JPH0337024B2 - - Google Patents

Info

Publication number
JPH0337024B2
JPH0337024B2 JP57219890A JP21989082A JPH0337024B2 JP H0337024 B2 JPH0337024 B2 JP H0337024B2 JP 57219890 A JP57219890 A JP 57219890A JP 21989082 A JP21989082 A JP 21989082A JP H0337024 B2 JPH0337024 B2 JP H0337024B2
Authority
JP
Japan
Prior art keywords
piston
thermal
thermal shock
die casting
remelting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57219890A
Other languages
Japanese (ja)
Other versions
JPS59108849A (en
Inventor
Haratsugu Koyama
Tamio Shinosawa
Masahiro Gunichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57219890A priority Critical patent/JPS59108849A/en
Publication of JPS59108849A publication Critical patent/JPS59108849A/en
Publication of JPH0337024B2 publication Critical patent/JPH0337024B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0603Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0675Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston the combustion space being substantially spherical, hemispherical, ellipsoid or parabolic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0636Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston the combustion space having a substantially flat and horizontal bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

【発明の詳細な説明】 本発明は内燃機関用ピストンに関する。[Detailed description of the invention] The present invention relates to a piston for an internal combustion engine.

従来、内燃機関用ピストン材料には、アルミニ
ウム合金が広く使用されている。これはアルミニ
ウム合金が軽量かつ熱伝導性に優れ、また軽合金
の中では耐熱性に優れているなど、ピストン材料
として適した性質を有しているためである。
Conventionally, aluminum alloys have been widely used as piston materials for internal combustion engines. This is because aluminum alloys are lightweight, have excellent thermal conductivity, and have excellent heat resistance among light alloys, making them suitable as piston materials.

アルミニウム合金製ピストンは、金型鋳造法、
溶湯鍛造法熱間鍛造法などによつて製造される
が、一般的には、安価な金型鋳造法にり製造され
るものが多い。
Aluminum alloy pistons are manufactured by die casting method,
Although they are manufactured by molten metal forging, hot forging, etc., they are generally manufactured by the inexpensive die casting method.

溶湯鍛造法、熱間鍛造法はコストが高いため、
金型鋳造品では耐久性を満足できない高負荷機関
用に限つて採用される。
Molten metal forging method and hot forging method are expensive, so
It is used only for high-load engines where the durability cannot be met with die-cast products.

しかし、最近では、機関の高出力化、ターボチ
ヤージヤーの搭載、あるいは直接噴射式機関の採
用など、ピストンとりわけピストンヘツド部の熱
負荷が増大する傾向にあり、ピストンヘツド部の
熱亀裂・溶損といつた不具合を発生しやすい傾向
にある。このため、高価ではあるが、溶湯鍛造法
や熱間鍛造法の採用傾向が強まつている。
However, in recent years, as engines have increased in output, installed turbochargers, and adopted direct injection engines, the heat load on the piston, especially the piston head, has tended to increase, resulting in thermal cracks and melting of the piston head. There is a tendency for defects that result in losses to occur. For this reason, there is an increasing tendency to adopt molten metal forging methods and hot forging methods, although they are expensive.

ピストンにおいて、耐久性の点から特に重要な
のは、燃焼室のエツジ部で、この部分が主にホツ
トスポツトとなつて、高い熱応力を発生し熱亀裂
に結び付く不具合が多い。
In a piston, the edge part of the combustion chamber is particularly important from the viewpoint of durability, and this part mainly becomes a hot spot, which generates high thermal stress and often causes problems that lead to thermal cracks.

前述のような過酷な使用条件で使用されるピス
トンでは、エツジ部以外の部位の耐久性は、金型
鋳造品で問題ないにもかかわらず、エツジ部だけ
の耐久性不足から、高価な溶湯鍛造法や熱間鍛造
法を採用せざるを得ない場合がある。
For pistons that are used under the harsh operating conditions mentioned above, the durability of parts other than the edges is fine with die casting, but due to the lack of durability of only the edges, expensive molten metal forging is required. In some cases, it may be necessary to use a hot forging method or a hot forging method.

