JPH05159943A - Winding for stationary induction device - Google Patents

Winding for stationary induction device

Info

Publication number
JPH05159943A
JPH05159943A JP3325455A JP32545591A JPH05159943A JP H05159943 A JPH05159943 A JP H05159943A JP 3325455 A JP3325455 A JP 3325455A JP 32545591 A JP32545591 A JP 32545591A JP H05159943 A JPH05159943 A JP H05159943A
Authority
JP
Japan
Prior art keywords
winding
wire
electric field
strand
static induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3325455A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yanari
敏行 矢成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3325455A priority Critical patent/JPH05159943A/en
Publication of JPH05159943A publication Critical patent/JPH05159943A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Insulating Of Coils (AREA)

Abstract

PURPOSE:To attain a high space factor of a winding by inserting a high elasticity plastic spacer molded in a shape substantially matching to a strand shape between an innermost side strand and its adjacent strand and winding it. CONSTITUTION:Conductors 1 having strand insulators 2 are so wound as to be applied by a potential in a described order in the strand conductors 1 radially in a disc state through rails 4 aligned at equal intervals on a foundation insulating cylinder 3, and spacers 5 so having designated thickness as to be engaged with the rail 4 are aligned between sections in a circumferential direction to form the sections. In this case, a spacer 6 molded of elastomer is inserted between an innermost side strand and a second strand and wound. Thus, excellent insulating characteristics and a high space factor are performed in a winding structure of a high voltage transformer, and a structure having an inexpensive using material and excellent operability can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高電圧静止誘導電器の巻
線に関する。
FIELD OF THE INVENTION The present invention relates to windings of high voltage quiescent induction machines.

【0002】[0002]

