JPH051622A - Al alloy piston for internal combustion engine and its manufacture - Google Patents

Al alloy piston for internal combustion engine and its manufacture

Info

Publication number
JPH051622A
JPH051622A JP3008507A JP850791A JPH051622A JP H051622 A JPH051622 A JP H051622A JP 3008507 A JP3008507 A JP 3008507A JP 850791 A JP850791 A JP 850791A JP H051622 A JPH051622 A JP H051622A
Authority
JP
Japan
Prior art keywords
heat
piston
resistant
alloy
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3008507A
Other languages
Japanese (ja)
Inventor
Shigekado Sakakibara
重門 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIRATSUKA KINZOKU KOGYO KK
Original Assignee
HIRATSUKA KINZOKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIRATSUKA KINZOKU KOGYO KK filed Critical HIRATSUKA KINZOKU KOGYO KK
Priority to JP3008507A priority Critical patent/JPH051622A/en
Publication of JPH051622A publication Critical patent/JPH051622A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0603Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head
    • F02B2023/0612Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head the material having a high temperature and pressure resistance, e.g. ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To form a highly strong heat-resistant area so that a heat-resistant area and a main area may be integratel together while maintaining a light weight by alloying a pure Al by local melt alloying processing so that the amount of alloy element in the heat-resistant area becomes less than the amount of alloy element in the main area in the case of a Al alloy piston provided with the main area connected to the heat-resistant area. CONSTITUTION:The open peripheral area of a combustion chamber at the top of an Al alloy piston P1 used in a direct-injection type diesel engine is a heat- resistant area 2 on which a shock i. e., a high temperature shock due to repeated heating is applied at a high temperature of approx. 300 to 500 deg. C during the engine operation. The piston P1 is provided with a heat-resistant area 2 and a main area 3 connected to it. The main area 3 is made of a JIS AC8A material (11.0 to 13.0 Si, 0.8 to 1.3 Cu, 0.7 to 1.3 Mg, 0.8 to 1.5 Ni, and the rest Al in weight %), and a pure Al is alloyed to form the heat-resistant area 2 by local melt alloying processing so that it becomes less than the amount of alloy element of AC8A material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関用Al合金製ピ
ストン、特に、内燃機関の運転中に高温熱衝撃を受ける
耐熱領域と、その耐熱領域に連なる主領域とを備えたピ
ストンおよびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al alloy piston for an internal combustion engine, and more particularly to a piston provided with a heat resistant region which is subjected to high temperature thermal shock during operation of the internal combustion engine and a main region which is continuous with the heat resistant region. Regarding the method.

【0002】[0002]

【従来の技術】例えば、直接噴射式ディーゼル機関に用
いられるAl合金製ピストンにおいて、その頂部燃焼室
の開口周縁領域は、機関運転中に300〜500℃程度
の高温下で繰返し加熱、即ち高温熱衝撃を受ける耐熱領
域である。
2. Description of the Related Art For example, in an Al alloy piston used in a direct injection diesel engine, the peripheral region of the opening of the top combustion chamber is repeatedly heated at a high temperature of about 300 to 500.degree. It is a heat-resistant area that receives impact.

【0003】この耐熱領域における亀裂発生を防止する
ため、従来より種々の構成を有する耐熱領域を備えたピ
ストンが開発されており、例えば、アルフィン法を適用
することによって、ニレジスト等よりなる強化材を鋳ぐ
るんで耐熱領域を形成したもの、耐熱領域の形状を高温
熱衝撃を受けにくい形状にしたもの等が公知である。
In order to prevent the occurrence of cracks in the heat-resistant region, pistons having heat-resistant regions having various structures have been developed so far. For example, by applying the Alfin method, a reinforcing material made of Niresist or the like is used. It is known that the heat-resistant region is formed by casting, and the heat-resistant region has a shape that is resistant to high-temperature thermal shock.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記ア
ルフィン法によると、次のような問題がある。 通
常、強化材の比重が大きいことに起因してピストンの重
量が増し、それに伴い機関性能の低下を招く、 ピス
トン本体と強化材との接合強度が低く、その接合強度は
ピストン本体の強度の10分の1程度である、 強化
材の合金元素としては、Ni等の資源的にも少なく、ま
た高価なものが用いられているので、強化材を用いるこ
とは、省資源化および低コスト化の観点より好ましくな
い、 所定の形状を有する強化材を得るための成形性
が悪く、また鋳造後において、強化材を鋳ぐるんだ部分
の機械加工性も悪いため量産性に欠ける。
However, the Alfin method has the following problems. Usually, the weight of the piston increases due to the large specific gravity of the reinforcing material, which causes deterioration of engine performance. The joint strength between the piston body and the reinforcing material is low, and the joint strength is 10 times that of the piston body. As the alloying element of the strengthening material, which is about one-third, is expensive and is also used in terms of resources such as Ni. Therefore, the use of the reinforcing material saves resources and lowers the cost. From the viewpoint, the moldability for obtaining a reinforcing material having a predetermined shape is poor, and the machinability of the part surrounded by the reinforcing material after casting is also poor, resulting in poor mass productivity.

