JPH051611B2 - - Google Patents

Info

Publication number
JPH051611B2
JPH051611B2 JP59255347A JP25534784A JPH051611B2 JP H051611 B2 JPH051611 B2 JP H051611B2 JP 59255347 A JP59255347 A JP 59255347A JP 25534784 A JP25534784 A JP 25534784A JP H051611 B2 JPH051611 B2 JP H051611B2
Authority
JP
Japan
Prior art keywords
radiation
resist
layer
sensitive resin
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59255347A
Other languages
Japanese (ja)
Other versions
JPS61133626A (en
Inventor
Yoshihiko Hirai
Masaru Sasako
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59255347A priority Critical patent/JPS61133626A/en
Publication of JPS61133626A publication Critical patent/JPS61133626A/en
Publication of JPH051611B2 publication Critical patent/JPH051611B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、パターン形成方法とくに放射線感応
性樹脂を用いたパターン形成方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a pattern forming method, particularly a pattern forming method using a radiation-sensitive resin.

従来の技術 集積回路の高集積化・高密度化は、微細加工技
術の進歩により増大してきた。その最小加工線幅
も1μm程度となつてきており、これを達成する
ためには感光フイルムに、高開口レンズを有した
縮小投影法により紫外線露光する方法があげられ
る。しかし、感光フイルムの膜厚が厚い場合に
は、良好なパターン形成が不可能となる。
BACKGROUND TECHNOLOGY High integration and high density of integrated circuits have increased due to advances in microfabrication technology. The minimum processing line width has also become approximately 1 μm, and one way to achieve this is to expose the photosensitive film to ultraviolet light using a reduction projection method using a high aperture lens. However, if the photosensitive film is thick, it is impossible to form a good pattern.

この問題を解決するものとして2層あるいは3
層構造の種々の多層レジスト技術が提案されてい
る。2層構造の代表的な方法は、電子ビーム露光
を対象にしたPMMA共重合体/PMMAの組合わ
せ(例えば、エム・ハツツアキス著、真空科学技
術誌16巻,1984頁(1979年)(M.Hatzakis,J.
Vac.Sci.Technol.,vol.16,P.1984(1979)))、反
射防止膜ARC(例えば、ワイ.シー.リン他、真
空科学技術誌.1215頁(1983年)(Y.C.Lin et
ol,J.Voc.Sci.Technol,P.1215(1983)))などが
ある。一方、3層構造は平坦化した下層フイルム
上に中間層として無機層(例えば、ジエー.エ
ム.モラン他、真空科学技術誌、16巻、1620頁
(1979年)(J.M.Moran et ol,J,Voc.Sci.
Technol.vol.16P.1620(1979)))、低温で形成可能
なプラズマSiO2膜(例えば、ビー.シーリンス
キー他、アイビーエム テクニカル デイスクロ
ージヤー ブリテン、19巻、1214頁(1979年)
(B.Zielinski et ol,I B M Technical
Disclosure Bulletin,vol.19,P.1214(1979)))
や、スピン塗布可能なSOG膜(例えば、ジエー.
アール.ハバス、電気化学協会誌、広範要約集、
76−2 743頁(1976年)(J.R.Havas,J.
Electrochem.Soc.Extended Abstruct,76−2
P.743(1976)))を用いて、最上層のパターニング
されたレジストによつて中間層をエツチングした
後、中間層をエツチマスクによつて下層のフイル
ムをRIE等を用いてパターンを形成している。
Two or three layers can be used to solve this problem.
Various multilayer resist techniques with layered structures have been proposed. A typical method for creating a two-layer structure is the combination of PMMA copolymer/PMMA for electron beam exposure (for example, M. Hatsutsakis, Journal of Vacuum Science and Technology, Vol. 16, p. 1984 (1979) (M. Hatzakis, J.
Vac.Sci.Technol., vol.16, P.1984 (1979)), anti-reflective coating ARC (e.g., Y.C.Lin et al., Vacuum Science and Technology Journal, p.1215 (1983)) (YCLin et al.
ol, J.Voc.Sci.Technol, P.1215 (1983)). On the other hand, the three-layer structure has an inorganic layer as an intermediate layer on a flattened lower film (for example, J.M. Moran et al., Journal of Vacuum Science and Technology, Vol. 16, p. 1620 (1979) (J.M. Moran et al., J. Voc. .Sci.
Technol.vol.16P.1620 (1979)), plasma SiO 2 films that can be formed at low temperatures (e.g. B. Sielinski et al., IBM Technical Disclosure Bulletin, Vol. 19, p. 1214 (1979))
(B. Zielinski et ol, IBM Technical
Disclosure Bulletin, vol.19, P.1214 (1979))
or spin-coatable SOG films (e.g. G.I.
R. Havas, Journal of the Electrochemical Society, Extensive Abstract Collection,
76-2 p. 743 (1976) (JRHavas, J.
Electrochem.Soc.Extended Abstract, 76-2
P.743 (1976))), the intermediate layer is etched with the patterned resist on the top layer, and then a pattern is formed on the intermediate layer using an etch mask and the lower film using RIE etc. There is.

