JPH05162213A - Production equipment of three-dimensional structure - Google Patents

Production equipment of three-dimensional structure

Info

Publication number
JPH05162213A
JPH05162213A JP3352272A JP35227291A JPH05162213A JP H05162213 A JPH05162213 A JP H05162213A JP 3352272 A JP3352272 A JP 3352272A JP 35227291 A JP35227291 A JP 35227291A JP H05162213 A JPH05162213 A JP H05162213A
Authority
JP
Japan
Prior art keywords
ultraviolet
display panel
crystal display
liquid crystal
resin liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3352272A
Other languages
Japanese (ja)
Inventor
Hiroyuki Machida
博之 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3352272A priority Critical patent/JPH05162213A/en
Publication of JPH05162213A publication Critical patent/JPH05162213A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To obtain a small-sized, low cost, highly accurate, highly reliable and safe three-dimensional structure, which makes short-time working possible. CONSTITUTION:A collimator lens 2 is provided on the optical path irradiated from an ultraviolet beam source 1. A transmission type liquid crystal display panel 3 is arranged to the traveling direction of parallel luminous flux 2a passed through the collimator lens 2. Below the transmission type liquid crystal display panel 3, an ultraviolet-curing resin liquid tank 4, in which ultraviolet-curing resin liquid 5 is filled. Within the ultraviolet-curing resin liquid tank 4, a table 6, which is vertically movable with a table lifting device 8, is arranged through a table supporting arm 7. The device concerned is controlled with a controller 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金型を用いず、かつ複
雑な切削加工を行わずに三次元構造物を作製する三次元
構造物の製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional structure manufacturing apparatus for manufacturing a three-dimensional structure without using a die and without complicated cutting.

【0002】[0002]

【従来の技術】従来、三次元構造物を金型を使用したり
複雑な切削加工をすることなく作製するために、図5に
示す様に液状の光硬化樹脂35をレーザー光線にて凝固
させる加工法が知られている。上記加工法は、三次元構
造物を平面的にスライスした等高線データを作成し、こ
の二次元データに基づき、X−Y走査装置32によりレ
ーザー光線を走査するとともに、必要に応じてレーザー
光線の照射をON/OFFさせることにより光硬化樹脂
35を凝固させる。この時、X−Y走査方法としては、
ガルバノミラーを用いた方式,レーザー光線を光ファイ
バー31に導きその先端をX−Y移動装置にて移動させ
る方式およびレーザー発振器本体30をX−Y移動装置
32にて移動させる方式が主である。そして、凝固され
た光硬化樹脂35の上に次のスライスした等高線データ
を基に上記と同様に光硬化樹脂35を凝固させ積層させ
る。以上の手順を繰り返すことにより、三次元構造物を
作製しようとするものである。
2. Description of the Related Art Conventionally, in order to manufacture a three-dimensional structure without using a mold or complicated cutting, a process of solidifying a liquid photocurable resin 35 with a laser beam as shown in FIG. The law is known. In the processing method, contour line data obtained by planely slicing a three-dimensional structure is created, and based on the two-dimensional data, the XY scanning device 32 scans the laser beam and, when necessary, turns on the laser beam irradiation. By turning on / off, the photocurable resin 35 is solidified. At this time, as an XY scanning method,
A method using a galvanometer mirror, a method in which a laser beam is guided to an optical fiber 31 and its tip is moved by an XY moving device, and a method in which the laser oscillator main body 30 is moved by an XY moving device 32 are mainly used. Then, based on the next sliced contour line data, the photocurable resin 35 is coagulated and laminated on the coagulated photocurable resin 35 in the same manner as above. By repeating the above procedure, a three-dimensional structure is produced.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来の加工法においては、レーザー光線をX−Y方向に走
査させ、尚かつ光硬化樹脂を凝固させるためにその走査
速度は低速であることが要求され、そのために加工時間
が長くなってしまうという欠点がある。また、X−Y走
査装置を必要とするため装置全体が非常に大きく、高価
なものとなってしまうとともに、X−Y走査装置は移動
部が存在するため部品の消耗,劣化による走査精度およ
び信頼性の低下が発生するという欠点がある。さらに、
可動部の人体への接触による危険性があるという欠点を
有していた。
However, in the above-mentioned conventional processing method, the scanning speed is required to be low in order to scan the laser beam in the XY direction and to solidify the photocurable resin. However, there is a disadvantage in that the processing time becomes long. Further, since the XY scanning device is required, the entire device becomes very large and expensive, and the moving accuracy of the XY scanning device causes the scanning accuracy and reliability due to the consumption and deterioration of parts. There is a drawback that the deterioration of sex occurs. further,
It has a drawback that there is a danger of the movable part coming into contact with the human body.