このための対策として、エツジ部だけに、耐熱
衝撃・耐熱疲労性に優れた、例えば黄銅、ステン
レス鋼などの材料を、金型鋳造された本体に鋳ぐ
るんだり、接合したものが提案されているが、重
量増加、信頼性不足、高コストなどの点で、実用
性に劣る欠点がある。
As a countermeasure for this, it has been proposed that a material with excellent thermal shock and thermal fatigue resistance, such as brass or stainless steel, be cast or bonded to the die-cast body only at the edges. However, they have drawbacks such as increased weight, lack of reliability, and high cost, which make them less practical.

本発明は、ピストンの製造法として、高価な溶
湯鍛造法や熱間鍛造法によらず、通常の金型鋳造
法で製造され、低コストかつ信頼性に優れ、ピス
トンヘツド部などの特に要求される部分のみに対
し、部分的に耐熱衝撃・耐熱疲労性を強化したピ
ストンの提供を目的とする。
The present invention is a piston manufacturing method that does not require expensive molten metal forging or hot forging, but is manufactured using a normal die casting method, is low cost, has excellent reliability, and is suitable for use in particularly required areas such as the piston head. The purpose of this invention is to provide a piston that has partially strengthened thermal shock resistance and thermal fatigue resistance.

このような目的は、金型鋳造にて製造したアル
ミニウム合金ピストンにおいて、ピストンヘツド
部のホツトスポツト部やエツジ部を、電子ビー
ム、レーザ、プラズマ、TIGアーク等の高密度エ
ネルギー加熱源を用いて、部分的に急速再溶融・
急冷して組織を微細化させ、耐熱衝撃・耐熱疲労
性を向上させたことを特徴とする内燃機関用ピス
トンによつて達成される。
For this purpose, the hot spots and edges of the piston head of an aluminum alloy piston manufactured by die casting are partially heated using a high-density energy heating source such as an electron beam, laser, plasma, or TIG arc. Rapid remelting and
This is achieved by a piston for an internal combustion engine, which is characterized by rapid cooling to refine the structure and improve thermal shock resistance and thermal fatigue resistance.

本発明に用いるアルミニウム合金は、
JISAC8A、AC8B、AC8Cなど、ピストン用とし
て用いられるものであれば、いずれの合金でもよ
い。
The aluminum alloy used in the present invention is
Any alloy used for pistons, such as JISAC8A, AC8B, and AC8C, may be used.

次に部分的に急速再溶融・急冷する対象となる
ホツトスポツト部について説明する。この例を第
1図ないし第3図に示す。
Next, a hot spot portion to be partially rapidly remelted and rapidly cooled will be explained. Examples of this are shown in FIGS. 1-3.

第1図及び第2図は、直接噴射デイーゼル機関
用ピストンであつて、ピストン本体1は金型鋳造
されたアルミニウム合金製であり、ホツトスポツ
ト部2は、図中クロス斜線を付した部位でピスト
ンにおいて、耐熱衝撃・耐熱疲労性が特に要求さ
れる部位である。第3図は通常のデイーゼル機関
用ピストンのピストンヘツド部であり、やはりク
ロス斜線部位2がホツトスポツトとなる。
1 and 2 show a piston for a direct injection diesel engine, in which the piston body 1 is made of die-cast aluminum alloy, and the hot spot portion 2 is a cross-hatched area in the piston. This is a part where thermal shock resistance and thermal fatigue resistance are particularly required. FIG. 3 shows the piston head of a typical diesel engine piston, and the cross-hatched area 2 is the hot spot.

次に組織を微細化するための方法について説明
する。組織微細化のためには、前述のホツトスポ
ツト部(主にエツジ部)を、周辺への熱伝導を極
力少なくすべく、加熱エネルギーを局部的に集中
し、高速度で再溶融させて、その周辺部の温度が
上昇する前に加熱を停止することによつて、再溶
融部はその後周辺部によつて急速に熱を奪われ、
急冷(いわゆる自己冷却)される必要がある。
Next, a method for refining the structure will be explained. In order to refine the structure, heating energy is locally concentrated to re-melt the hot spots (mainly the edges) at a high speed in order to minimize heat conduction to the surrounding areas. By stopping the heating before the temperature of the remelting zone rises, the remelting zone will then rapidly lose heat to the surrounding zone,
It needs to be rapidly cooled (so-called self-cooling).

従つて、加熱源としては、局部的に高速度で加
熱できるものが必要であり、電子ビーム、レー
ザ、プラズマ、TIGアークなどの高密度エネルギ
ー加熱源が適している。
Therefore, a heating source that can locally heat at high speed is required, and high-density energy heating sources such as electron beams, lasers, plasmas, and TIG arcs are suitable.