発明が解決しようとする問題点 以上の様に多種多様な多層レジスト法の報告が
なされており、それぞれ長所がある反面、コスト
の増加、スループツトの減少、プロセスの複雑化
につながるという欠点をもちあわせている。
Problems to be Solved by the Invention As mentioned above, a wide variety of multilayer resist methods have been reported, and while each has its advantages, it also has the disadvantages of increasing costs, reducing throughput, and complicating the process. ing.

又、単層レジスト法においては、膜厚が厚くな
ると解像度が低下し、垂直な断面形状が得られな
くなる欠点があることは周知である。
Furthermore, it is well known that the single-layer resist method has the drawback that as the film thickness increases, the resolution decreases and a vertical cross-sectional shape cannot be obtained.

問題を解決するための手段 本発明は、以上の様は問題点を解決する為に、
2層レジスト構造において、下層レジストを完全
に感光性を消失させるほど感光させずすなわち現
像液に溶け難い程度まで感光させた後、同じ材料
の上層レジストを形成して任意の形状に選択的に
露光・感光させその後一連したウエツト現像方式
によつてパターン形成する方法を提供するもので
ある。
Means for Solving the Problems The present invention aims to solve the problems as described above.
In a two-layer resist structure, the lower resist is exposed to light without completely losing its photosensitivity, that is, to the extent that it is difficult to dissolve in a developer, and then an upper resist of the same material is formed and selectively exposed in an arbitrary shape. - It provides a method of forming a pattern by exposure to light and then a series of wet development methods.

作 用 本発明は、下層レジストをあらかじめ現像液に
溶け難い範囲で感光させておく事により、上層レ
ジストを形成した後の任意形状の選択的な露光後
に、下層レジストの感光反応が増進された形とな
つて、一連したウエツト現像によつて厚い膜に対
しても垂直性のよい微細パターンを形成できる。
Function The present invention provides a form in which the photoresist reaction of the lower layer resist is enhanced after selective exposure in an arbitrary shape after forming the upper layer resist by exposing the lower layer resist in advance to a range in which it is difficult to dissolve in a developer. Therefore, a fine pattern with good perpendicularity can be formed even in a thick film by a series of wet developments.

実施例 本発明の一実施例を第1図を用いて説明する。
基板1上に第1層目の放射線感応性樹脂としてポ
ジ型感光性樹脂を(以後レジスト)2を塗布し、
ソフトベーキングを施こす(第1図a)。次に第
1層目レジスト2に光3を全面に照射する事によ
つて感光したレジスト2−aにする。この場合レ
ジスト2−aは感光反応によつて感応基の濃度
が、感光前の値M0からM1に減少する(第1図
b)。
Embodiment An embodiment of the present invention will be described with reference to FIG.
A positive photosensitive resin (hereinafter referred to as resist) 2 is applied as a first layer of radiation-sensitive resin on the substrate 1,
Apply soft baking (Figure 1a). Next, the entire surface of the first layer resist 2 is irradiated with light 3 to form a photosensitive resist 2-a. In this case, the concentration of sensitive groups in the resist 2-a decreases from the value M0 before exposure to M1 due to the photosensitive reaction (FIG. 1b).

次に、レジスト2−aの表面にフツ素系ガスプ
ラズマ4によつてレジスト2−a表面に感光反応
に変化が生じない程度に変質層を作る(第1図
c)。続いて第1層目のレジスト2と同じ材料の
レジストを第1層目のレジスト上に塗布し、第2
層目のレジスト5とする。この際、前の表面処理
によつて、第1層目と第2層目のレジスト2−a
と5は混合する事なく分離した形で積層形成がで
きる(第1図d)。
Next, an altered layer is formed on the surface of the resist 2-a by fluorine-based gas plasma 4 to such an extent that no change occurs in the photosensitive reaction on the surface of the resist 2-a (FIG. 1c). Next, a resist made of the same material as the first layer resist 2 is coated on the first layer resist, and a second layer resist 2 is coated on top of the first layer resist 2.
This is the resist layer 5. At this time, due to the previous surface treatment, the first and second layer resists 2-a
and 5 can be laminated separately without mixing (Fig. 1d).

