JPH051604B2 - - Google Patents

Info

Publication number
JPH051604B2
JPH051604B2 JP59157189A JP15718984A JPH051604B2 JP H051604 B2 JPH051604 B2 JP H051604B2 JP 59157189 A JP59157189 A JP 59157189A JP 15718984 A JP15718984 A JP 15718984A JP H051604 B2 JPH051604 B2 JP H051604B2
Authority
JP
Japan
Prior art keywords
oxygen
metal powder
solvent
dissolved
ferromagnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59157189A
Other languages
Japanese (ja)
Other versions
JPS6136903A (en
Inventor
Takao Tanaka
Masanobu Hiramatsu
Toshinori Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59157189A priority Critical patent/JPS6136903A/en
Publication of JPS6136903A publication Critical patent/JPS6136903A/en
Publication of JPH051604B2 publication Critical patent/JPH051604B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、磁気記録用強磁性金属粉の改質方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for modifying ferromagnetic metal powder for magnetic recording.

〔背景技術〕[Background technology]

近年磁気記録密度の高度化の要請に答えるため
磁気特性が従来の酸化物系磁性粉よりも優れてい
る強磁性金属粉の開発が進められている。しかし
ながら高密度磁気記録に用いられる金属粉は粒子
径が0.1μmから1μmと小さいため空気中で酸化を
受けやすく、粉末の安全な取扱い及び磁気テープ
化後の磁気特性の経時的劣化という点で問題があ
る。
In recent years, in order to meet the demand for higher magnetic recording densities, progress has been made in the development of ferromagnetic metal powders whose magnetic properties are superior to conventional oxide-based magnetic powders. However, the metal powder used for high-density magnetic recording has a small particle size of 0.1 μm to 1 μm, so it is easily oxidized in the air, which poses problems in terms of safe handling of the powder and deterioration of magnetic properties over time after it is made into magnetic tape. There is.

この様な問題に対処する方法として、還元によ
り製造した金属粉表面に酸化物被膜を形成させる
方法が知られている。
As a method for dealing with such problems, a method is known in which an oxide film is formed on the surface of metal powder produced by reduction.

たとえば特開昭48−79153に述べられているよ
うに1%の空気および99%のN2あるいはCO2
混合ガスを磁性還元鉄粉の入つた反応器に導入
し、30〜45分の間隔で混合気中の空気の比率を2
倍にし、同時に反応器の温度を測定し50℃以上に
上昇しているならば温度が低下するまで空気流の
増量を続け、4或いは5時間後に純粋な空気を反
応器に流すという方法がある。しかしながらこの
方法による場合、酸化の際の発熱量が大きいため
に、反応器内の温度分布の均一化を計るためガス
流量及び酸素分圧のきめの細かい調整を長時間に
わたつて行なわねばならず工業的でない。
For example, as described in JP-A-48-79153, a mixed gas of 1% air and 99% N 2 or CO 2 is introduced into a reactor containing magnetic reduced iron powder, and the mixture is heated for 30 to 45 minutes. The ratio of air in the mixture is 2.
There is a method of doubling the temperature and at the same time measuring the temperature of the reactor, and if it rises above 50°C, continue increasing the air flow until the temperature drops, and after 4 or 5 hours, flow pure air into the reactor. . However, with this method, the amount of heat generated during oxidation is large, so the gas flow rate and oxygen partial pressure must be carefully adjusted over a long period of time in order to equalize the temperature distribution within the reactor. Not industrial.

また他の方法として特開昭52−85054、特開昭
58−11043等に開示されているように強磁性金属
粉をトルエン等の有機溶媒中に懸濁し、この懸濁
液に空気を吹き込むことにより強磁性金属粉の表
面に酸化物被覆を形成する方法がある。この方法
では反応器内の温度分布は均一となりやすく、比
較的短時間に強磁性金属粉の表面に均一な酸化物
被覆が形成出来るという利点はあるが、トルエン
等の有機溶媒中に空気を吹き込む場合、排ガス中
における有機溶媒蒸気濃度が爆発範囲に入る可能
性がある。従つて点火源となり得る発火性の強い
強磁性金属粉の存在下でトルエン等の可燃性有機
溶剤に空気を吹き込むという操作を行うことは、
安全性の面よりきわめて問題が多い方法である。
Other methods include JP-A-52-85054 and JP-A-Sho.
58-11043, etc., a method in which ferromagnetic metal powder is suspended in an organic solvent such as toluene and air is blown into this suspension to form an oxide coating on the surface of the ferromagnetic metal powder. There is. This method has the advantage that the temperature distribution within the reactor tends to be uniform and that a uniform oxide coating can be formed on the surface of the ferromagnetic metal powder in a relatively short time, but air is blown into an organic solvent such as toluene. In such cases, the concentration of organic solvent vapor in the exhaust gas may fall into the explosive range. Therefore, blowing air into a flammable organic solvent such as toluene in the presence of highly flammable ferromagnetic metal powder that can serve as an ignition source is
This method is extremely problematic in terms of safety.