【0004】因って、本発明は前記加工法における欠点
に鑑みて開発されもので、小型,低価格でありながら、
尚かつ短時間加工が可能であり、可動部をなくすことに
より高精度・高信頼性・安全な三次元構造物の製造装置
を提供しようとするものである。
Therefore, the present invention was developed in view of the drawbacks in the above-mentioned processing method, and although it is small in size and low in price,
Further, it is intended to provide a highly accurate, highly reliable and safe three-dimensional structure manufacturing apparatus capable of machining in a short time and eliminating a moving part.

【0005】[0005]

【課題を解決するための手段】本発明は、紫外線光源
と、紫外線の透過部・遮光部を可変的に生成する手段
と、三次元CADデータから等高線データを算出して前
記透過部・遮光部を可変的に生成する手段を制御するコ
ントローラとから構成したものである。
According to the present invention, an ultraviolet light source, a means for variably generating an ultraviolet light transmitting portion and a light shielding portion, and contour line data calculated from three-dimensional CAD data are used for the transmitting portion and the light shielding portion. And a controller for controlling the means for variably generating the.

【0006】[0006]

【作用】本発明では、紫外線硬化樹脂を硬化させるため
の光線を可動部による走査作業をすることなく照射する
ことができる。
According to the present invention, the light beam for curing the ultraviolet curable resin can be irradiated without performing the scanning operation by the movable portion.

【0007】[0007]

【実施例1】図1〜図3は本実施例を示し、図1は製造
装置の概略構成図、図2は透過型液晶ディスプレイパネ
ルの平面図、図3は生成された三次元構造物の斜視図で
ある。紫外線光源1から照射される光路上に光束1aが
平行光となるようにコリメートレンズ2を設け、コリメ
ートレンズ2からの平行光束2aの進行方向に透過型液
晶ディスプレイパネル3を配置する。透過型液晶ディス
プレイパネル3を通過した光束3aの照射光には、紫外
線硬化樹脂液槽4が設置されており、紫外線硬化樹脂液
槽4の内部には紫外線硬化樹脂液5が充填されている。
また、紫外線硬化樹脂液槽4の内部にはテーブル6が設
置されており、テーブル6はテーブル支えアーム7を介
してテーブル昇降装置8により上下動できるようになっ
ている。コントローラ10は三次元CADデータから等
高線データを算出すると共にこれらの制御の全てを司っ
ている。
Embodiment 1 FIGS. 1 to 3 show the present embodiment, FIG. 1 is a schematic configuration diagram of a manufacturing apparatus, FIG. 2 is a plan view of a transmissive liquid crystal display panel, and FIG. 3 is a three-dimensional structure produced. It is a perspective view. A collimator lens 2 is provided on the optical path emitted from the ultraviolet light source 1 so that the light flux 1a becomes parallel light, and a transmissive liquid crystal display panel 3 is arranged in the traveling direction of the parallel light flux 2a from the collimator lens 2. An ultraviolet curable resin liquid tank 4 is installed in the irradiation light of the light flux 3 a that has passed through the transmissive liquid crystal display panel 3, and the ultraviolet curable resin liquid tank 5 is filled with the ultraviolet curable resin liquid 5.
A table 6 is installed inside the ultraviolet curable resin liquid tank 4, and the table 6 can be moved up and down by a table elevating device 8 via a table support arm 7. The controller 10 calculates contour line data from three-dimensional CAD data and controls all of these controls.