【従来の技術】高電圧誘導電器例えば変圧器の巻線構造
の決定に当たってまず考えることは、系統からの雷サー
ジの侵入に対して巻線の電位分布が全長に亘って均等で
巻線の占積率(巻線断面に占める通電導体の比)が高
く、作業性が好い事である。この様な要求を満たす巻線
構造の一つとしてハイセルキャップ巻線が従来から広く
使用されている。この巻線は図12に示すように相隣り合
う導体C1 ,C2 間に電気的に離れた電位の導体を配置
する構造で、その巻き方の工夫により電位分布を改善す
る方法が今まで数多く提案されている。しかし、このハ
イセルキャップ巻線はその構造から相隣り合うセクショ
ンS1 ,S2 間にセクション当たりの巻回数の約3倍の
電位差が生じ、図12の場合、この部分に相当する第2セ
クションS2の最内側素線端部に電界が集中するため最
弱点部分となり、高電圧化の制約となる。この部分の電
界強度の集中の状況を図13の電界解析例によって示す。
図13かに最電界集中部は低圧巻線との間の主ギャップ方
向電界とセクション間方向電界の重畳となっていること
が判る。これに対しては図14のように巻き方を工夫する
ことによりセクション間に最も電圧のかかる位置を最内
側素線の内側から2ターン目とすることにより最も電界
集中のある最内側素線の電界を緩和し、そのぶん耐圧向
上をはかることができる。我々の研究結果によると、油
入変圧器の場合ハイセルキャップ巻線では主ギャップ最
内側素線の電界強度は E1 =K1 -0.21 …1式 (rは素線絶縁表面半径、K1 は定数) で表わされる式で破壊が決まることが実験的に求められ
ており、上記構造変更による最内側素線の電界緩和が絶
縁耐力向上に効果があることが裏付けられたことにな
る。しかし、高電圧変圧器でより絶縁寸法を切り詰めた
設計をしようとした場合、例えば、主ギャップ絶縁はバ
リヤ絶縁構造をとることが一般的に行われているが、こ
の場合各バリヤ間の油ギャップ寸法dと破壊電界強度E
2 との間にはほぼ E2 =K2 ・d-1/3 …2式 (K2 は定数) の関係があり、ギャップ寸法dを小さくすれば、許容電
界強度が上がり、全体として主ギャップ寸法を縮小する
ことが可能となることを利用してバリヤ細分化構造をと
ることが行われる。この場合当然最内側素線端部の電界
も上昇することになるが、先に述べたようにハイセルキ
ャップ巻線構造をとった場合、最内側素線絶縁表面半径
で決まる電界で破壊が決まることから、その縮小にも限
度が生じることになる。これを回避する手段としては図
15に示すように電界の集中する最内側素線のセクション
端部にL形の絶縁物11を当てることが考案されている。
この場合前記(1)式で決まる破壊電界強度は絶縁物が
厚くなる分rが大きくなり結果として小さくなるが、そ
れ以上に絶縁物表面での電界は緩和され絶縁耐力は向上
することになる。しかし、この場合はL形絶縁物11の入
る部分とその他の一般部分とでセクション高さが異なる
ため、油道を構成するスペーサの一部分を切り欠く必要
が生じ、その手間のため価格の上昇をもたらす。また、
L形絶縁物11をクレープ紙あるいはプレスボードモール
ド品で製作した場合、スペーサおよびレールで固定され
る部分以外は形状を拘束する物がないため、L形の角度
を90度に固定することが出来ず、角度を広がることにな
り、油道を狭め、ひいては巻線の冷却特性に悪影響を及
ぼすことになる。これを防止するためにはL形絶縁物11
をその幅相当の素線と一体となるようにテープなどで縛
ることが行われるが、この場合はその加工に多くの時間
を要する欠点があった。また、他の耐圧向上策としては
素線端部の絶縁破壊が素接と接するスペーサとの間にで
きる楔状油ギャップで油とスペーサを構成する固体絶縁
物材料との誘電率の差から電界分布が境界面で不連続に
なるため界面に沿って起こることに注目し、その誘電率
の差を小さくし境界での不連続性を減らすことを目的と
して一般のクラフトパルプを原料とするスペーサに代え
てクラフトパルプと誘電率がパルプより小さい合成材料
(例えばポリメチルペンテン)とを混抄した低誘電率ス
ペーサを使用することも提案されている。しかしこの場
合は低誘電率プレスボードの価格が大幅に上昇すること
と、そのプレスボードの特性として一般のクラフトパル
プ製プレスボードほど圧縮特性が良くなり、巻線にかか
る電磁機械力での変位量が増え、大容量変圧器を製作す
る場合は問題が生じる欠点があった。
2. Description of the Related Art When deciding the winding structure of a high-voltage induction electric generator, for example, a transformer, the first consideration is that the potential distribution of the winding is uniform over the entire length against the intrusion of lightning surge from the system and the winding occupancy is uniform. It has a high product factor (ratio of the current-carrying conductor to the cross section of the winding), and it has good workability. Hi-cell cap windings have been widely used as one of winding structures satisfying such requirements. As shown in FIG. 12, this winding has a structure in which conductors of an electrically separated potential are arranged between the adjacent conductors C 1 and C 2, and there has been no method of improving the potential distribution by devising the winding method. Many have been proposed. However, due to the structure of this high cell cap winding, a potential difference of about three times the number of turns per section occurs between the adjacent sections S 1 and S 2, and in the case of FIG. 12, the second section corresponding to this section. Since the electric field is concentrated at the end of the innermost strand of S 2 , it becomes the weakest point, which is a constraint for increasing the voltage. The state of concentration of electric field strength in this portion is shown by an example of electric field analysis in FIG.
It can be seen in Fig. 13 that the most electric field concentrated portion is a superposition of the electric field in the main gap direction with the low-voltage winding and the electric field in the section direction. On the other hand, by devising the winding method as shown in Fig. 14, the position where the highest voltage is applied between the sections is set to the second turn from the inside of the innermost wire, so that the innermost wire with the highest electric field concentration The electric field can be relaxed and the breakdown voltage can be improved accordingly. According to our research results, in the case of oil- immersed transformer, the electric field strength of the inner wire of the main gap in the high cell cap winding is E 1 = K 1 r -0.21 It has been experimentally determined that the breakdown is determined by the equation expressed by 1 equation (r is the insulation radius of the wire, K 1 is a constant), and the electric field relaxation of the innermost wire due to the above structure modification improves the dielectric strength. It has been proved that there is an effect on. However, when attempting to design a high voltage transformer in which the insulation dimensions are cut down, for example, the main gap insulation is generally a barrier insulation structure. Dimension d and breakdown electric field strength E
There is a relationship of approximately E 2 = K 2 · d -1/3 ( 2 ) (K 2 is a constant) between 2 and 2, and if the gap dimension d is made smaller, the allowable electric field strength increases and the main gap as a whole. A barrier subdivision structure is used by taking advantage of the possibility of reducing the size. In this case, the electric field at the end of the innermost strand naturally rises, but when the high cell cap winding structure is adopted as described above, the breakdown is determined by the electric field determined by the radius of the innermost strand insulation surface. Therefore, there is a limit to the reduction. As a means to avoid this,
As shown in FIG. 15, it has been devised to apply an L-shaped insulator 11 to the end of the innermost wire section where the electric field is concentrated.
In this case, the breakdown electric field strength determined by the above equation (1) becomes larger as the insulator becomes thicker and consequently becomes smaller, but the electric field on the surface of the insulator is further relaxed and the dielectric strength is improved. However, in this case, since the section heights of the portion into which the L-shaped insulator 11 is inserted and other general portions are different, it is necessary to cut out a part of the spacer forming the oil passage, which increases the price due to the labor. Bring Also,
When the L-shaped insulator 11 is made of crepe paper or a pressboard molded product, there is nothing to constrain the shape other than the part fixed by the spacer and rail, so the L-shaped angle can be fixed at 90 degrees. Instead, the angle is widened, the oil passage is narrowed, and the cooling characteristics of the winding are adversely affected. To prevent this, L-shaped insulator 11
Is tied with a tape or the like so as to be integrated with the strand corresponding to the width, but in this case, there is a drawback that it takes a lot of time to process it. Another measure for improving the withstand voltage is the electric field distribution due to the difference in the dielectric constant between the oil and the solid insulator material that constitutes the spacer due to the wedge-shaped oil gap formed between the wire contact and the spacer in contact with the dielectric breakdown at the end of the wire. Since it becomes discontinuous at the boundary surface, it occurs along the interface, and in order to reduce the discontinuity at the boundary and reduce the discontinuity at the boundary, a general kraft pulp-based spacer is used instead. It has also been proposed to use a low dielectric constant spacer made by mixing kraft pulp with a synthetic material having a dielectric constant smaller than that of pulp (for example, polymethylpentene). However, in this case, the price of the low dielectric constant pressboard increases significantly, and the compression characteristics of the pressboard are generally better than those of general kraft pulp pressboards, and the amount of displacement due to the electromagnetic mechanical force applied to the winding is great. However, there is a drawback that a problem arises when manufacturing a large capacity transformer.