なお、この有機溶媒による発火爆発の危険性を
除く方法として、特開昭56−16601に開示されて
いるように不燃性のフツ素系溶媒を用いる方法が
ある。
As a method of eliminating the risk of ignition and explosion due to this organic solvent, there is a method of using a nonflammable fluorinated solvent as disclosed in Japanese Patent Application Laid-Open No. 16601/1983.

しかしながら、フツ素系の不燃性溶媒はトルエ
ン等の有機溶媒に比べ非常に値段が高く、製造コ
ストの面で実際的な方法とは言い難い。
However, fluorine-based nonflammable solvents are much more expensive than organic solvents such as toluene, and this is not a practical method in terms of manufacturing costs.

また特開昭59−16904に開示されているように
金属粉末を有機溶媒に懸濁し、該懸濁液に接する
酸素含有ガスの圧力を大気圧以上に加圧すること
により酸素を有機溶媒に溶解させ金属粉末表面に
酸化物被覆を形成させる方法も提案されている。
しかしながらこの方法では表面酸化物を形成する
のに必要な酸素量を連続的に供給することが困難
であり、更に可燃性ガスの爆発の危険性が増すた
め工業的に問題が多い。
Furthermore, as disclosed in JP-A-59-16904, metal powder is suspended in an organic solvent, and oxygen is dissolved in the organic solvent by pressurizing the oxygen-containing gas in contact with the suspension above atmospheric pressure. A method of forming an oxide coating on the surface of metal powder has also been proposed.
However, with this method, it is difficult to continuously supply the amount of oxygen necessary to form a surface oxide, and furthermore, the risk of explosion of flammable gas increases, which poses many industrial problems.

〔発明の開示〕[Disclosure of the invention]

本発明者らは以上述べた従来知られている方法
の欠点を除き、発火性のある強磁性金属粉を安全
に安定化させる方法について鋭意検討した結果、
強磁性金属粉を、酸素を溶解した、実質的に強磁
性金属粉と反応しない溶媒に接触せしめることに
より強磁性金属粉を安全に安定化できること、ま
たこの方法を実施するに当り、実質的に強磁性金
属粉と反応しない溶媒に酸素を溶解せしめる帯域
と、該帯域で作られた酸素を溶解した溶媒と強磁
性金属粉を接触せしめる帯域を分離することによ
り、より効果的に達成出来ることを見出し本発明
に到達した。これすなはち本発明は、強磁性金属
粉を有機溶媒中に懸濁し、溶媒中の溶存酸素によ
り強磁性金属粉の表面に酸化安定性にすぐれた酸
化物被覆を形成せしめる強磁性金属粉の改質方法
の発明である。
As a result of intensive study by the present inventors on a method for safely stabilizing flammable ferromagnetic metal powder while eliminating the drawbacks of the conventionally known methods described above, the present inventors have found that:
The ferromagnetic metal powder can be safely stabilized by contacting the ferromagnetic metal powder with a solvent in which oxygen is dissolved and which does not substantially react with the ferromagnetic metal powder; This can be achieved more effectively by separating the zone in which oxygen is dissolved in a solvent that does not react with the ferromagnetic metal powder and the zone in which the ferromagnetic metal powder is brought into contact with the solvent in which oxygen is dissolved. Heading The present invention has been arrived at. In other words, the present invention involves suspending ferromagnetic metal powder in an organic solvent, and forming an oxide coating with excellent oxidation stability on the surface of the ferromagnetic metal powder using dissolved oxygen in the solvent. This invention is a modification method.