【0008】図2に示す透過型液晶ディスプレイパネル
3は、画素11の集合により形成されており、それぞれ
の画素11単位で透過・遮光のシャッター的動作が可能
であり、透過・遮光は前記コントローラ10により制御
される。全ての画素11は、コントローラ10からの信
号がない場合は通常遮光状態にあり、誤って紫外線硬化
樹脂液5に紫外線を照射することのないようになってい
る。また、この透過型液晶ディスプレイパネル3は、明
暗の変化の著しいTNモード表示方式のものが好まし
い。そして、コントローラ10からの信号により、透過
型液晶ディスプレイパネル3には遮光部12と透過部1
3とが生成され、この時、平行光束2aは、透過部13
を通過した3aだけが紫外線硬化樹脂液5に照射される
こととなる。
The transmissive liquid crystal display panel 3 shown in FIG. 2 is formed of a set of pixels 11, and each pixel 11 can perform a shutter-like operation of transmission / shading. Controlled by. All the pixels 11 are normally in a light-shielding state when there is no signal from the controller 10, so that the ultraviolet curable resin liquid 5 is not accidentally irradiated with ultraviolet light. Further, it is preferable that the transmissive liquid crystal display panel 3 is of a TN mode display system in which the change in brightness is remarkable. Then, in response to a signal from the controller 10, the light-shielding portion 12 and the light-transmitting portion 1 are provided in the transmission liquid crystal display panel 3.
3 are generated, and at this time, the parallel light beam 2a is transmitted by the transmitting portion 13
Only the liquid 3a that has passed through is irradiated onto the ultraviolet curable resin liquid 5.

【0009】以上の構成から成る製造装置は、まずコン
トローラ10が三次元CADデータを指定されたピッチ
にて等高線状にスライスし、最下段部の二次元データを
算出する。そして、この二次元データに基づき透過型液
晶ディスプレイパネル3に対して制御信号を送信する。
透過型液晶ディスプレイパネル3は前述したように透過
部13と遮光部12とを前記二次元データと等価のパタ
ーンに生成する。さらに、コントローラ10はテーブル
6が紫外線硬化樹脂液5の液面よりも上記指定ピッチだ
け下降した位置に位置づけされるようテーブル昇降装置
8を駆動する。これにより、テーブル6の上部には指定
ピッチ厚の紫外線硬化樹脂液5が張られることになる。
In the manufacturing apparatus having the above-described structure, the controller 10 first slices the three-dimensional CAD data into contour lines at a designated pitch, and calculates the two-dimensional data of the lowermost stage. Then, the control signal is transmitted to the transmissive liquid crystal display panel 3 based on the two-dimensional data.
The transmissive liquid crystal display panel 3 generates the transmissive portion 13 and the light shielding portion 12 in a pattern equivalent to the two-dimensional data, as described above. Further, the controller 10 drives the table elevating device 8 so that the table 6 is positioned at a position lower than the liquid surface of the ultraviolet curable resin liquid 5 by the designated pitch. As a result, the ultraviolet curable resin liquid 5 having the specified pitch is spread on the table 6.

【0010】次に、紫外線光源1から照射された光束1
aはコリメートレンズ2により平行光束2aとなる。こ
の場合、光束を平行光とする目的は、透過型液晶ディス
プレイパネル3を光束が通過する際に液晶の特性上通過
角度により透過率が変化するため、中心部と周辺部の透
過率を一定に保つためである。平行光束2aは、透過型
液晶ディスプレイパネル3の透過部13と遮光部12と
により通過・遮光が決定される。すなわち、前記二次元
データに等価な光束3aとなり、光束3aはテーブル6
上の紫外線硬化樹脂液5に照射される。照射時間はピッ
チ厚,紫外線硬化樹脂液5の特性等により可変であり、
照射時間の制御はコントローラ10が司る。
Next, the luminous flux 1 emitted from the ultraviolet light source 1
The collimator lens 2 forms a parallel light beam 2a. In this case, the purpose of making the light flux parallel is that the light flux changes through the transmission type liquid crystal display panel 3 due to the passage angle due to the characteristics of the liquid crystal, so that the light transmittance of the central portion and the peripheral portion is kept constant. This is to keep it. The transmission / blocking of the parallel light flux 2a is determined by the transmissive part 13 and the light blocking part 12 of the transmissive liquid crystal display panel 3. That is, the luminous flux 3a equivalent to the two-dimensional data is obtained, and the luminous flux 3a is stored in the table 6
The ultraviolet curable resin liquid 5 above is irradiated. The irradiation time can be changed depending on the pitch thickness, the characteristics of the ultraviolet curable resin liquid 5, etc.
The controller 10 controls the irradiation time.