次にパターンを有したマスク6によりクロム部
7以外に光8を用いて選択的に第2層目のレジス
ト5、第1層目のレジスト2−aを同時に照射す
る。この時に、第2層目レジストの光照射部5−
aの感応基の濃度は、M0から平均的にM2に変化
する。又、第1層目レジストの光照射部2−bの
感応基の濃度は、平均的にM1からM3に変化す
る。ここでM3<M2<M1<M0とする(第1図
e)。
Next, using a mask 6 having a pattern, the second layer resist 5 and the first layer resist 2-a are selectively irradiated with light 8 other than the chromium portion 7 at the same time. At this time, the light irradiation part 5- of the second layer resist is
The concentration of sensitive groups in a varies from M 0 to M 2 on average. Further, the concentration of the sensitive group in the light irradiated portion 2-b of the first resist layer changes from M 1 to M 3 on average. Here, it is assumed that M 3 <M 2 <M 1 <M 0 (Fig. 1e).

次にレジスト中の感応基の濃度がM1以上では
レジストを溶かし難いがM2以下に対しては溶か
し易い現像液を用いて、光照射部2−b,5−a
を現像除去する。
Next, using a developer that is difficult to dissolve the resist when the concentration of sensitive groups in the resist is M1 or more, but is easy to dissolve when the concentration of sensitive groups in the resist is M2 or less, the light irradiated areas 2-b and 5-a are
Develop and remove.

これら一連の工程によつて、レジストを厚く塗
布しながらも垂直性のよいレジスト断面形状をも
つパターンが形成できる(第1図f)。なお、露
光に際しては光以外に電子線等の放射線エネルギ
ーも用いてもよい。
Through these series of steps, it is possible to form a pattern having a resist cross-sectional shape with good verticality even though the resist is applied thickly (FIG. 1f). Note that, in addition to light, radiation energy such as an electron beam may also be used for exposure.

次に実施例に基づく具体例を第1図を用いて説
明する。第1層目のレジスト2を膜厚1.0μmに塗
布し、90℃5分間のソフトベーキングを施こす。
次にHgランプにより発生させた紫外線領域
(3000〜5000Å)の紫外線を完全に反応を起こす
露光量の1/20程度のエネルギーである10mJ/cm2
程度の露光エネルギーで照射することにより感応
基の濃度が、照射前の80%に減少する。この場合
第1層目レジストの感光性は残つている。そして
CF4ガスによりプラズマを発生させ、フツ素ラジ
カルによつて表面処理を施す。
Next, a specific example based on the embodiment will be explained using FIG. 1. A first layer of resist 2 is applied to a thickness of 1.0 μm and soft baked at 90° C. for 5 minutes.
Next, the ultraviolet rays in the ultraviolet range (3000 to 5000 Å) generated by a Hg lamp are applied at 10 mJ/cm 2, which is about 1/20 of the exposure dose that causes a complete reaction.
The concentration of sensitive groups is reduced to 80% of its pre-irradiation level by irradiation with an exposure energy of about 100%. In this case, the photosensitivity of the first layer resist remains. and
Plasma is generated using CF 4 gas, and surface treatment is performed using fluorine radicals.

次に、第1層目のレジストと同じタイプである
第2層目のレジスト5を第1層目のレジスト上に
1.0μm厚塗布する。この時の総合膜厚はほぼ2.0μ
mになる。
Next, a second layer of resist 5, which is the same type as the first layer of resist, is placed on top of the first layer of resist.
Apply 1.0μm thick. The total film thickness at this time is approximately 2.0μ
It becomes m.

次に微細パターン7を有したレチクル6を介し
て縮小投影露光法を用いて、4365Åの単一波長に
より200mJ/cm2で第1、第2層目のレジストに
第2回目の照射する。最後に、アルカリ性現像液
により光感光したレジストを現像する。この場合
に用いる現像液はレジストの感応基の濃度Mに対
する溶解速度Rを第2図に示す。図に示す様にレ
ジストの溶解速度は、感応基の濃度が60〜80%を
境として大きく変化するものを用いる。
Next, the first and second resist layers are irradiated with a single wavelength of 4365 Å at 200 mJ/cm 2 for a second time using a reduction projection exposure method through a reticle 6 having a fine pattern 7 . Finally, the photosensitive resist is developed with an alkaline developer. FIG. 2 shows the dissolution rate R of the developing solution used in this case relative to the concentration M of sensitive groups in the resist. As shown in the figure, the dissolution rate of the resist used is one in which the concentration of the sensitive group changes significantly between 60% and 80%.