【0005】一方、前記のように耐熱領域の形状を変え
ることは、機関性能向上のために必要な頂部燃焼室の設
計上の自由度を狭める、といった問題を生じる。
On the other hand, changing the shape of the heat-resistant region as described above causes a problem that the degree of freedom in designing the top combustion chamber necessary for improving engine performance is narrowed.

【0006】本発明は前記従来ピストンの有する各種問
題点を解決することのできる前記ピストンおよびその製
造方法を提供することを目的とする。
It is an object of the present invention to provide the piston and a method for manufacturing the piston, which can solve various problems of the conventional piston.

【0007】[0007]

【課題を解決するための手段】本発明は、内燃機関の運
転中に高温熱衝撃を受ける耐熱領域と、その耐熱領域に
連なる主領域とを備えたAl合金製ピストンにおいて、
前記耐熱領域は、その合金元素量が前記主領域の合金元
素量よりも少なくなるように、局所溶融合金化処理によ
って純Alを合金化させて形成されていることを特徴と
する。
SUMMARY OF THE INVENTION The present invention provides an Al alloy piston having a heat-resistant region that is subjected to high-temperature thermal shock during operation of an internal combustion engine, and a main region connected to the heat-resistant region.
The heat resistant region is formed by alloying pure Al by a local melting alloying process so that the amount of alloying elements is smaller than that of the main region.

【0008】本発明は、内燃機関の運転中に高温熱衝撃
を受ける耐熱領域と、その耐熱領域に連なる主領域とを
備えたAl合金製ピストンを製造するに当り、前記主領
域と同一組成を有するピストン用Al合金製鋳造体の耐
熱領域形成部に純Alよりなる添加材を付設し、次いで
前記耐熱領域形成部に局所溶融合金化処理を施すことに
よって純Alを合金化させ、その後前記耐熱領域形成部
に機械加工を施すことによって前記耐熱領域を形成する
ことを特徴とする。
According to the present invention, when an Al alloy piston having a heat-resistant region that is subjected to high-temperature thermal shock during operation of an internal combustion engine and a main region connected to the heat-resistant region is manufactured, the same composition as the main region is used. The additive material made of pure Al is attached to the heat-resistant region forming portion of the Al alloy cast body for piston having, and then pure Al is alloyed by subjecting the heat-resistant region forming portion to local fusion alloying treatment, and then the heat-resistant region is formed. The heat-resistant region is formed by subjecting the region forming portion to machining.

【0009】[0009]

【実施例】図1,図2に示す直接噴射式ディーゼル機関
に用いられるAl合金製ピストンP1 において、その頂
部燃焼室1の開口周縁領域は、機関運転中に300〜5
00℃程度の高温下で繰返し加熱による衝撃、即ち高温
熱衝撃を受ける耐熱領域2である。したがって、ピスト
ンP1 は耐熱領域2と、その耐熱領域2に連なる主領域
3とを備えている。図中、4はリング溝である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the Al alloy piston P 1 used in the direct injection diesel engine shown in FIGS. 1 and 2, the opening peripheral region of the top combustion chamber 1 is 300 to 5 during engine operation.
The heat-resistant region 2 is subjected to the impact of repeated heating under a high temperature of about 00 ° C., that is, the high temperature thermal impact. Therefore, the piston P 1 has a heat resistant region 2 and a main region 3 continuous with the heat resistant region 2. In the figure, 4 is a ring groove.

【0010】主領域3はJIS AC8A材より構成さ
れ、また耐熱領域2は、その合金元素量が主領域3、し
たがってAC8A材の合金元素量よりも少なくなるよう
に、局所溶融合金化処理によって純Alを合金化させて
形成されている。
The main region 3 is made of JIS AC8A material, and the heat-resistant region 2 is purely melted by a local melting alloying treatment so that the alloy element amount thereof is smaller than that of the main region 3, and thus the AC8A material. It is formed by alloying Al.