【0011】そして、紫外線硬化樹脂液5は指定ピッチ
厚にて二次元データと等価な形で凝固し、凝固層9が生
成される。この間、コントローラ10は次の一段上段の
等高線状二次元データの算出を行い待機状態にある。コ
ントローラ10は照射終了後、テーブル6を指定ピッチ
下降させ透過型液晶ディスプレイパネル3に対して次の
二次元データを送信する。以上の動作を必要回数だけ繰
り返すことにより、凝固層9は次々に積層され、図3に
示す三次元構造物が生成される。
Then, the ultraviolet curable resin liquid 5 is solidified in a form equivalent to the two-dimensional data at a designated pitch thickness, and a solidified layer 9 is formed. During this period, the controller 10 is in the standby state by calculating the next upper-level contour linear two-dimensional data. After the irradiation, the controller 10 lowers the table 6 by a designated pitch and transmits the following two-dimensional data to the transmissive liquid crystal display panel 3. By repeating the above operation a required number of times, the solidified layers 9 are laminated one after another, and the three-dimensional structure shown in FIG. 3 is generated.

【0012】本実施例によれば、装置全体のコンパクト
化が図れるとともに加工時間の短縮が図れる。
According to this embodiment, the entire apparatus can be made compact and the processing time can be shortened.

【0013】[0013]

【実施例2】図4は本実施例を示す概略構成図である。
本実施例は、前記実施例1におけるコリメートレンズ
2,透過型液晶ディスプレイパネル3およびコントロー
ラ10を廃止し、代わりにインクジェットプリンター2
1,透明フィルム22,拡大縮小光学系23およびコン
トローラ24にて構成した点が異なり、他の構成は同一
な構成部分から成るもので、同一構成部分には同一番号
を付してその説明を省略する。
Second Embodiment FIG. 4 is a schematic configuration diagram showing this embodiment.
In this embodiment, the collimator lens 2, the transmissive liquid crystal display panel 3 and the controller 10 in the first embodiment are eliminated, and the inkjet printer 2 is used instead.
1, the transparent film 22, the enlargement / reduction optical system 23, and the controller 24 are different, and the other configurations are composed of the same constituent parts, and the same constituent parts are designated by the same reference numerals and the description thereof is omitted. To do.

【0014】紫外線光源1から照射される光束1aの光
路上には、インクジェットプリンター21により遮光・
透過パターンが印刷された透明フィルム22が設置さ
れ、更にその先の光路上には拡大縮小光学系23が設置
されている。インクジェットプリンター21はコントロ
ーラ24により制御される。
The ink jet printer 21 shields the light beam 1a emitted from the ultraviolet light source 1 from the light path.
A transparent film 22 on which a transmission pattern is printed is installed, and an enlarging / reducing optical system 23 is installed on the optical path beyond that. The inkjet printer 21 is controlled by the controller 24.

【0015】以上の構成から成る製造装置は、まず、コ
ントローラ24が前記実施例1と同様に二次元データを
算出し、テーブル6を位置づける。そして、算出した二
次元データをインクジェットプリンター21に送信す
る。インクジェットプリンター21はデータに基づき透
明フィルムに印刷を行う。その時、インクが塗布された
部分は遮光部となり、塗布されなかった部分は透過部と
なる。その結果、二次元データに基づくパターンか生成
される。
In the manufacturing apparatus having the above structure, the controller 24 first calculates the two-dimensional data as in the first embodiment, and positions the table 6. Then, the calculated two-dimensional data is transmitted to the inkjet printer 21. The inkjet printer 21 prints on a transparent film based on the data. At that time, the portion to which the ink is applied becomes the light-shielding portion, and the portion not to be applied becomes the transmitting portion. As a result, a pattern based on the two-dimensional data is generated.