【0003】また、他の耐圧向上策として主ギャップの
油道細分化の方法があることは前述したが、巻線に隣接
した軸方向油道寸法をある値以下とした場合、冷却のた
めの油流に対する抵抗が増大し、循環油量の低減ひいて
は巻線温度上昇の増加に繋がることになる。そのため巻
線に隣接した油道を小さくした部分については代わりに
巻線セクション内の内径側の適当な位置のターン間に間
隔片を入れて軸方向の油道を確保することが必要とな
る。この間隔片製作のためのコストもさる事ながらこの
取り付けのための巻線工数も大幅に増加することとなる
問題があった。
As mentioned above, there is another method of subdividing the oil passage in the main gap as another measure for improving the pressure resistance. However, when the dimension of the oil passage in the axial direction adjacent to the winding is set to a certain value or less, the oil passage is cooled for cooling. The resistance to oil flow increases, which leads to a decrease in circulating oil amount and an increase in winding temperature increase. Therefore, for the portion where the oil passage adjacent to the winding is made smaller, it is necessary to secure an axial oil passage by inserting a spacing piece between turns at appropriate positions on the inner diameter side in the winding section. There is a problem that the number of winding steps for this mounting is significantly increased while the cost for manufacturing the spacing piece is reduced.

【0004】[0004]

【発明が解決しようとする課題】以上述べたように高電
圧巻線例えば今後予定されるUHV変圧器巻線を考えた
場合、その電圧に耐え、しかもできるだけ高占積率な巻
線が望まれる。これを達成するために侵入雷サージに対
する巻線内電位分布を向上させて線路端近傍セクション
に分担する電圧を低減させると同時に、巻線構造の工夫
により局部的に加わる電界強度を下げ、また、適切な構
造とすることにより破壊電界強度を向上させることが必
要となる。また、同じ目的を達成する場合はできるだけ
作業性がよく、絶縁以外の特性、例えば電磁機械力や冷
却と言った特性に悪影響を及ぼさないことが求められる
ことは言うまでもない。しかし、従来構造では図14およ
び図15の構造をとり、さらに低誘電率スペーサを採用し
たとしてもその素線端部に集中する電界を十分に緩和で
きず、主ギャップバリヤ細分化による油ギャップ破壊電
界強度の向上にも拘らず主ギャップ寸法は素線端部電界
で決まってしまうと言う限度が生じる不都合があった。
また、作業性や価格についても多くの問題があった。
As described above, when considering a high voltage winding, for example, a UHV transformer winding to be planned in the future, it is desirable to have a winding that withstands the voltage and has a space factor as high as possible. .. In order to achieve this, the potential distribution in the winding against the intrusion lightning surge is improved to reduce the voltage shared by the section near the line end, and at the same time the electric field strength applied locally is reduced by devising the winding structure. It is necessary to improve the breakdown electric field strength by using an appropriate structure. Needless to say, in order to achieve the same purpose, workability should be as good as possible and characteristics other than insulation, for example, characteristics such as electromagnetic mechanical force and cooling, should not be adversely affected. However, in the conventional structure, even if the structure shown in FIGS. 14 and 15 is adopted and the low dielectric constant spacer is adopted, the electric field concentrated at the end of the wire cannot be sufficiently relaxed, and the oil gap breakdown due to the main gap barrier subdivision Despite the improvement of the electric field strength, there is a disadvantage that the main gap size is limited by the electric field at the end of the wire.
There were also many problems in workability and price.