以上のごとく、本発明は、 (1) 強磁性金属粉を、酸素を溶存酸素として溶解
した実質的に強磁性金属粉と反応しない溶媒と
接触せしめ、実質的に該溶媒に溶解した溶存酸
素のみで該金属粉の表面酸化処理を行う強磁性
金属粉の安定化方法、および (2) 実質的に強磁性金属粉と反応しない溶媒に酸
素を溶存酸素として溶解せしめる第の帯域
と、該第の帯域で作られた酸素を溶解した溶
媒と強磁性金属粉を接触せしめる第の帯域と
を格別に設け、該両帯域を、ガス状の酸素が該
第の帯域に導入されることのないようにして
連結し実質的に該溶媒に溶解した溶存酸素のみ
で該金属粉の表面酸化処理を行う強磁性金属粉
の安定化方法、 を要旨とするものである。
As described above, the present invention provides: (1) Ferromagnetic metal powder is brought into contact with a solvent that does not substantially react with the ferromagnetic metal powder in which oxygen is dissolved as dissolved oxygen, and substantially only the dissolved oxygen dissolved in the solvent is removed. (2) a method for stabilizing ferromagnetic metal powder by subjecting the metal powder to surface oxidation treatment; A second zone is specially provided in which the ferromagnetic metal powder is brought into contact with the oxygen-dissolved solvent produced in the zone, and both zones are separated so that gaseous oxygen is not introduced into the second zone. The gist of the present invention is to provide a method for stabilizing ferromagnetic metal powder in which the surface of the metal powder is oxidized using only dissolved oxygen substantially dissolved in the solvent.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明に使用する強磁性金属粉末は磁気記録に
使用される還元鉄粉などの金属粉末であり、その
製造法は特に限定されない。例えば、(1)強磁性金
属の有機酸塩を加熱分解し、還元性気体で還元す
る方法、(2)針状性を有する含水金属酸化物または
これらに他の金属を含有せしめたもの、あるいは
これらの含水金属酸化物から得た針状酸化鉄を還
元する方法、(3)強磁性金属を低圧の不活性ガス中
で蒸発させる方法、(4)金属カルボニル化合物を熱
分解する方法、(5)強磁性を有する金属の塩を含有
する溶液に還元剤を加えて還元する方法、(6)金属
ハロゲン化物蒸気を高温で還元する方法等公知の
方法のいずれによつたものでもよい。
The ferromagnetic metal powder used in the present invention is a metal powder such as reduced iron powder used for magnetic recording, and its manufacturing method is not particularly limited. For example, (1) a method of thermally decomposing an organic acid salt of a ferromagnetic metal and reducing it with a reducing gas, (2) a method of acicular hydrated metal oxides or their containing other metals, or A method for reducing acicular iron oxides obtained from these hydrous metal oxides, (3) a method for evaporating ferromagnetic metals in a low-pressure inert gas, (4) a method for thermally decomposing metal carbonyl compounds, (5) Any of the known methods may be used, such as) a method in which a reducing agent is added to a solution containing a salt of a ferromagnetic metal for reduction, and (6) a method in which metal halide vapor is reduced at a high temperature.

本発明に用いる実質的に強磁性金属粉と反応し
ない溶媒とは、飽和脂肪族、不飽和脂肪族、ベン
ゼン、トルエン、キシレン等の芳香族の炭化水素
類、アルコール類、アミン類、ケトン類で強磁性
金属粉と反応して化合物とならないものの単体も
しくは二種類以上の混合物である。
The solvents used in the present invention that do not substantially react with the ferromagnetic metal powder include saturated aliphatic, unsaturated aliphatic, aromatic hydrocarbons such as benzene, toluene, and xylene, alcohols, amines, and ketones. It is a single substance or a mixture of two or more types of substances that do not react with ferromagnetic metal powder to form a compound.

本発明において酸素を溶解した実質的に強磁性
金属粉と反応しない溶媒を該金属粉と接触させる
に当つては、あらかじめ溶媒に酸素を溶解させて
おき、その中に金属粉を入れることによつても達
成出来るが、工業的に実施するには酸素を溶媒に
溶解せしめる帯域と該帯域で作られた酸素を溶解
した溶媒と強磁性金属粉を接触せしめる帯域とを
分離することにより、より有効に達成出来る。
In the present invention, when a solvent that does not substantially react with the ferromagnetic metal powder in which oxygen is dissolved is brought into contact with the metal powder, oxygen is dissolved in the solvent in advance, and the metal powder is placed in the solvent. However, in industrial implementation, it is more effective to separate the zone in which oxygen is dissolved in the solvent and the zone in which the solvent in which the oxygen dissolved in the oxygen produced in the zone is brought into contact with the ferromagnetic metal powder. can be achieved.

