering the four straight lines extending through the center, the exhaust valve 11
A straight line M extending through the center of the 3 aAnd exhaust valve 114
A straight line M extending through the center of the nosebAnd are located on both outer sides
To do. These two straight lines Ma, MbPlaced in the area sandwiched between
The opening of the supply valve 95 to be placed is covered by the mask wall 104.
Has been.

【0046】図24に第10の実施例を示す。図24に
示す実施例は図23に示す実施例とほぼ同一の構造を有
するが、シリンダヘッド内壁面3aの中央部に配置され
た給気弁95のマスク角βが異なっている。即ち、図2
4に示されるように対称平面K−Kの近くに配置された
2個の排気弁115,116のかさ部の全体を挟むよう
に給気弁95のかさ部中心から延びる一対の直線を考え
たときにこの一対の直線間に形成される挟み角β、即ち
マスク角βが最小となるような一対の直線Ma ,Mb
挟まれた領域内に位置する給気弁95の開口がマスク壁
104によって覆われている。
FIG. 24 shows a tenth embodiment. The embodiment shown in FIG. 24 has substantially the same structure as the embodiment shown in FIG. 23, but the mask angle β of the air supply valve 95 arranged at the center of the cylinder head inner wall surface 3a is different. That is, FIG.
As shown in FIG. 4, a pair of straight lines extending from the center of the bulge portion of the air supply valve 95 is considered so as to sandwich the entire bulge portion of the two exhaust valves 115 and 116 arranged near the plane of symmetry KK. included angle β formed between the pair of straight lines, i.e., a pair of straight lines M a as a mask angle β is minimized, the valve opening of the intake valve 95 located in the region between the M b mask when It is covered by a wall 104.

【0047】図25に第11の実施例を示す。図25に
示す実施例も図23に示す実施例および図24に示す実
施例とほぼ同一の構造を有するが、シリンダヘッド内壁
面3aの中央部に配置された給気弁95のマスク角βが
異なっている。即ち、図25に示されるように給気弁9
5のかさ部中心から全排気弁113,114,115,
116のかさ部の全体を挟むように延びる一対の直線を
考えたときにこの一対の直線間に形成される挟み角β、
即ちマスク角βが最小となるような一対の直線Ma ,M
b で挟まれた領域内に位置する給気弁95の開口がマス
ク壁104によって覆われている。
FIG. 25 shows the eleventh embodiment. The embodiment shown in FIG. 25 also has substantially the same structure as the embodiment shown in FIG. 23 and the embodiment shown in FIG. 24, but the mask angle β of the air supply valve 95 arranged at the center of the cylinder head inner wall surface 3a is Different. That is, as shown in FIG.
5 exhaust valves 113, 114, 115
When considering a pair of straight lines extending so as to sandwich the entire bulky portion of 116, an included angle β formed between the pair of straight lines,
That is, a pair of straight lines M a and M that minimizes the mask angle β.
The opening of the air supply valve 95 located in the area sandwiched by b is covered with the mask wall 104.

【0048】図26に第12の実施例を示す。図26に
示す実施例において排気弁113,114,115,1
16、給気弁93,94およびマスク壁98,101は
図23に示す実施例と同じ構造を有する。一方、この実
施例では給気弁95aが図23に示す実施例の給気弁9
5に比べてかなり小さい弁径を有する。また給気枝通路
110a,111aが図18から図22に示す実施例の
場合と同様にかなり小さな断面積を有する。また、この
実施例では給気弁95aに対してマスク壁は設けられて
いない。
FIG. 26 shows a twelfth embodiment. In the embodiment shown in FIG. 26, the exhaust valves 113, 114, 115, 1
16, the air supply valves 93, 94 and the mask walls 98, 101 have the same structure as that of the embodiment shown in FIG. On the other hand, in this embodiment, the air supply valve 95a is the air supply valve 9 of the embodiment shown in FIG.
It has a valve diameter considerably smaller than that of No. 5. Further, the supply branch passages 110a and 111a have a considerably small cross-sectional area as in the case of the embodiment shown in FIGS. Further, in this embodiment, no mask wall is provided for the air supply valve 95a.