【0005】本発明の目的は高電圧変圧器の巻線構造に
おいて、絶縁特性に優れていて高占積率を達成し、しか
も使用材料も高価とならず作業性にも優れた構造を提供
することにある。
An object of the present invention is to provide a winding structure for a high-voltage transformer, which has excellent insulation characteristics and achieves a high space factor, and is inexpensive in use materials and excellent in workability. Especially.

【0006】[0006]

【課題を解決するための手段】発明の第一は、まず最も
電界強度が集中し、巻線の弱点部分となる巻路端近傍の
巻線内周側の電界緩和の目的を達成するため、セクショ
ン間の最大電位差を生じる素線を内側から2番目に配置
したハイセルキャップ巻線において、最内側素線と内側
から2番目の素線間にほぼ素線形状にあった形に成形さ
れた高弾性プラスティック(以下エラストマーと呼ぶ)
間隔片を挿入して巻回したことを特徴とするものであ
る。
The first object of the invention is to achieve the purpose of alleviating the electric field on the inner circumference side of the winding near the winding end, which is the weak point of the winding, where the electric field strength is most concentrated. In the high cell cap winding in which the wire that produces the maximum potential difference between the sections is placed second from the inside, it was formed into a shape that was almost the same as the wire between the innermost wire and the second wire from the inside. High elasticity plastic (hereinafter called elastomer)
It is characterized in that a space piece is inserted and wound.

【0007】発明の第二は上記発明によって素線端部に
かかる電界強度は低減されるものの、よりコンパクトな
設計を指向した場合まだ最内側素線端部が弱点となるた
め、その弱点を解消するために考案されたもので、最内
側素線の内径側に素線に密着した形のエラストマー電界
緩和詰物を当てて巻回したことを特徴とする。
According to the second aspect of the invention, although the electric field strength applied to the end portions of the strands is reduced by the above-mentioned invention, when aiming for a more compact design, the end portions of the innermost strands still become weak points, so the weak points are eliminated. It is devised to do so, and is characterized in that the innermost wire of the innermost wire is wound by applying an elastomer electric field relaxation filling material in the form of being in close contact with the wire.

【0008】発明の第三は第一の発明で使用される間隔
片を第二の発明で使用される電界緩和詰物と同一形状と
し、これを二枚平坦な面を背中合わせに重ねて使用した
ことを特徴とするものである。
A third aspect of the invention is that the spacing piece used in the first invention has the same shape as the electric field relaxation filling used in the second invention, and two flat surfaces are used so that they are stacked back to back. It is characterized by.

【0009】発明の第四は巻線のセクション間油道を形
成するために使用されるスペーサとしてそのセクション
導体に接する面に0.1 〜1mm厚さのエラストマーを配置
しそのほかの一般部スペーサとしては圧縮特性の優れた
絶縁物で構成したことを特徴とするもので、最内側素線
端部に次いで巻線絶縁の弱点となるセクション内の隣接
素線間とスペーサとでできる楔状油ギャップをエラスト
マーの巻線締付力による変形で埋めることによって絶縁
耐力の向上を狙ったものである。
In a fourth aspect of the invention, a 0.1 to 1 mm thick elastomer is placed on the surface in contact with the section conductor as a spacer used to form an oil passage between sections of a winding, and the other general spacer is compressed. It is characterized by being made of an insulator with excellent characteristics, and the wedge-shaped oil gap formed between the adjacent strands in the section which becomes the weakness of winding insulation next to the end of the innermost strand and the spacer is made of elastomer. The purpose is to improve the dielectric strength by filling in the deformation due to the winding tightening force.

【0010】発明の第五は巻線の絶縁を決めるもう一つ
の要素である高低圧巻線間の主ギャップ構成に関するも
ので、線路端を巻線中央に配置し、上下2回路で構成さ
れる巻線において、巻線に接し、基礎絶縁筒上に等間隔
で配列されたレールの厚さを巻線中央部では薄く、巻線
端部では厚くすることを特徴とした円板巻線で、主ギャ
ップにかかる電界に応じて巻線に隣接した油道寸法を変
えることによってより高い高圧に耐える構造としたもの
である。
The fifth aspect of the present invention relates to a main gap structure between high and low voltage windings, which is another element for determining insulation of windings, and a line end is disposed at the center of the winding and a winding consisting of two upper and lower circuits. In the wire, a disk winding characterized in that the rails that are in contact with the winding and arranged at equal intervals on the basic insulating cylinder are thin at the winding center and thick at the winding end. By changing the size of the oil passage adjacent to the winding according to the electric field applied to the gap, the structure is configured to withstand higher pressure.