以下添付図面に基づいて本発明の実施例を説明
する。
Embodiments of the present invention will be described below based on the accompanying drawings.

実施例 1 JISAC8A合金を溶解し、金型鋳造法により
φ120mm×50mmのアルミニウム合金を作成し、た。
これをφ100mm×5mmの円板状に機械加工し、そ
の中心部を交流TIG電源を用いて、40Aにて中心
部周囲を一周させるTIGアーク法によつて、再溶
融・急冷処理を行つた。
Example 1 JISAC8A alloy was melted and an aluminum alloy with a diameter of 120 mm x 50 mm was produced by die casting.
This was machined into a disk shape of φ100 mm x 5 mm, and its center was remelted and rapidly cooled by the TIG arc method in which the center was circled around the center at 40 A using an AC TIG power source.

ついで、これをT7熱処理後機械加工して、第
4図に示すような熱衝撃試験片に加工した。
This was then subjected to T7 heat treatment and then machined into a thermal shock test piece as shown in FIG.

再溶融・急冷処理により、中心部のφ20mmの範
囲は、第5図に示すような微細化した組織を得
た。比較のために、金型鋳造後従来のT7熱処理
した材料、及び、溶湯鍛造材の組織を第6図、第
7図に示す。組織の微細化度は金型鋳造材<溶湯
鍛造材<「金型鍛造+TIGアーク再溶融・急冷材」
の順であつた。
By remelting and quenching, a fine structure as shown in FIG. 5 was obtained in a 20 mm diameter area at the center. For comparison, the structures of a material subjected to conventional T7 heat treatment after die casting and a molten metal forging are shown in FIGS. 6 and 7. The degree of fineness of the structure is determined by mold casting material < molten metal forging material <"Mold forging + TIG arc remelting/quenching material"
The order was as follows.

次に、上記の試験法を用いて、加熱(プロパン
−酸素バーナ)−(加熱温度;350℃、加熱スピー
ド;11.5゜/sec)と冷却(水冷、水温18℃)のサ
イクルの繰り返しによる熱衝撃性試験を行つた。
Next, using the above test method, thermal shock was caused by repeating the cycle of heating (propane-oxygen burner) - (heating temperature: 350°C, heating speed: 11.5°/sec) and cooling (water cooling, water temperature 18°C). A sex test was conducted.

この試験により、中心部の穴より亀裂が発生
し、拡大する。この試験結果を第8図に示す。
As a result of this test, a crack starts from the hole in the center and expands. The test results are shown in FIG.

亀裂が発生するまでの熱衝撃回数は、金型鋳造
材<溶湯鍛造材<「金型鋳造+TIGアーク再溶
融・急冷材」の順であり、前述の顕微鏡組織の微
細化度に対応した結果が得られた。
The number of thermal shocks until cracks occur is in the order of mold casting material < molten metal forging material <"mold casting + TIG arc remelting/quenching material", and the results correspond to the degree of microscopic structure refinement mentioned above. Obtained.

実施例 2 JISAC8A合金により、φ105mm、噴口部径φ38
mmの直接噴射デイーゼル機関用ピストンを金型鋳
造法により鋳造した。
Example 2 Made of JISAC8A alloy, φ105mm, nozzle diameter φ38
A mm direct injection diesel engine piston was cast by die casting method.

このピストンの噴口部上部を、交流TIG電源を
用い、平均電流40AとしたTIGアーク法により、
最表面の局部再溶融・急冷処理を実施した。
The upper part of the nozzle of this piston was connected to the TIG arc method using an AC TIG power source with an average current of 40A.
Localized remelting and rapid cooling of the outermost surface was performed.

この処理後T7熱処理を行い、機械加工により
外径φ100mm、噴口部径φ40mmのピストンを作成し
た。このピストンでは、噴口部は径でφ53mmま
で、噴口部内は奥行きで上部より15mmの深さま
で、実施例1の第5図のような組織微細化部が得
られた。
After this treatment, T7 heat treatment was performed, and a piston with an outer diameter of 100 mm and a nozzle diameter of 40 mm was produced by machining. In this piston, the diameter of the nozzle part was up to 53 mm, and the inside of the nozzle part had a depth of 15 mm from the top, and a microstructured part as shown in FIG. 5 of Example 1 was obtained.