【0016】紫外線光源1から照射された光束1aは、
透明フィルム22を通過後、二次元データに相似した光
束に変形し拡大縮小光学系23に入光する。拡大縮小光
学系23は、入光した光束をコントローラ24からの指
令により拡大縮小させることが可能である。拡大縮小光
学系23から出射された光束23aは前記実施例1と同
様に紫外線硬化樹脂液5を凝固させる。次に、コントロ
ーラ24は、次の二次元データをインクジェットプリン
ター21に送信するとともに、テーブル6を1ピッチ下
降させる。インクジェットプリンター21は、前回の印
刷済みフィルムを廃棄すると同時に、新しいデータに基
づき印刷を行い光束1aの光路上に配置する。そして、
紫外線の照射を行う。以上の動作を必要回数だけ繰り返
すことにより、凝固層9は次々に積層されて三次元構造
物が生成される。
The light beam 1a emitted from the ultraviolet light source 1 is
After passing through the transparent film 22, it is transformed into a light beam similar to two-dimensional data and enters the enlargement / reduction optical system 23. The enlarging / reducing optical system 23 is capable of enlarging / reducing the incident light beam according to a command from the controller 24. The light beam 23a emitted from the enlargement / reduction optical system 23 solidifies the ultraviolet curable resin liquid 5 as in the first embodiment. Next, the controller 24 sends the next two-dimensional data to the inkjet printer 21 and lowers the table 6 by one pitch. The inkjet printer 21 discards the previously printed film and at the same time prints it based on new data and arranges it on the optical path of the light beam 1a. And
Irradiate with ultraviolet rays. By repeating the above operation a required number of times, the solidified layers 9 are laminated one after another to generate a three-dimensional structure.

【0017】本実施例によれば前記実施例1と同様な効
果が得られる。
According to this embodiment, the same effect as that of the first embodiment can be obtained.

【0018】[0018]

【発明の効果】以上説明した様に、本発明に係る三次元
構造物の製造装置によれば、複雑な駆動装置及び機構を
使用することなく二次元データに基づくパターンにて紫
外線の照射が可能であるように構成されているので、駆
動系移動に伴う時間のロスが発生しないため短時間にて
加工が出来る。また、駆動系が存在しないため装置全体
が非常にコンパクトに構成できる。さらに、駆動系の劣
化による精度低下が発生しないため信頼性が向上する。
また、駆動系の可動部が人体に接触する危険性がないた
め安全である等の種々の効果を有する。
As described above, according to the three-dimensional structure manufacturing apparatus of the present invention, it is possible to irradiate ultraviolet rays in a pattern based on two-dimensional data without using a complicated driving device and mechanism. Since it is configured as described above, there is no time loss due to the movement of the drive system, so that machining can be performed in a short time. Moreover, since there is no drive system, the entire apparatus can be made very compact. Further, the reliability is improved because the accuracy does not decrease due to the deterioration of the drive system.
Further, since there is no risk that the movable part of the drive system comes into contact with the human body, there are various effects such as safety.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating a first embodiment.

【図2】実施例1を示す平面図である。FIG. 2 is a plan view showing the first embodiment.

【図3】実施例1を示す斜視図である。FIG. 3 is a perspective view showing a first embodiment.

【図4】実施例2を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing a second embodiment.