【0049】図27に第13の実施例を示す。図27に
示される実施例ではシリンダヘッド内壁面3aの一側周
辺部に2個の排気弁118,119が配置され、シリン
ダヘッド内壁面3aの他側周辺部に2個の給気弁93,
94が配置される。更にシリンダヘッド内壁面3aの中
央部には第3の、即ち追加の給気弁95が配置される。
また、3個の給気弁93,94,95によって囲まれた
シリンダヘッド内壁面3aの周辺部に副室5の噴口6が
配置される。図27に示されるように給気弁93のかさ
部中心に対しては2個の排気弁118,119の内で排
気弁118のかさ部がより近くに配置されている。給気
弁93のかさ部中心からこの対応する排気弁118のか
さ部の外周縁に接するように延びる一対の直線L1a,L
1bで挟まれた領域内に位置する給気弁93の開口がマス
ク壁98によって覆われている。また、給気弁94のか
さ部中心に対しては2個の排気弁118,119の内で
排気弁119のかさ部がより近くに配置されている。給
気弁94のかさ部中心からこの対応する排気弁119の
かさ部の外周縁に接するように延びる一対の直線L 2a
2bで挟まれた領域内に位置する給気弁94の開口がマ
スク壁101によって覆われている。また、給気弁95
のかさ部中心から全排気弁118,119のかさ部の全
体を挟むように延びる一対の直線を考えたときにこの一
対の直線間に形成される挟み角β、即ちマスク角βが最
小となるような一対の直線Ma ,Mbで挟まれた領域内
に位置する給気弁95の開口がマスク壁104によって
覆われている。
FIG. 27 shows a thirteenth embodiment. In Figure 27
In the embodiment shown, one side circumference of the cylinder head inner wall surface 3a
Two exhaust valves 118 and 119 are arranged on the sides to
Two air supply valves 93 on the other side peripheral portion of the inner surface 3a of the da head,
94 is arranged. Furthermore, inside the cylinder head inner wall surface 3a
A third or additional air supply valve 95 is arranged in the central part.
Also, surrounded by three air supply valves 93, 94, 95
The injection port 6 of the sub chamber 5 is provided around the inner wall surface 3a of the cylinder head.
Will be placed. As shown in FIG. 27, the bulk of the air supply valve 93
The two exhaust valves 118 and 119 are exhausted to the center of the part.
The bulk of the air valve 118 is located closer. air supply
From the center of the bulb portion of the valve 93 to the corresponding exhaust valve 118
A pair of straight lines L extending so as to contact the outer peripheral edge of the sash1a, L
1bThe opening of the air supply valve 93 located in the area sandwiched by
It is covered by a wall 98. Also, is the air supply valve 94
Of the two exhaust valves 118 and 119,
The bulkhead of the exhaust valve 119 is located closer. Salary
From the center of the bulb portion of the air valve 94 to the corresponding exhaust valve 119
A pair of straight lines L extending so as to contact the outer peripheral edge of the bulkhead 2a
L2bThe opening of the air supply valve 94 located in the area sandwiched by
It is covered by the disc wall 101. Also, the air supply valve 95
All exhaust valves 118, 119 from the center of the bulkhead
When you think of a pair of straight lines that extend to sandwich the body, this one
The included angle β formed between the pair of straight lines, that is, the mask angle β is the maximum.
A pair of small straight lines Ma, MbIn the area sandwiched between
The opening of the air supply valve 95 located at
Is covered.

【0050】なお、これまで述べた各実施例ではマスク
壁がシリンダヘッド上に形成されているがこのマスク壁
をシリンダヘッドとは別体の部材上に形成することがで
きる。この場合には給気弁シート或いは排気弁シートの
形状を工夫してマスク壁をこれら弁シート上に形成する
こともできる。
In each of the embodiments described above, the mask wall is formed on the cylinder head, but the mask wall can be formed on a member separate from the cylinder head. In this case, the mask wall may be formed on these valve seats by devising the shape of the air supply valve seat or the exhaust valve seat.

【0051】[0051]

【発明の効果】請求項1に記載の発明によれば新気がシ
リンダヘッド内壁面に沿って排気ポート内に吹き抜ける
ことがほぼ完全に阻止されると共に給気抵抗が小さく抑
えられ、斯くして良好なループ掃気を確保することがで
きるので燃焼室内を良好に掃気することができる。
According to the first aspect of the present invention, it is possible to almost completely prevent fresh air from blowing through the exhaust port along the inner wall surface of the cylinder head, and to suppress the air supply resistance to a small value. Since good loop scavenging can be ensured, the combustion chamber can be scavenged satisfactorily.