このピストンを2.2の直接噴射式デイーゼル
機関に装着し、「4800rpm×全負荷×20分」と
「アイドリング×10分」のサイクルの繰り返しに
よる耐久試験に供した。
This piston was installed in a 2.2 direct injection diesel engine and subjected to a durability test by repeating the cycles of ``4800 rpm x full load x 20 minutes'' and ``idling x 10 minutes''.

この試験の結果、前述の再溶融・急冷処理した
ピストンは、500時間までピストンに何らトラブ
ルは発生しなかつた。
As a result of this test, the piston that had undergone the remelting and quenching treatment described above did not experience any trouble for up to 500 hours.

一方、再溶融・急冷処理を実施例しない金型鋳
造ピストンは、同一の耐久試験条件で試験して、
300〜400時間で噴口部のホツトスポツト部に、熱
亀裂が多数観察された。
On the other hand, mold-cast pistons that were not subjected to remelting or quenching were tested under the same durability test conditions.
After 300 to 400 hours, many thermal cracks were observed in the hot spot area of the nozzle.

以上から明らかなように、本発明にかかるピス
トンは、高価な溶湯鍛造法や熱間鍛造法によるこ
となく、それらと同等以上の耐熱衝撃・耐熱疲労
性を有し、他材質の鋳ぐるみや接合により製造し
たピストンよりも、はるかに軽量で信頼性が高
く、コスト的にも有利であるという利点がある。
As is clear from the above, the piston according to the present invention has thermal shock resistance and thermal fatigue resistance equal to or higher than those of the expensive molten metal forging method or hot forging method, and can be used for castings and joints made of other materials. It has the advantage of being much lighter, more reliable, and more cost-effective than pistons manufactured by.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は直接噴射デイーゼル機関用
ピストンの断面図、第3図は通常のデイーゼル機
関用ピストンの断面図、第4図は熱衝撃試験片を
示す図、第5図は本発明にかかるAC8A合金の
「合金鋳造+再溶融・急冷材」の顕微鏡組織、第
6図はAC8A合金金型鋳造材の顕微鏡組織、第7
図は溶湯鍛造材の顕微鏡組織、第8図は熱衝撃試
験結果を示す図である。 1……ピストン本体、2……ホツトスポツト
部。
Figures 1 and 2 are cross-sectional views of a piston for direct injection diesel engines, Figure 3 is a cross-sectional view of a conventional piston for diesel engines, Figure 4 is a diagram showing a thermal shock test piece, and Figure 5 is a view of the present invention. Figure 6 shows the microscopic structure of the AC8A alloy mold casting material, and Figure 7 shows the microscopic structure of the AC8A alloy mold casting material.
The figure shows the microscopic structure of the molten forged material, and FIG. 8 shows the results of the thermal shock test. 1...Piston body, 2...Hot spot portion.

Claims (1)

【特許請求の範囲】[Claims] 1 金型鋳造にて製造したアルミニウム合金ピス
トンにおいて、ピストンヘツド部のホツトスポツ
ト部やエツジ部を、部分的に急速再溶融・急冷し
て組織を微細化させ、耐熱衝撃・耐熱疲労性を向
上させたことを特徴とする内燃機関用ピストン。
1. In aluminum alloy pistons manufactured by die casting, the hot spots and edges of the piston head are partially rapidly remelted and rapidly cooled to refine the structure and improve thermal shock resistance and thermal fatigue resistance. A piston for an internal combustion engine characterized by:
JP57219890A 1982-12-14 1982-12-14 Piston for internal-combustion engine Granted JPS59108849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57219890A JPS59108849A (en) 1982-12-14 1982-12-14 Piston for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57219890A JPS59108849A (en) 1982-12-14 1982-12-14 Piston for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS59108849A JPS59108849A (en) 1984-06-23
JPH0337024B2 true JPH0337024B2 (en) 1991-06-04