【0011】表1は、主領域3と耐熱領域2との組成を
比較したものである。
Table 1 compares the compositions of the main region 3 and the heat resistant region 2.

【0012】[0012]

【表1】 [Table 1]

【0013】比較のため、JIS AC8Aのみからな
るピストンP2 およびJIS AC8Bのみからなるピ
ストンP3 を製造した。JIS AC8B材の組成は、
重量%にて、8.5〜10.5Si、2.0〜4.0C
u、0.5〜1.5Mg、0.1〜1.0Ni、残部A
lである。
For comparison, a piston P 2 consisting only of JIS AC8A and a piston P 3 consisting only of JIS AC8B were manufactured. The composition of JIS AC8B material is
8.5 to 10.5 Si, 2.0 to 4.0 C in wt%
u, 0.5 to 1.5 Mg, 0.1 to 1.0 Ni, balance A
It is l.

【0014】表2は、本実施例ピストンP1 および比較
例ピストンP2 ,P3 における熱衝撃試験結果を示す。
この試験は、次のような方法で行われた。先ず、各ピス
トンP1 〜P3 の頂面をガスバーナにより約380℃に
加熱し、次いで各ピストンP 1 〜P3 を約40℃の冷却
水に浸漬して約70℃に冷却し、この加熱冷却工程を1
サイクルとして繰返した。1サイクルに要する時間は1
5分間に設定された。そして繰返し回数50回毎に試験
を約10分間中断して、各ピストンP1 〜P3 を約40
℃まで冷却し、その後、染色探傷法により頂部燃焼室1
の開口周縁領域、したがって耐熱領域2における亀裂の
有無を目視にて検査した。
Table 2 shows the piston P of this embodiment.1And comparison
Example piston P2, P3The thermal shock test result in is shown.
This test was conducted in the following manner. First, each piss
Ton P1~ P3The top surface of the furnace is heated to approximately 380 ° C by a gas burner.
Heat, then each piston P 1~ P3To about 40 ℃
Immerse in water and cool to about 70 ° C.
Repeated as a cycle. The time required for one cycle is 1
It was set to 5 minutes. And test every 50 repetitions
For about 10 minutes to stop each piston P1~ P3About 40
After cooling to ℃, the top combustion chamber 1 by dye flaw detection
Of the cracks in the peripheral region of the opening of the
The presence or absence was visually inspected.

【0015】[0015]

【表2】 [Table 2]

【0016】表2から明らかなように、本実施例ピスト
ンP1 は比較例ピストンP2 ,P3 に比べて優れた耐高
温熱衝撃性を有する。
As is clear from Table 2, the piston P 1 of the present embodiment has excellent high temperature thermal shock resistance as compared with the pistons P 2 and P 3 of the comparative examples.

【0017】このような特性が得られるのは、次のよう
な理由によるものと思われる。合金元素であるSiは、
Al合金の熱膨脹を抑制する効果を有するもので、Al
マトリックス中に微細な結晶として分散している。また
Cu、Mg、Niは、Al合金の強化元素であってAl
マトリックス中に金属間化合物を形成して固溶してい
る。たゞし、Cu等の有効性は加熱温度300℃までの
低温域にて顕著である。
The reason why such characteristics are obtained is considered to be as follows. Si, which is an alloying element,
It has the effect of suppressing the thermal expansion of the Al alloy.
It is dispersed as fine crystals in the matrix. Cu, Mg and Ni are strengthening elements of Al alloy and
An intermetallic compound is formed in the matrix to form a solid solution. However, the effectiveness of Cu and the like is remarkable in the low temperature range up to the heating temperature of 300 ° C.

【0018】このような状況下において、Al合金が3
00〜500℃の加熱、それに次ぐ冷却といった冷熱サ
イクル下に保持されると、Si結晶とAlマトリックス
との熱膨脹量の差異およびCu等の固溶と析出との繰返
しに起因してAl合金には繰返し応力が発生することに
なり、この繰返し応力が300〜500℃におけるAl
合金の脆化を招くものと考えられる。
Under such a circumstance, if the Al alloy is 3
When kept in a cold heat cycle such as heating at 00 to 500 ° C. and then cooling, the Al alloy is affected by the difference in the thermal expansion amount between the Si crystal and the Al matrix and the repeated solid solution and precipitation of Cu and the like. Repetitive stress is generated, and this repetitive stress is Al at 300 to 500 ° C.
It is considered to cause embrittlement of the alloy.