【0052】請求項2に記載の発明によればシリンダヘ
ッド内壁面の周辺部に配置された給気弁から供給された
新気が排気ポート内に吹き抜けることがほぼ完全に阻止
されると共に給気抵抗が小さく抑えられ、斯くして燃焼
室の周縁に沿って流れる良好なループ掃気流が確保さ
れ、燃焼室の周縁部が良好に掃気される。また追加の給
気弁から供給された新気によって燃焼室の中央部が良好
に掃気される。斯くして燃焼室内全体を良好に掃気する
ことができる。
According to the second aspect of the present invention, it is almost completely prevented that fresh air supplied from the air supply valve arranged in the peripheral portion of the inner wall surface of the cylinder head is blown into the exhaust port, and the air is supplied. The resistance is suppressed to a low level, so that a good loop scavenging airflow flowing along the peripheral edge of the combustion chamber is secured, and the peripheral edge portion of the combustion chamber is scavenged well. In addition, the central portion of the combustion chamber is scavenged well by the fresh air supplied from the additional air supply valve. Thus, the entire combustion chamber can be scavenged well.

【図面の簡単な説明】[Brief description of drawings]

【図1】シリンダヘッド内壁面の底面図である。FIG. 1 is a bottom view of an inner wall surface of a cylinder head.

【図2】図1のII−II線に沿ってみた内燃機関の側面断
面図である。
FIG. 2 is a side sectional view of the internal combustion engine taken along line II-II in FIG.

【図3】図1の III−III 線に沿ってみた内燃機関の側
面断面図である。
FIG. 3 is a side sectional view of the internal combustion engine taken along line III-III in FIG.

【図4】給気弁および排気弁の開弁時期を示す線図であ
る。
FIG. 4 is a diagram showing valve opening timings of an intake valve and an exhaust valve.

【図5】図2と同一断面に沿ってみた掃気作用を説明す
るための内燃機関の側面断面図である。
5 is a side sectional view of the internal combustion engine for explaining the scavenging action as viewed along the same section as FIG. 2. FIG.

【図6】第2の実施例のシリンダヘッド内壁面の底面図
である。
FIG. 6 is a bottom view of an inner wall surface of a cylinder head according to a second embodiment.

【図7】第3の実施例のシリンダヘッド内壁面の底面図
である。
FIG. 7 is a bottom view of an inner wall surface of a cylinder head according to a third embodiment.

【図8】第4の実施例のシリンダヘッド内壁面の底面図
である。
FIG. 8 is a bottom view of an inner wall surface of a cylinder head according to a fourth embodiment.

【図9】第5の実施例のシリンダヘッド内壁面の底面図
である。
FIG. 9 is a bottom view of an inner wall surface of a cylinder head according to a fifth embodiment.

【図10】図9に示すシリンダヘッドの平面断面図であ
る。
10 is a plan sectional view of the cylinder head shown in FIG.

【図11】図10のXI−XI線に沿ってみた内燃機関の側
面断面図である。
11 is a side sectional view of the internal combustion engine taken along the line XI-XI of FIG.

【図12】図10の XII−XII 線に沿ってみた内燃機関
の側面断面図である。
12 is a side sectional view of the internal combustion engine taken along line XII-XII in FIG.

【図13】図11と同一断面に沿ってみた掃気作用を説
明するための内燃機関の側面断面図である。
13 is a side cross-sectional view of the internal combustion engine for explaining the scavenging action taken along the same cross section as FIG. 11. FIG.

【図14】図12と同一断面に沿ってみた掃気作用を説
明するための内燃機関の側面断面図である。
FIG. 14 is a side sectional view of the internal combustion engine for explaining the scavenging action taken along the same section as FIG.

【図15】第5の実施例の内燃機関の図解的に示した斜
視図である。
FIG. 15 is a perspective view schematically showing an internal combustion engine of a fifth embodiment.

【図16】第6の実施例のシリンダヘッド内壁面の底面
図である。
FIG. 16 is a bottom view of the inner wall surface of the cylinder head of the sixth embodiment.

【図17】第7の実施例のシリンダヘッド内壁面の底面
図である。
FIG. 17 is a bottom view of the inner wall surface of the cylinder head of the seventh embodiment.

【図18】第8の実施例のシリンダヘッド内壁面の底面
図である。
FIG. 18 is a bottom view of an inner wall surface of a cylinder head according to an eighth embodiment.