発明の効果 以上の様に、本発明によると、放射線感応性樹
脂膜に、垂直でかつ微細なパターンを厚い膜に対
しても形成することができる。本発明は今後の微
細加工技術に対して有効な価値を発揮するもので
ある。
Effects of the Invention As described above, according to the present invention, a vertical and fine pattern can be formed on a radiation-sensitive resin film even in a thick film. The present invention will exhibit effective value for future microfabrication technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜fは本発明の一実施例のパターン形
成工程断面図、第2図はレジストの溶解速度を示
す図である。 1……基板、2,2a……第1層目レジスト、
3……光、5……第2層目レジスト。
1A to 1F are cross-sectional views of a pattern forming process according to an embodiment of the present invention, and FIG. 2 is a diagram showing a resist dissolution rate. 1...Substrate, 2, 2a...1st layer resist,
3...Light, 5...Second layer resist.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に第1の放射線感応性樹脂を塗布させ
る工程と、第1の放射線照射を行ない、前記第1
の放射線感応性樹脂膜を放射線反応させて放射線
反応基の濃度Mを減少させてM1にする工程と、
前記放射線反応した第1の放射線感応性樹脂上
に、第2の放射線感応性樹脂を塗布し、選択的に
第2の放射線照射を行ない、前記第1の放射線感
応性樹脂の放射線反応基の濃度を選択的にM3
減少させる工程と、前記第1の放射線感応性樹脂
の、放射線反応基の濃度M1の部分とM3の部分と
を選択的に現像できる現像液で現像し、前記第1
と第2の放射線感応性樹脂膜を選択的に除去して
放射線感応性樹脂パターンを形成する工程とを備
えたことを特徴とするパターン形成方法。
1. Applying a first radiation-sensitive resin onto a substrate, performing a first radiation irradiation, and applying a first radiation-sensitive resin onto the substrate.
a step of subjecting the radiation-sensitive resin film to a radiation reaction to reduce the concentration M of radiation-reactive groups to M1 ;
A second radiation-sensitive resin is coated on the radiation-reacted first radiation-sensitive resin, and a second radiation-sensitive resin is selectively irradiated to reduce the concentration of radiation-reactive groups in the first radiation-sensitive resin. and developing with a developer capable of selectively developing a portion of the first radiation-sensitive resin with a radiation-reactive group concentration M 1 and a portion with a radiation - reactive group concentration M 3 ; 1st
and a step of selectively removing the second radiation-sensitive resin film to form a radiation-sensitive resin pattern.
JP59255347A 1984-12-03 1984-12-03 Pattern forming method Granted JPS61133626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59255347A JPS61133626A (en) 1984-12-03 1984-12-03 Pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59255347A JPS61133626A (en) 1984-12-03 1984-12-03 Pattern forming method

Publications (2)

Publication Number Publication Date
JPS61133626A JPS61133626A (en) 1986-06-20
JPH051611B2 true JPH051611B2 (en) 1993-01-08

Family

ID=17277524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59255347A Granted JPS61133626A (en) 1984-12-03 1984-12-03 Pattern forming method

Country Status (1)

Country Link
JP (1) JPS61133626A (en)

Also Published As

Publication number Publication date
JPS61133626A (en) 1986-06-20

Similar Documents

Publication Publication Date Title
JP3355239B2 (en) Pattern formation method
EP0773477B1 (en) Process for producing a phase shift photomask
KR100811431B1 (en) Method of Manufacturing Semiconductor Device
JP2003316019A (en) Pattern forming method and method for manufacturing semiconductor device
JPS6323657B2 (en)
White et al. Submicron, vacuum ultraviolet contact lithography with an F2 excimer laser
EP0581302B1 (en) Method for fabricating photomasks having a phase shift layer
KR100287130B1 (en) Photoresist film and method for forming pattern therefor
JPH0210362A (en) Fine pattern forming method
US5139922A (en) Method of making resist pattern
JPH051611B2 (en)
KR20220046598A (en) Methods and Processes for Probability-Based Defect Correction
JPH035653B2 (en)
JP3475309B2 (en) Method for manufacturing phase shift photomask
US5882825A (en) Production method of a phase shift photomask having a phase shift layer comprising SOG
JP3168671B2 (en) Pattern formation method
JPH02156244A (en) Pattern forming method
JPH03283418A (en) Resist pattern forming method
Wheeler et al. Basic Issues Associated With Four Potential EUV Resist Schemes: Trilayer Organometallic Bilayer, or Plasma Deposited-Plasma & Developed Bilayer, and Silylated Resists
KR19980028359A (en) Manufacturing method of fine pattern of semiconductor device
JPH03765B2 (en)
JPH0513325A (en) Pattern formation method
JPS61136228A (en) Photolithography
JPH0653115A (en) Pattern formation
JPS60116132A (en) Forming method of negative type resist pattern