【0019】本実施例においては、前記観点より耐熱領
域2の合金元素量を主領域3のそれよりも少なくしたも
ので、これにより前記繰返し応力の僅少化を図って30
0〜500℃におけるAl合金の脆化を回避することが
可能となる。
In the present embodiment, the amount of alloying elements in the heat-resistant region 2 is made smaller than that in the main region 3 from the above viewpoint, whereby the cyclic stress is reduced to 30
It becomes possible to avoid embrittlement of the Al alloy at 0 to 500 ° C.

【0020】またベンチ試験において、本実施例ピスト
ンP1 では耐熱領域2に亀裂、欠落等の発生は観察され
なかったが、JIS AC8Aよりなる比較例ピストン
2 では耐熱領域2に亀裂および欠落の発生が認められ
た。
In the bench test, no cracks or chippings were observed in the heat resistant region 2 of the piston P 1 of this embodiment, but cracks or chippings were found in the heat resistant region 2 of the comparative piston P 2 of JIS AC8A. Occurrence was observed.

【0021】さらに本実施例ピストンP1 は、外径12
0mmのものにおいて、ニレジスト製強化材を鋳ぐるんだ
ものよりも30g軽く、これにより軽量化を達成し得る
ことが判る。
Further, the piston P 1 of this embodiment has an outer diameter of 12
It can be seen that in the case of 0 mm, the weight is 30 g lighter than that of the casted Ni-resist reinforcing material, which makes it possible to reduce the weight.

【0022】その上、両領域2,3間に境界を生じるこ
とはないので、前記従来の鋳ぐるみによる接合強度の問
題は生じない。
Moreover, since no boundary is formed between the two regions 2 and 3, the problem of the bonding strength due to the conventional cast stuff does not occur.

【0023】次に、本実施例ピストンP1 (外径120
mm)の製造方法について説明する。 (1) 図3に示すように、JIS AC8A材を用い
てピストン用Al合金製鋳造体5を鋳造した。この鋳造
体5は頂部燃焼室1およびリング溝4を備えておらず、
これらは後の工程で機械加工により形成される。 (2) 図4に示すように、鋳造体5において、頂部燃
焼室1の開口周縁領域に対応する耐熱領域形成部6に深
さ8mm、幅8mmの環状溝7を機械加工により形成した。 (3) 図5に示すように、純度99.7%以上の純A
lよりなる直径8mmの線状添加材8を、環状溝7に嵌込
んで耐熱領域形成部6に付設した。 (4) 図6に示すように、鋳造体5を電子ビーム加熱
溶融装置に設置し、次いで添加材8と共に耐熱領域形成
部6を深さ約12mm、幅約12mmに亘って溶融し、この
局所溶融合金化処理によって耐熱領域形成部6に純Al
を合金化させた。
Next, the piston P 1 (outer diameter 120
mm) will be described. (1) As shown in FIG. 3, an AI alloy cast body 5 for a piston was cast using a JIS AC8A material. This cast body 5 does not include the top combustion chamber 1 and the ring groove 4,
These are formed by machining in a later process. (2) As shown in FIG. 4, in the cast body 5, an annular groove 7 having a depth of 8 mm and a width of 8 mm was formed in the heat-resistant region forming portion 6 corresponding to the opening peripheral region of the top combustion chamber 1 by machining. (3) As shown in FIG. 5, pure A having a purity of 99.7% or more
The linear additive 8 having a diameter of 8 mm and having a diameter of 1 was fitted in the annular groove 7 and attached to the heat-resistant region forming portion 6. (4) As shown in FIG. 6, the cast body 5 is placed in an electron beam heating and melting apparatus, and then the heat resistant region forming portion 6 is melted together with the additive material 8 over a depth of about 12 mm and a width of about 12 mm, and this local Pure Al is formed on the heat-resistant region forming portion 6 by the melt alloying treatment.
Was alloyed.

【0024】前記鋳造体5に熱処理を施した後、切削等
の機械加工を施して耐熱領域2を含む頂部燃焼室1およ
び各リング溝4を形成し、図1,図2に示すピストンP
1 を製造した。このピストンP1 においては、純Alの
合金化に起因して耐熱領域2の合金元素量が主領域3の
合金元素量よりも、表1に示すように少なくなる。
After heat-treating the cast body 5, machining such as cutting is performed to form the top combustion chamber 1 and the ring grooves 4 including the heat-resistant region 2, and the piston P shown in FIGS. 1 and 2 is formed.
Manufactured 1 . In this piston P 1 , the amount of alloying elements in the heat-resistant region 2 becomes smaller than that in the main region 3 as shown in Table 1 due to the alloying of pure Al.