【図19】図18に示すシリンダヘッドの平面断面図で
ある。
19 is a plan sectional view of the cylinder head shown in FIG.

【図20】図19のXX−XX線に沿ってみた内燃機関の側
面断面図である。
20 is a side sectional view of the internal combustion engine taken along line XX-XX in FIG.

【図21】図19の XXI−XXI 線に沿ってみた内燃機関
の側面断面図である。
21 is a side sectional view of the internal combustion engine taken along line XXI-XXI in FIG.

【図22】図21と同一断面に沿ってみた掃気作用を説
明するための内燃機関の側面断面図である。
22 is a side sectional view of the internal combustion engine for explaining the scavenging action taken along the same section as FIG. 21. FIG.

【図23】第9の実施例のシリンダヘッド内壁面の底面
図である。
FIG. 23 is a bottom view of the inner wall surface of the cylinder head of the ninth embodiment.

【図24】第10の実施例のシリンダヘッド内壁面の底
面図である。
FIG. 24 is a bottom view of the cylinder head inner wall surface of the tenth embodiment.

【図25】第11の実施例のシリンダヘッド内壁面の底
面図である。
FIG. 25 is a bottom view of the cylinder head inner wall surface of the eleventh embodiment.

【図26】第12の実施例のシリンダヘッド内壁面の底
面図である。
FIG. 26 is a bottom view of the cylinder head inner wall surface of the twelfth embodiment.

【図27】第13の実施例のシリンダヘッド内壁面の底
面図である。
FIG. 27 is a bottom view of the inner wall surface of the cylinder head of the thirteenth embodiment.

【符号の説明】[Explanation of symbols]

3a…シリンダヘッド内壁面 5…副室 6…噴口 9,10…排気弁 12,13…給気弁 16,19…マスク壁 40,41,42,44,45,46,47…排気弁 56,57,58…給気弁 60,63,66…マスク壁 90,91,92…排気弁 93,94,95,95a…給気弁 98,101,104…マスク壁 113,114,115,116,118,119…排
気弁 α1 ,α2 ,α3 ,β…マスク角
3a ... Cylinder head inner wall surface 5 ... Sub chamber 6 ... Injection port 9,10 ... Exhaust valve 12, 13 ... Air supply valve 16, 19 ... Mask wall 40, 41, 42, 44, 45, 46, 47 ... Exhaust valve 56, 57, 58 ... Air supply valve 60, 63, 66 ... Mask wall 90, 91, 92 ... Exhaust valve 93, 94, 95, 95a ... Air supply valve 98, 101, 104 ... Mask wall 113, 114, 115, 116, 118, 119 ... Exhaust valves α 1 , α 2 , α 3 , β ... Mask angles