【0011】発明の第六は上記発明においてその材質を
比誘電率3.5 以下のプラスティック材とすることを特徴
としたもので、一般に使用されているプレスボード製に
比べて低誘電率化することにより、レールと油道との境
界面での誘電率の差による絶縁破壊のばらつきを押さえ
て安定した構造を得るものである。
A sixth aspect of the invention is characterized in that in the above invention, the material is a plastic material having a relative dielectric constant of 3.5 or less. By lowering the dielectric constant as compared with a commonly used pressboard product, , A stable structure is obtained by suppressing the variation of the dielectric breakdown due to the difference in the dielectric constant at the boundary surface between the rail and the oil passage.

【0012】以上は主として油絶縁を念頭においたもの
であるが、油の代わりにSF6 ガスまたはフロロカーボ
ンを使用しても素線絶縁をプラスティック(例えばPE
TあるいはPPS)とすることによりほぼ同様の効果を
期待できる。
The above description is mainly made with oil insulation in mind. However, even if SF 6 gas or fluorocarbon is used instead of oil, the wire insulation is made plastic (for example, PE).
By setting T or PPS, almost the same effect can be expected.

【0013】[0013]

【作用】このようにすると、最内側ターン間の絶縁寸法
のみ増す方法をとってやれば直列静電容量の減少の程度
は僅かでほぼ寸法増加に反比例してターン間平均電界強
度が低下するため、端部最大電界強度が下がる。したが
って素線端部電界強度を許容一定値以下に押さえる範囲
で主ギャップ方向平均電界強度をあげること、言い換え
れば主ギャップ寸法をより低減することが可能となる。
この場合、挿入する絶縁物としてエラストマーを採用す
ることによりその形をかえれば容易に各種寸法の素線に
密着する形状に連続押し出し成形が可能であり比較的安
価に特殊な形状の絶縁物を入手することが可能である。
さらにその可とう性がよいことから巻線への取り付けに
際しても作業性がよく素線導体によく密着させることが
可能である。
In this way, if the method of increasing only the insulation dimension between the innermost turns is adopted, the decrease in series capacitance is slight, and the average electric field strength between turns decreases almost in inverse proportion to the increase in dimension. , The maximum electric field strength at the edges decreases. Therefore, it is possible to increase the average electric field strength in the main gap direction within a range in which the electric field strength at the end of the wire is kept below an allowable fixed value, in other words, it is possible to further reduce the size of the main gap.
In this case, by adopting an elastomer as the insulator to be inserted, it is possible to easily change the shape and continuously extrude into a shape that closely adheres to the wires of various sizes, and obtain an insulator with a special shape at a relatively low cost. It is possible to
Further, since it is flexible, it has good workability when attached to the winding wire and can be closely attached to the wire conductor.

【0014】[0014]

【実施例】以下本発明の一実施例について図面を参照し
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0015】図1は本発明に係るハイセルキャップ円板
巻線の線路端部の一部を示した断面図である。素線絶縁
1を施した導体1を基礎絶縁筒3上に等間隔で並べられ
たレール4を介してその上に半径方向に円板状に素線導
体1中に記入された順番に電位が与えられるように巻
き、セクション間にはレール4に嵌合するように指定厚
さのスペーサ5を円周方向に並べセクションを構成す
る。このとき最内側素線と2番目の素線との間にエラス
トマーにより成形された間隔片6を挿入して巻き上げ
る。
FIG. 1 is a sectional view showing a part of a line end portion of a high cell cap disk winding according to the present invention. The conductors 1 with the wire insulation 1 are arranged on the basic insulation cylinder 3 via the rails 4 arranged at equal intervals, and the potentials are formed in a disk shape in the radial direction on the conductors in the order in which they are written in the wire conductor 1. The sections are arranged in the circumferential direction such that the spacers 5 are wound so as to be provided and the rails 4 are fitted between the sections in a specified thickness. At this time, the spacing piece 6 made of an elastomer is inserted between the innermost wire and the second wire and wound up.