〔発明の実施するための好ましい態様〕[Preferred embodiments for carrying out the invention]

以下、図面を参照しつつ本発明の実施の態様を
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明で用いる装置のフローシートで
ある。第1図において10は反応器、20は酸素
溶解塔、30はガス分離槽、40は溶媒循環ポン
プ、50は熱交換器である。10の反応器の型式
には特に制限はなく溶媒を上昇流とした流動床式
でも、溶媒を下降流とした固定床式でもかまわな
い。溶媒中の酸素と強磁性金属粉との反応温度に
も特に制限はないが通常0℃以上で生成物磁気特
性の過度の低下を防ぐため100℃以下が好ましい。
また、反応時間は30分以上100時間以下、好まし
くは1時間以上20時間以下である。20の酸素溶
解塔は第の帯域を形成するものであるが酸素を
溶媒に溶解させることが出来る型式であれば気泡
塔型式、充填塔型式等いかなる型式でも用いられ
る。また酸素溶解塔20へ供給されるガスは酸素
を含有し、溶媒と反応しないガスであれば、いか
なる種類のガスでも使用出来るが、空気を代表と
する酸素と窒素の混合ガスが経済的な面で好まし
い。30のガス分離槽は酸素含有ガスが直接反応
器(つまりこれが第の帯域を形成するものであ
る)へ行くのを防ぐために設置するものである
が、酸素溶解塔20において溶媒中へガスの巻き
込みが少なく、ガス状の酸素が第の帯域に導入
されることのない場合は省略してもかまわない。
以下実施例にて本発明をさらに具体的に説明す
る。
FIG. 1 is a flow sheet of the apparatus used in the present invention. In FIG. 1, 10 is a reactor, 20 is an oxygen dissolution tower, 30 is a gas separation tank, 40 is a solvent circulation pump, and 50 is a heat exchanger. The type of reactor 10 is not particularly limited, and may be either a fluidized bed type in which the solvent flows upward, or a fixed bed type in which the solvent flows downward. There is no particular limit to the reaction temperature between oxygen in the solvent and the ferromagnetic metal powder, but it is usually 0°C or higher and preferably 100°C or lower to prevent excessive deterioration of the magnetic properties of the product.
Further, the reaction time is 30 minutes or more and 100 hours or less, preferably 1 hour or more and 20 hours or less. The oxygen dissolving column No. 20 forms the second zone, and any type such as a bubble column type or a packed column type can be used as long as it can dissolve oxygen in a solvent. Furthermore, any type of gas can be used as long as it contains oxygen and does not react with the solvent, but a mixed gas of oxygen and nitrogen, typically air, is economical. It is preferable. The gas separation tank 30 is installed to prevent the oxygen-containing gas from going directly to the reactor (which forms the second zone), but to prevent the gas from being entrained in the solvent in the oxygen dissolution tower 20. It may be omitted if gaseous oxygen is not introduced into the second zone.
The present invention will be explained in more detail below with reference to Examples.