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福山 正 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaru Fukuyama 1 Toyota-cho, Toyota-shi, Aichi Toyota Motor Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリンダヘッド内壁面の一側に複数個の
排気弁を配置すると共にシリンダヘッド内壁面の他側に
少くとも1個の給気弁を配置し、排気弁側に位置する給
気弁の開口をマスク壁によって覆うようにした2サイク
ル内燃機関の燃焼室構造において、給気弁かさ部の中心
と排気弁かさ部の中心との間の距離が最も近い同士の給
気弁と対応する排気弁とについて該給気弁のかさ部の中
心から該対応する排気弁のかさ部の外周縁に接するよう
に延びる一対の直線で挟まれた領域内に位置する該給気
弁の開口を上記マスク壁によって覆うようにした2サイ
クル内燃機関の燃焼室構造。
Claims: 1. A plurality of exhaust valves are arranged on one side of an inner wall surface of a cylinder head, and at least one air supply valve is arranged on the other side of an inner wall surface of the cylinder head. In the combustion chamber structure of a two-cycle internal combustion engine in which the opening of the valve is covered with a mask wall, it corresponds to the air supply valves whose distance between the center of the air supply valve and the center of the exhaust valve is the shortest. And an exhaust valve that is located in a region sandwiched by a pair of straight lines extending from the center of the bulk portion of the air supply valve to the outer peripheral edge of the bulk portion of the corresponding exhaust valve. A combustion chamber structure of a two-cycle internal combustion engine which is covered by the mask wall.
【請求項2】 シリンダヘッド内壁面の一側に複数個の
排気弁を配置すると共にシリンダヘッド内壁面の他側に
少くとも1個の給気弁を配置し、排気弁側に位置する給
気弁の開口をマスク壁によって覆うようにした2サイク
ル内燃機関の燃焼室構造において、上記複数個の排気弁
をシリンダヘッド内壁面の上記一側の周辺部に配置する
と共に上記少くとも1個の給気弁をシリンダヘッド内壁
面の他側周辺部に配置し、給気弁かさ部の中心と排気弁
かさ部の中心との間の距離が最も近い同士の給気弁と対
応する排気弁とについて該給気弁のかさ部の中心から該
対応する排気弁のかさ部の外周縁に接するように延びる
一対の直線で挟まれた領域内に位置する該給気弁の開口
を上記マスク壁によって覆い、シリンダヘッド内壁面の
中心部に追加の給気弁を配置して該追加の給気弁から燃
焼室内の中央部に向けて新気を供給するようにした2サ
イクル内燃機関の燃焼室構造。
2. A plurality of exhaust valves are arranged on one side of an inner wall surface of the cylinder head, and at least one air supply valve is arranged on the other side of the inner wall surface of the cylinder head, and the air supply is located on the exhaust valve side. In a combustion chamber structure of a two-cycle internal combustion engine in which an opening of the valve is covered with a mask wall, the plurality of exhaust valves are arranged in the peripheral portion on one side of the inner wall surface of the cylinder head and at least one supply valve is provided. The air valve is placed on the other side peripheral part of the inner wall surface of the cylinder head, and the distance between the center of the air intake valve and the center of the exhaust valve is the closest to the air intake valve and the corresponding exhaust valve. The mask wall covers an opening of the air supply valve located in a region sandwiched by a pair of straight lines extending from the center of the air supply valve to the outer peripheral edge of the corresponding exhaust valve cap. , Additional air supply in the center of the inner wall of the cylinder head A combustion chamber structure of a two-cycle internal combustion engine in which a valve is arranged so that fresh air is supplied from the additional air supply valve toward a central portion of the combustion chamber.
JP3327636A 1991-12-11 1991-12-11 Combustion chamber structure of two-cycle internal combustion engine Pending JPH05163905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3327636A JPH05163905A (en) 1991-12-11 1991-12-11 Combustion chamber structure of two-cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3327636A JPH05163905A (en) 1991-12-11 1991-12-11 Combustion chamber structure of two-cycle internal combustion engine

Publications (1)

Publication Number Publication Date
JPH05163905A true JPH05163905A (en) 1993-06-29

Family

ID=18201267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3327636A Pending JPH05163905A (en) 1991-12-11 1991-12-11 Combustion chamber structure of two-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JPH05163905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9038592B2 (en) 2013-04-16 2015-05-26 Deere & Company Cylinder head comprising a shroud

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9038592B2 (en) 2013-04-16 2015-05-26 Deere & Company Cylinder head comprising a shroud

Similar Documents

Publication Publication Date Title
JPH02153222A (en) Combustion chamber construction of two-cycle internal combustion engine
JPH1150907A (en) Piston of internal combustion engine
JPH06185312A (en) Combustion chamber of two cycle engine
JP2733660B2 (en) Combustion chamber of multi-valve engine
JPH05133227A (en) Combustion chamber of two cycle engine
JPH05163905A (en) Combustion chamber structure of two-cycle internal combustion engine
EP0640754B1 (en) Internal combustion engine
JPS63230946A (en) Multicylinder engine block for internal combustion engine
JPH05179905A (en) Combusting chamber structure in two-cycle internal combustion engine
JPH05163906A (en) Combustion chamber structure of two-cycle internal combustion engine
JP3799183B2 (en) Engine intake system
JPS59231120A (en) Three-valve head type internal-combustion engine
JPH05156945A (en) Combustion chamber structure in two-cycle internal combustion engine
JPH05340253A (en) Combustion chamber of two-cycle engine
JPH06346739A (en) Combustion chamber of two-cycle engine
JPH0814048A (en) Stratified combustion internal combustion engine
JPH087059Y2 (en) 2-cycle diesel engine
JPH0649857Y2 (en) 2-cycle diesel engine
JP2909588B2 (en) Combustion chamber of multi-valve engine
JPH04287828A (en) Two cycle internal combustion engine
JPS6346664Y2 (en)
JPH06159047A (en) Two-cycle interinal combustion engine
JPH0681613A (en) Combustion chamber of 2-cycle engine
JP4294188B2 (en) Piston for engine
JPH0578953U (en) Internal combustion engine combustion chamber structure