【0016】図14の従来構造での電界解析例では最電界
集中部は最内側素線端部であり、この値を主ギャップ寸
法、セクション間寸法、ターン間寸法を変えて調査した
結果、最大電界強度は、 A×主ギャップ方向平均電界+B×ターン間平均電界 …3式 (A,Bは定数) でほぼ近似できることが判った。先に見たようにこの部
分の破壊電界強度は1式で表されることが実験的に求め
られており導体1の寸法および素線絶縁2の厚さが決ま
るとほぼ一義的に破壊電界が決まることとなる。したが
って、よりコンパクトな設計を狙って主ギャップ寸法を
短縮しようとすると主ギャップ方向平均電界が上昇する
ため、素線端部最大電界強度を一定に押さえるためには
ターン間平均電界強度を下げる必要がある。このための
方法としてはハセルキャップ巻線の雷サージに対する電
位分布特性をさらに改善してターン間にかかる分担電圧
を下げる方法とターン間の寸法を増す方法とがある。前
者についてはさておいて後者で素線絶縁2の厚さを全体
として増すことは、雷サージ侵入に対して巻線の等価回
路上から見るとターン間の直列の静電容量が減少しかえ
ってターン間にかかる分担電圧としては増加し、素線絶
縁厚さを増したことによるターン間電界強度の低減には
寄与しないこととなる。しかし本発明のように最内側タ
ーン間の絶縁寸法のみ増す方法をとってやれば直列静電
容量の減少の程度は僅かでほぼ寸法増加に反比例してタ
ーン間平均電界強度が低下するため、端部最大電界強度
が下がる。したがって素線端部電界強度を許容一定値以
下に押さえる範囲で主ギャップ方向平均電界強度をあげ
ること、言い換えれば主ギャップ寸法をより低減するこ
とが可能となる。この場合、挿入する絶縁物としてエラ
ストマーを採用することによりその形をかえれば容易に
各種寸法の素線に密着する形状に連続押し出し成形が可
能であり比較的安価に特殊な形状の絶縁物を入手するこ
とが可能である。さらにその可とう性がよいことから巻
線への取り付けに際しても作業性がよく素線導体によく
密着させることが可能である。
In the example of the electric field analysis in the conventional structure shown in FIG. 14, the most electric field concentrated portion is the innermost wire end portion, and as a result of investigating this value by changing the main gap size, the section size, and the turn size, the maximum It was found that the electric field strength can be approximated by the following formula: A × average electric field in main gap direction + B × average electric field between turns (3) (A and B are constants). As has been seen previously, it has been experimentally determined that the breakdown electric field strength at this portion is expressed by one equation, and when the dimensions of the conductor 1 and the thickness of the wire insulation 2 are determined, the breakdown electric field is almost uniquely determined. It will be decided. Therefore, the average electric field in the main gap direction rises when the main gap size is shortened aiming at a more compact design. Therefore, it is necessary to lower the inter-turn average electric field strength in order to keep the maximum electric field strength at the end of the wire constant. is there. As a method for this, there are a method of further improving the potential distribution characteristic of the Haselcap winding against lightning surges to reduce the shared voltage applied between turns and a method of increasing the dimension between turns. Regarding the former, by increasing the thickness of the wire insulation 2 as a whole in the latter, the series capacitance between turns decreases when viewed from the equivalent circuit of the winding against lightning surge intrusion. Therefore, the shared voltage applied to the wire does not contribute to the reduction of the electric field strength between turns due to the increase in the thickness of the wire insulation. However, if the method of increasing only the insulation dimension between the innermost turns as in the present invention is adopted, the degree of decrease in series capacitance is slight and the average electric field strength between turns decreases in inverse proportion to the increase in dimension. The maximum electric field strength decreases. Therefore, it is possible to increase the average electric field strength in the main gap direction within a range in which the electric field strength at the end of the wire is kept below an allowable fixed value, in other words, it is possible to further reduce the size of the main gap. In this case, by adopting an elastomer as the insulator to be inserted, it is possible to easily change the shape and continuously extrude into a shape that closely adheres to the wires of various sizes, and obtain an insulator with a special shape at a relatively low cost. It is possible to Further, since it is flexible, it has good workability when attached to the winding wire and can be closely attached to the wire conductor.