【0025】前記機械加工において、耐熱領域2と主領
域3とはAl材より構成されているので、両領域2,3
間に加工性の差異は殆どなく、したがって加工性は良好
である。
In the above machining, the heat resistant region 2 and the main region 3 are made of an Al material, so both regions 2 and 3 are formed.
There is almost no difference in workability between them, and thus workability is good.

【0026】なお、本発明は、ディーゼル機関以外の内
燃機関におけるピストンにも適用することが可能であ
る。
The present invention can also be applied to pistons in internal combustion engines other than diesel engines.

【0027】[0027]

【発明の効果】請求項1記載の発明によれば、高強度な
耐熱領域を備え、軽量で、耐熱領域および主領域間が一
体化され、省資源化および低コスト化を達成された、設
計自由度の大きなピストンを提供することができる。
According to the first aspect of the present invention, a design having a high-strength heat-resistant region, being lightweight, integrating the heat-resistant region and the main region, and achieving resource saving and cost reduction is achieved. A piston having a large degree of freedom can be provided.

【0028】請求項2記載の発明によれば、鋳造、局所
溶融合金化処理、機械加工といった比較的単純な各工程
を経て前記ピストンを容易に量産することが可能であ
る。
According to the second aspect of the present invention, the piston can be easily mass-produced through relatively simple steps such as casting, local melting alloying treatment, and machining.

【図面の簡単な説明】[Brief description of drawings]

【図1】ピストンの平面図である。FIG. 1 is a plan view of a piston.

【図2】図1の2−2線で切断したピストンの縦断側面
図である。
FIG. 2 is a vertical sectional side view of the piston taken along the line 2-2 in FIG.

【図3】鋳造後における鋳造体の縦断側面図である。FIG. 3 is a vertical sectional side view of a cast body after casting.

【図4】環状溝を形成された鋳造体の縦断側面図であ
る。
FIG. 4 is a vertical sectional side view of a cast body having an annular groove formed therein.

【図5】環状溝に線状添加材を嵌込んだ鋳造体の縦断側
面図である。
FIG. 5 is a vertical sectional side view of a cast body in which a linear additive is fitted in an annular groove.

【図6】局所溶融合金化処理を施された鋳造体の縦断側
面図である。
FIG. 6 is a vertical cross-sectional side view of a cast body that has been subjected to local melting alloying treatment.

【符号の説明】[Explanation of symbols]

2 耐熱領域 3 主領域 5 鋳造体 6 耐熱領域形成部 8 添加材 2 Heat resistant area 3 main areas 5 cast bodies 6 Heat-resistant area forming part 8 additive materials

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の運転中に高温熱衝撃を受ける
耐熱領域(2)と、その耐熱領域(2)に連なる主領域
(3)とを備えたAl合金製ピストンにおいて、前記耐
熱領域(2)は、その合金元素量が前記主領域(3)の
合金元素量よりも少なくなるように、局所溶融合金化処
理によって純Alを合金化させて形成されていることを
特徴とする内燃機関用Al合金製ピストン。
1. An Al alloy piston comprising a heat-resistant region (2) that is subjected to high-temperature thermal shock during operation of an internal combustion engine and a main region (3) connected to the heat-resistant region (2), wherein the heat-resistant region ( The internal combustion engine 2) is formed by alloying pure Al by a local melting alloying treatment so that the amount of the alloying elements is smaller than that of the main region (3). Al alloy piston for use.
【請求項2】 内燃機関の運転中に高温熱衝撃を受ける
耐熱領域(2)と、その耐熱領域(2)に連なる主領域
(3)とを備えたAl合金製ピストンを製造するに当
り、前記主領域(3)と同一組成を有するピストン用A
l合金製鋳造体(5)の耐熱領域形成部(6)に純Al
よりなる添加材(8)を付設し、次いで前記耐熱領域形
成部(6)に局所溶融合金化処理を施すことによって純
Alを合金化させ、その後前記耐熱領域形成部(6)に
機械加工を施すことによって前記耐熱領域(2)を形成
することを特徴とする内燃機関用Al合金製ピストンの
製造方法。
2. When manufacturing an Al alloy piston having a heat-resistant region (2) that is subjected to high-temperature thermal shock during operation of an internal combustion engine, and a main region (3) connected to the heat-resistant region (2), A for piston having the same composition as the main region (3)
Pure Al in the heat-resistant region forming part (6) of the cast alloy (5)
Is added to the heat-resistant region forming part (6), and then the heat-resistant region forming part (6) is locally melt-alloyed to alloy pure Al, and then the heat-resistant region forming part (6) is machined. A method for manufacturing an Al alloy piston for an internal combustion engine, characterized in that the heat resistant region (2) is formed by applying the piston.
JP3008507A 1991-01-28 1991-01-28 Al alloy piston for internal combustion engine and its manufacture Pending JPH051622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3008507A JPH051622A (en) 1991-01-28 1991-01-28 Al alloy piston for internal combustion engine and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3008507A JPH051622A (en) 1991-01-28 1991-01-28 Al alloy piston for internal combustion engine and its manufacture