Family

ID=16742646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57219890A Granted JPS59108849A (en) 1982-12-14 1982-12-14 Piston for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59108849A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663567B2 (en) * 1985-03-19 1994-08-22 トヨタ自動車株式会社 Aluminum piston
JPH08951B2 (en) * 1985-04-22 1996-01-10 マツダ株式会社 Method for manufacturing aluminum alloy member
JPS6335760A (en) * 1986-07-29 1988-02-16 Kobe Steel Ltd Manufacture of aluminum material excellent in resistance to heat and wear
JPS63255550A (en) * 1987-04-14 1988-10-21 Hino Motors Ltd Piston of engine
JP2701376B2 (en) * 1988-10-24 1998-01-21 いすゞ自動車株式会社 Aluminum piston and manufacturing method thereof
BR9204730A (en) * 1992-12-23 1994-06-28 Metal Leve Sa Piston with reinforcement insert
DE4340267B4 (en) * 1993-11-26 2007-08-02 Mahle Gmbh Light metal piston with a combustion bowl
DE10029810A1 (en) * 2000-06-16 2001-12-20 Mahle Gmbh Piston for diesel engine; has steel base with combustion mould and has thermal sprayed NiCrAl, CoCrAl or FeCrAl alloy coating, which is thicker at mould edge
DE102005034905A1 (en) * 2005-07-26 2007-02-01 Federal-Mogul Nürnberg GmbH Method for producing a piston for an internal combustion engine and pistons for an internal combustion engine
DE102007044696A1 (en) 2007-06-29 2009-01-08 Ks Kolbenschmidt Gmbh Melt-treated bowl rim of a piston combustion bowl
DE102012212791B4 (en) 2012-07-20 2014-02-27 Federal-Mogul Nürnberg GmbH Method for producing a piston for an internal combustion engine
JP6048116B2 (en) * 2012-12-19 2016-12-21 いすゞ自動車株式会社 Piston manufacturing method for internal combustion engine and piston manufacturing apparatus for internal combustion engine
EP2862648A1 (en) * 2013-10-18 2015-04-22 Siemens Aktiengesellschaft partly remelting of cast components and cast components
RU2550287C1 (en) * 2013-12-30 2015-05-10 Федеральное государственное бюджетное учреждение науки Институт механики им. Р.Р. Мавлютова Уфимского научного центра Российской академии наук Piston with anti-cavitation surface for fuel metering device
CN104028984B (en) * 2014-06-10 2016-09-14 山东滨州渤海活塞股份有限公司 Combustion chamber throat remelting hardening method for making piston
JP6701726B2 (en) * 2015-12-25 2020-05-27 いすゞ自動車株式会社 Internal combustion engine piston, internal combustion engine, and method of manufacturing internal combustion engine piston
CN108465911A (en) * 2018-04-13 2018-08-31 东风商用车有限公司 A kind of Diesel Engine Aluminium Piston aditus laryngis remelting special equipment

Also Published As

Publication number Publication date
JPS59108849A (en) 1984-06-23

Similar Documents

Publication Publication Date Title
JPH0337024B2 (en)
US6691666B1 (en) Multipart cooled piston for a combustion engine and method for manufacture thereof
US6244161B1 (en) High temperature-resistant material for articulated pistons
JP2016509152A (en) Sputter control of laser welding of monolite piston
JPS5831464B2 (en) Internal combustion engine piston structure
US4709621A (en) Internal combustion engine piston and a method of producing the same
JPS5853185B2 (en) Piston for internal combustion engine
CA2028713C (en) Polymetallic piston-cylinder configuration for internal combustion engines
CN213574386U (en) Steel piston of cooling oil cavity of groove type heat dissipation structure
JP2659636B2 (en) Method of forming hollow ring bearing for piston for diesel engine
JP3847028B2 (en) Piston for internal combustion engine and method for manufacturing the same
JPH051622A (en) Al alloy piston for internal combustion engine and its manufacture
JP2613599B2 (en) Piston and method of manufacturing the same
JPH0215867A (en) Manufacture of aluminum alloy-made cylinder head
JPH02301650A (en) Piston for internal combustion engine and its manufacturing method
JP2949882B2 (en) Manufacturing method of combustion chamber
JPS62170488A (en) Cast iron piston internal combustion engine and its production
JPH08210178A (en) Linear integrated cylinder block and manufacture thereof
JPS6350650A (en) Piston for internal combustion engine
JPH0422052Y2 (en)
JPH0320521Y2 (en)
JPH02115555A (en) Friction welded body of ceramics-metal and ceramics-inserted piston made thereof
KR19980022479A (en) Method for manufacturing piston of car
JPS62103424A (en) Manufacture of rotor housing for rotary piston engine
JPH0372831B2 (en)