【0017】次に第二の発明の実施例について図面を参
照して説明する。図2は本発明に係る円板状巻線の線路
端部の一部を示した断面略図である。素線絶縁2を施し
た導体1を基礎絶縁筒3上に等間隔で並べられたレール
4を介してその上に半径方向に円板状に外径側から内径
側に向かって、次のセクションでは内径側から外径形側
に向かって順次巻きセクション間にはレール4に嵌合す
るように指定厚さのスペーサ5を円周方向に並べセクシ
ョンを構成する。このとき最内側素線をレール4上に巻
き付けるとき、素線の内周にエラストマーにより成形さ
れた電界緩和詰物7を密着させながら巻き上げる。
Next, an embodiment of the second invention will be described with reference to the drawings. FIG. 2 is a schematic cross-sectional view showing a part of the line end of the disk-shaped winding according to the present invention. The conductor 1 having the wire insulation 2 is provided on the basic insulation cylinder 3 via the rails 4 arranged at equal intervals, and is formed in a disk shape in the radial direction on the next section from the outer diameter side to the inner diameter side. Then, in order from the inner diameter side to the outer diameter side, the spacers 5 of the specified thickness are circumferentially arranged so as to be fitted to the rails 4 between the winding sections to form sections. At this time, when the innermost wire is wound around the rail 4, the electric field relaxation filling 7 formed of an elastomer is wound around the inner circumference of the wire while closely contacting the wire.

【0018】図13の電界解析例で示したように巻線内で
の最電界集中部は最内側素線端部であり、絶縁破壊はス
ペーサ5と導体素線絶縁2との間でできる楔状ギャップ
部でスペーサ5の界面での電界分布がギャップ空間とス
ペーサの比誘電率の違いから図16に示したように不連続
になり、この値が限度値を超すと起こるもので、この限
度値はギャップ空間のみの時の破壊電界強度よりも大幅
に低下することが判っている。したがって、この弱点部
分に絶縁耐力がギャップ構成材(絶縁油)よりも高く比
誘電率がスペーサ構成材と比較的近いエラストマー7を
充填することにより、その楔ギャップが無くなり、また
導体1から絶縁耐力的に最も弱い油ギャップ部が遠ざか
ることにより油ギャップにかかる最大電界強度も弱まる
ため低圧の向上が得られる。
As shown in the electric field analysis example of FIG. 13, the most electric field concentrated portion in the winding is the innermost wire end portion, and the dielectric breakdown is a wedge shape formed between the spacer 5 and the conductor wire insulation 2. The electric field distribution at the interface of the spacer 5 in the gap becomes discontinuous as shown in Fig. 16 due to the difference in the relative permittivity of the gap space and the spacer, and this value occurs when it exceeds the limit value. Has been found to be significantly lower than the breakdown electric field strength when there is only a gap space. Therefore, by filling this weak point with the elastomer 7 whose dielectric strength is higher than that of the gap constituent material (insulating oil) and whose relative dielectric constant is relatively close to that of the spacer constituent material, the wedge gap is eliminated, and the dielectric strength from the conductor 1 is eliminated. Since the weakest oil gap portion is moved away from the target, the maximum electric field strength applied to the oil gap is also weakened, so that the low pressure can be improved.

【0019】このように耐圧の向上が可能となることに
より主ギャップ絶縁寸法あるいはセクション間寸法を縮
小化させることができ、高占積率でコンパクトな巻線を
提供することが可能となる。また、エラストマーによる
一体成形品であるため可とう性があり形状保持力も十分
なため巻線への取り付け作業も容易であり、また導体面
からの出っ張りがないため従来のL型アングルのように
油流の妨げになることはなく、またスペーサに切り欠き
加工をする必要もないなど、冷却性能、加工性で優れた
性能を発揮する。
Since the breakdown voltage can be improved as described above, the size of the main gap insulation or the size of the section can be reduced, and a compact winding with a high space factor can be provided. Also, since it is a one-piece molded product made of elastomer, it has flexibility and sufficient shape retention force, so it is easy to attach it to the winding wire. Also, since there is no protrusion from the conductor surface, there is no oil like the conventional L-shaped angle. It does not interfere with the flow and does not need to be processed with a notch in the spacer, so it has excellent cooling performance and workability.