Publications (1)

Publication Number Publication Date
JPH051622A true JPH051622A (en) 1993-01-08

Family

ID=11695040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3008507A Pending JPH051622A (en) 1991-01-28 1991-01-28 Al alloy piston for internal combustion engine and its manufacture

Country Status (1)

Country Link
JP (1) JPH051622A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963038A (en) * 1988-09-29 1990-10-16 Nippon Seiko Kabushiki Kaisha Linear guide apparatus with protector
DE10029810A1 (en) * 2000-06-16 2001-12-20 Mahle Gmbh Piston for diesel engine; has steel base with combustion mould and has thermal sprayed NiCrAl, CoCrAl or FeCrAl alloy coating, which is thicker at mould edge
WO2007012373A1 (en) * 2005-07-26 2007-02-01 Federal-Mogul Nürnberg GmbH Method of producing a piston for an internal combustion engine and piston for an internal combustion engine
WO2013144072A1 (en) * 2012-03-28 2013-10-03 Mahle International Gmbh Method for producing an aluminum piston

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963038A (en) * 1988-09-29 1990-10-16 Nippon Seiko Kabushiki Kaisha Linear guide apparatus with protector
DE10029810A1 (en) * 2000-06-16 2001-12-20 Mahle Gmbh Piston for diesel engine; has steel base with combustion mould and has thermal sprayed NiCrAl, CoCrAl or FeCrAl alloy coating, which is thicker at mould edge
US6877473B2 (en) 2000-06-16 2005-04-12 Mahle Gmbh Diesel engine piston
WO2007012373A1 (en) * 2005-07-26 2007-02-01 Federal-Mogul Nürnberg GmbH Method of producing a piston for an internal combustion engine and piston for an internal combustion engine
WO2013144072A1 (en) * 2012-03-28 2013-10-03 Mahle International Gmbh Method for producing an aluminum piston

Similar Documents

Publication Publication Date Title
KR100294899B1 (en) A movable wall member in the form of an exhaust valve spindle or a piston in an internal combustion engine
US6443211B1 (en) Mettallurgical bonding of inserts having multi-layered coatings within metal castings
JPH0337024B2 (en)
JPH051622A (en) Al alloy piston for internal combustion engine and its manufacture
JPS60121254A (en) Composite cylinder liner
US5671710A (en) Pistons for internal combustion engines and method of manufacturing same
JPH0235021B2 (en) FUKUGOSHIRINDAARAINAA
JP3847028B2 (en) Piston for internal combustion engine and method for manufacturing the same
JPS59213939A (en) Piston made of aluminum alloy of direct injection diesel engine
JP2613599B2 (en) Piston and method of manufacturing the same
US5013610A (en) Heat resisting member reinforced locally by an inorganic fiber and a productive method of the same
US11560610B2 (en) Copper alloy for valve seats
US7770291B2 (en) Internal combustion engine component and method for the production thereof
JPH0470384B2 (en)
JP3258570B2 (en) Marine composite cylinder liner
EP0447701B1 (en) Reinforced heat resisting member and production method
JP2000073852A (en) Aluminum alloy cylinder block and its manufacture
JPH01232153A (en) Piston for internal combustion engine
JPH11236852A (en) Large diesel engine liner
JPS60138051A (en) Heat resistant cast iron
JPH02115354A (en) Engine parts made of aluminum alloy and its production
JPH01321076A (en) Method of preventing crack of cylinder head
JPH03149B2 (en)
JPH0570879A (en) Connecting rod for internal combustion engine
JPH0559994B2 (en)