実施例 1 反応器として内容積10の流動床式反応器を用
い第1図に示したフローシートのように反応器の
下方より溶媒を供給するように装置を組み立て
た。この反応器10の中にゲーサイトを還元して
得られた大気中で発火しうる長さ0.4μm、太さ
0.04μmの大きさで磁気特性が抗磁力1270Oe、飽
和磁化180emu/grである針状鉄粉1Kgを窒素雰
囲気にて仕込んだ。次に系内に溶媒としてトルエ
ンを入れ、ポンプ40にて該トルエンを循還し
た。その後充填塔式の酸素溶解塔20に空気を導
入してトルエンに酸素を溶解させ、酸素を溶存酸
素として溶解したトルエンを鉄粉1Kg当り1m2
hrの量で反応器10に流した。流量が安定した
後、熱交換器50と反応器ジヤケツト140を用
いて反応器を60℃に加熱し、50℃で10時間、鉄粉
とトルエン中の溶存酸素を反応させた。なお、溶
存酸素の減少したトルエンは反応器の上部からフ
イルター80を通して抜きだし、再び酸素溶解塔
20に循環してフレツシユな酸素を溶解する。反
応後、鉄粉を取り出し窒素雰囲気にて乾燥した。
乾燥後の鉄粉の磁気特性は抗磁力が1295Oe、飽
和磁化が141emu/grであり、この鉄粉は安定化
されており空気中に出しても発火しなかつた。
Example 1 A fluidized bed reactor with an internal volume of 10 was used as the reactor, and the apparatus was assembled so that the solvent was supplied from below the reactor as shown in the flow sheet shown in FIG. In this reactor 10, a material with a length of 0.4 μm and a thickness that can ignite in the atmosphere obtained by reducing goethite
1 kg of needle iron powder having a size of 0.04 μm and a magnetic property of coercive force of 1270 Oe and saturation magnetization of 180 emu/gr was charged in a nitrogen atmosphere. Next, toluene was introduced into the system as a solvent, and the toluene was circulated using the pump 40. After that, air is introduced into the packed tower-type oxygen dissolving tower 20 to dissolve oxygen in toluene, and the toluene containing dissolved oxygen as dissolved oxygen is 1 m 2 /kg of iron powder.
hr into reactor 10. After the flow rate became stable, the reactor was heated to 60°C using the heat exchanger 50 and reactor jacket 140, and the iron powder and dissolved oxygen in toluene were allowed to react at 50°C for 10 hours. Note that toluene with reduced dissolved oxygen is extracted from the upper part of the reactor through a filter 80 and circulated again to the oxygen dissolving tower 20 to dissolve fresh oxygen. After the reaction, the iron powder was taken out and dried in a nitrogen atmosphere.
After drying, the iron powder had a coercive force of 1295 Oe and a saturation magnetization of 141 emu/gr, and the iron powder was stabilized and did not catch fire even when exposed to the air.

実施例 2 反応器の温度を40℃に変えた他は、実施例1と
同じ原料を用いて同様の操作を行なつた。10時間
鉄粉とトルエン中の溶存酸素を反応させた後、鉄
粉を取り出し窒素雰囲気にて乾燥した。乾燥後の
鉄粉の磁気特性は、抗磁力が1280Oe、飽和磁化
が153emu/grであり、この鉄粉は大気中に取り
出しても発火しなかつた。
Example 2 The same operation as in Example 1 was carried out using the same raw materials, except that the temperature of the reactor was changed to 40°C. After reacting the iron powder with dissolved oxygen in toluene for 10 hours, the iron powder was taken out and dried in a nitrogen atmosphere. The magnetic properties of the iron powder after drying were as follows: coercive force was 1280 Oe, saturation magnetization was 153 emu/gr, and the iron powder did not catch fire even when taken out into the atmosphere.

実施例 3 反応器の温度を40℃とし、酸素溶解塔へ供給す
るガスを空気45%、窒素55%の混合ガスへと変え
た他は実施例1と同じ原料、同じ操作で実験を行
なつた。10時間反応後の鉄粉を窒素雰囲気にて乾
燥させ磁気特性を測定したところ抗磁力が
1282Oe、飽和磁化が151emu/grであつた。この
鉄粉を大気中に取り出しても発火しなかつた。
Example 3 The experiment was conducted using the same raw materials and the same operations as in Example 1, except that the reactor temperature was set to 40°C and the gas supplied to the oxygen dissolution tower was changed to a mixed gas of 45% air and 55% nitrogen. Ta. After 10 hours of reaction, the iron powder was dried in a nitrogen atmosphere and its magnetic properties were measured.
It had a saturation magnetization of 1282 Oe and 151 emu/gr. Even when this iron powder was taken out into the atmosphere, it did not catch fire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するに適した装置のフロ
ーシートである。 図において、10……反応器、20……酸素溶
解塔、30……気液分離槽、40……循環ポン
プ、50……熱交換器、60……金属粉を含んだ
スラリー層、70……金属粉をほとんど含まない
溶媒層、80……フイルター、90……酸素を含
んだガス入口、100……酸素を含んだガス出
口、110……ガス層、120……酸素を溶解し
た溶媒層、130……分散板、140……ジヤケ
ツト。
FIG. 1 is a flow sheet of an apparatus suitable for carrying out the invention. In the figure, 10... reactor, 20... oxygen dissolving tower, 30... gas-liquid separation tank, 40... circulation pump, 50... heat exchanger, 60... slurry layer containing metal powder, 70... ...Solvent layer containing almost no metal powder, 80...Filter, 90...Gas inlet containing oxygen, 100...Gas outlet containing oxygen, 110...Gas layer, 120...Solvent layer in which oxygen is dissolved , 130... dispersion plate, 140... jacket.