【図5】従来例を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 紫外線光源 2 コリメートレンズ 3 透過型液晶ディスプレイパネル 4 紫外線硬化樹脂液槽 5 紫外線硬化樹脂液 6 テーブル 7 テーブル支えアーム 8 テーブル昇降装置 9 凝固層 10 コントローラ 1 Ultraviolet Light Source 2 Collimating Lens 3 Transmissive Liquid Crystal Display Panel 4 Ultraviolet Curing Resin Liquid Tank 5 Ultraviolet Curing Resin Liquid 6 Table 7 Table Support Arm 8 Table Lifting Device 9 Coagulation Layer 10 Controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 紫外線光源と、紫外線の透過部・遮光部
を可変的に生成する手段と、三次元CADデータから等
高線データを算出して前記透過部・遮光部を可変的に生
成する手段を制御するコントローラとから構成したこと
を特徴とする三次元構造物の製造装置。
1. An ultraviolet light source, means for variably generating an ultraviolet ray transmitting portion / light shielding portion, and means for variably generating the transmitting portion / light shielding portion by calculating contour line data from three-dimensional CAD data. An apparatus for manufacturing a three-dimensional structure, comprising a controller for controlling.
JP3352272A 1991-12-13 1991-12-13 Production equipment of three-dimensional structure Withdrawn JPH05162213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3352272A JPH05162213A (en) 1991-12-13 1991-12-13 Production equipment of three-dimensional structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3352272A JPH05162213A (en) 1991-12-13 1991-12-13 Production equipment of three-dimensional structure

Publications (1)

Publication Number Publication Date
JPH05162213A true JPH05162213A (en) 1993-06-29

Family

ID=18422928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3352272A Withdrawn JPH05162213A (en) 1991-12-13 1991-12-13 Production equipment of three-dimensional structure

Country Status (1)

Country Link
JP (1) JPH05162213A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103722745A (en) * 2013-12-29 2014-04-16 北京工业大学 Quick resin forming method based on LCD (liquid crystal display) selective regional light transmission principle
WO2018117351A1 (en) * 2016-12-23 2018-06-28 주식회사 레이 Lcd type 3d printer
CN109016499A (en) * 2018-07-17 2018-12-18 张梦如 A kind of 3D printing system based on Cloud Server
US10421217B2 (en) 2015-05-15 2019-09-24 Boe Technology Group Co., Ltd. 3D printing device and imaging system thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103722745A (en) * 2013-12-29 2014-04-16 北京工业大学 Quick resin forming method based on LCD (liquid crystal display) selective regional light transmission principle
US10421217B2 (en) 2015-05-15 2019-09-24 Boe Technology Group Co., Ltd. 3D printing device and imaging system thereof
WO2018117351A1 (en) * 2016-12-23 2018-06-28 주식회사 레이 Lcd type 3d printer
CN109016499A (en) * 2018-07-17 2018-12-18 张梦如 A kind of 3D printing system based on Cloud Server
CN109016499B (en) * 2018-07-17 2020-09-11 新沂市锡沂高新材料产业技术研究院有限公司 3D printing system based on cloud server

Similar Documents

Publication Publication Date Title
WO2015081756A1 (en) Photo-curing 3d printing device and imaging system thereof
KR100716472B1 (en) Device and method for correcting faults of panel
KR102484974B1 (en) Direct imaging exposure apparatus and direct imaging exposure method
EP4106978B1 (en) Method and apparatus for isotropic stereolithographic 3d printing with a variable speed and power hybrid light source
JP4669843B2 (en) Stereolithography apparatus and stereolithography method
GB2036369A (en) Sub-titling Cinematograph Films
JPH05162213A (en) Production equipment of three-dimensional structure
JPS61225012A (en) Formation of three-dimensional configuration
CN218020173U (en) 3D printing device capable of enlarging printing breadth
KR101083432B1 (en) Appratus for forming pattern for light guide plate using co2 laser
JPH06246839A (en) Optically shaping device
US3903527A (en) Method of photographic tracing and a projector for the application of said method
JP2912721B2 (en) 3D object formation method
JPS63141725A (en) Apparatus for forming three dimensional shape
CN217862803U (en) 3D printer
JPS61116320A (en) Three-dimensional shape forming device
US4926348A (en) Plotting apparatus using a light source moved on a photosensitive surface
JPH04305438A (en) Optical three-dimensional shaping method
JPH07232383A (en) Three-dimensional optical shaping method and apparatus
JPS6299753A (en) Formation of three-dimensional shape
JPH04247931A (en) Manufacture of solid resin model and apparatus therefor
US12122090B2 (en) Method and apparatus for isotropic stereolithographic 3D printing with a variable speed and power hybrid light source
JP3423029B2 (en) Stereolithography
JPH07108623A (en) Manufacture of composite optical element
JP2000233451A (en) Calibrating device for stereo lithographic equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311