Claims (1)

【特許請求の範囲】 1 強磁性金属粉を、酸素を溶存酸素として溶解
した実質的に強磁性金属粉と反応しない溶媒と接
触せしめ、実質的に該溶媒に溶解した溶存酸素の
みで該金属粉の表面酸化処理を行う強磁性金属粉
の安定化方法。 2 実質的に強磁性金属粉と反応しない溶媒に酸
素を溶存酸素として溶解せしめる第の帯域と、
該第の帯域で作られた酸素を溶解した溶媒と強
磁性金属粉を接触せしめる第の帯域とを各別に
設け、該両帯域を、ガス状の酸素が該第の帯域
に導入されることのないようにして連結し、実質
的に該溶媒に溶解した溶存酸素のみで該金属粉の
表面酸化処理を行う強磁性金属粉の安定化方法。
[Scope of Claims] 1. Ferromagnetic metal powder is brought into contact with a solvent that does not substantially react with the ferromagnetic metal powder in which oxygen is dissolved as dissolved oxygen, and the metal powder is produced by substantially only the dissolved oxygen dissolved in the solvent. A method for stabilizing ferromagnetic metal powder by subjecting it to surface oxidation treatment. 2. A second zone in which oxygen is dissolved as dissolved oxygen in a solvent that does not substantially react with the ferromagnetic metal powder;
A second zone is separately provided in which the ferromagnetic metal powder is brought into contact with a solvent in which oxygen dissolved in the oxygen produced in the first zone is provided, and both zones are connected to each other in such a manner that gaseous oxygen is introduced into the first zone. A method for stabilizing ferromagnetic metal powder, in which the surface of the metal powder is oxidized using substantially only dissolved oxygen dissolved in the solvent.
JP59157189A 1984-07-30 1984-07-30 Stabilizing method for ferromagnetic metal powder Granted JPS6136903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59157189A JPS6136903A (en) 1984-07-30 1984-07-30 Stabilizing method for ferromagnetic metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59157189A JPS6136903A (en) 1984-07-30 1984-07-30 Stabilizing method for ferromagnetic metal powder

Publications (2)

Publication Number Publication Date
JPS6136903A JPS6136903A (en) 1986-02-21
JPH051604B2 true JPH051604B2 (en) 1993-01-08

Family

ID=15644143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59157189A Granted JPS6136903A (en) 1984-07-30 1984-07-30 Stabilizing method for ferromagnetic metal powder

Country Status (1)

Country Link
JP (1) JPS6136903A (en)

Also Published As

Publication number Publication date
JPS6136903A (en) 1986-02-21

Similar Documents

Publication Publication Date Title
SU1047388A3 (en) Process for producing activated carbon spheres
JPS62269728A (en) One process method for purifying inert gas
US4217332A (en) Process for exchanging hydrogen isotopes between gaseous hydrogen and water
JPH02303539A (en) Production method of carrier catalyser to oxidize co, carrier catalyser and co-oxidation by contacting method
US4090980A (en) Method for preparing reduced metal catalyst having metal surface area
JPH051604B2 (en)
US4420330A (en) Stabilization of pyrophoric ferromagnetic acicular metal particles consisting essentially of iron
US4073977A (en) Stabilization of pyrophoric metal powders with alkylene oxide polymers
JPS5914081B2 (en) Manufacturing method of metal magnetic powder with excellent corrosion resistance
JPS61204904A (en) Method for stabilizing magnetic metal powder
US4584073A (en) Process and apparatus for isotopic enrichment using lasers
US2490587A (en) Manufacture of oxygen
JPS6251203B2 (en)
JP2898679B2 (en) Stabilization method for metal with active surface
JPH01172501A (en) Manufacture of metal magnetic powder
US4541997A (en) Process of reducing the oxygen content in gas mixtures
US3342557A (en) Process of regenerating granular ma- terials impregnated with active com- ponents in a cyclic process of produc- ing chlorine
JPH03126801A (en) Method for stabilizing metal magnetic powder
JPS59110701A (en) Stabilization of reduced iron powder for magnetic recording
JPS6136044B2 (en)
JPS6018130B2 (en) Highly oriented iron particles
US4318734A (en) Reduction of iron oxide utilizing dehydrating agent
KR840001844B1 (en) Process for preparing megnetic metal and alloy
JP2735910B2 (en) Method for producing metal magnetic powder for magnetic recording
US4316738A (en) Economical process for producing metal particles for magnetic recording