【0020】第一の発明と第二の発明を併用した場合の
巻線断面部分図を図3に示すが、この場合はその効果が
重畳され間隔片6の挿入により最内側導体1の端部電界
が緩和され、さらに電界緩和詰物7の挿入により最弱点
部である楔油ギャップ部がなくなると同時に絶縁的に耐
力の最も低い油ギャップ部を導体から遠ざけることによ
り、よりコンパクトな変圧器の提供が可能となる。さら
にこの場合間隔片6として電界緩和詰物7と同じ物を平
坦な面を合わせて2枚使用することが可能である。図4
にその取り付け状況を示す。こうすれば材料としてエラ
ストマーを使用すれば一種類の押し出し成形型をつくる
ことにより連続的に長尺の電界緩和詰物7の断面形状の
物を作ることができそれを必要な長さに切断することに
より容易に対応ができ、非常に安価に巻線の耐圧向上と
コンパクト化が達成可能となる。素線導体1の端面の曲
げ半径は規格化されており素線絶縁2の厚さは適用され
る電圧階級がUHVあるいは500kV と限定されることか
らほぼ固定された値となり詰物7の端部形状は1〜3種
類程度に限定できる。また、幅方向についても導体1の
幅に対応して5〜6種類あれば良いことから詰物7の製
造も比較的安価に対応が可能である。
FIG. 3 shows a partial sectional view of the winding when the first invention and the second invention are used together. In this case, the effect is superposed and the end portion of the innermost conductor 1 is inserted by inserting the spacing piece 6. The electric field is alleviated, and further, the insertion of the electric field alleviation padding 7 eliminates the wedge oil gap, which is the weakest point, and at the same time, the oil gap having the lowest dielectric strength is moved away from the conductor, thereby providing a more compact transformer. Is possible. Further, in this case, it is possible to use the same two pieces of the electric field relaxation filling material 7 as the spacing pieces 6 with their flat surfaces aligned. Figure 4
Shows the installation status. In this way, if an elastomer is used as the material, it is possible to continuously produce a long electric field relaxation filling material 7 having a cross-sectional shape by making one type of extrusion molding die, and cut it to the required length. Therefore, it is possible to easily cope with this, and it is possible to improve the withstand voltage of the winding and to make it compact at a very low cost. The bending radius of the end face of the wire conductor 1 is standardized, and the thickness of the wire insulation 2 is a fixed value because the applied voltage class is limited to UHV or 500 kV. Can be limited to about 1 to 3 types. Also, in the width direction, it is sufficient that there are 5 to 6 types corresponding to the width of the conductor 1, so that the filling 7 can be manufactured at a relatively low cost.

【0021】発明の第四は図1でセクション間を構成す
るスペーサ5に代えてその両表面に形状としてはほぼス
ペーサ5と同一で、厚さが0.1 〜1mmの比誘電率3.5 以
下のエラストマーを配置して構成することを特徴とする
ものである。その構成を図5及び図6に示す。
In the fourth aspect of the invention, instead of the spacer 5 constituting the section in FIG. 1, an elastomer having the same shape as that of the spacer 5 on both surfaces and having a relative dielectric constant of 3.5 or less having a thickness of 0.1 to 1 mm is used. It is characterized by being arranged and configured. The structure is shown in FIGS.

【0022】巻線は運転中に系統での地絡事故などによ
り大きな電磁機械力を受ける。この力に耐えるためには
変圧器製作時に巻線に十分な軸方向締付け圧縮力を加え
ておくと同時に使用するスペーサ5の材料としては電磁
機械力が働いたときスペーサが一種のバネの働きをする
ため、できるだけ剛性の高い材質を使用することが大容
量器では一般である。本発明のエラストマースペーサ8
を巻線セクション導体1に接して配置した場合、製作時
の巻線締付力によりエラストマースペーサ8は容易に変
形し、図7に示すように素線間の楔状ギャップを埋める
形となる。したがってエラストマーの厚さとしてはその
変形のしやすさによっても多少変わるが指定の圧力によ
って導体にできる楔状ギャップを埋める程度の厚さを選
定すればよい。このように圧縮変形した後のエラストマ
ー8は導体1とスペーサ5との間に挾まれ瞬間的に働く
電磁機械力に対しては体積変化を生じる余地がないため
剛体として作用することから十分高い剛性を示し、セク
ション全体としては使用されるスペーサ5の材質の剛性
に近い値となり電磁機械力に対し十分高い信頼性を保持
することが可能である。
The winding receives a large electromagnetic mechanical force during operation due to a ground fault in the system or the like. In order to withstand this force, a sufficient compressive axial compression force should be applied to the windings when the transformer is manufactured. At the same time, the spacer 5 used as a material for the spacer 5 acts as a kind of spring when electromagnetic mechanical force acts. Therefore, it is common for large capacity devices to use a material having as high rigidity as possible. Elastomer spacer 8 of the present invention
Is arranged in contact with the winding section conductor 1, the elastomer spacer 8 is easily deformed by the winding tightening force at the time of manufacture, and the wedge-shaped gap between the strands is filled as shown in FIG. Therefore, as the thickness of the elastomer, it may be changed to some extent depending on the easiness of deformation, but it is sufficient to select a thickness enough to fill the wedge-shaped gap formed in the conductor by a specified pressure. The elastomer 8 thus compressed and deformed is sandwiched between the conductor 1 and the spacer 5, and there is no room for volume change with respect to an electromagnetic mechanical force that acts instantaneously. The value is close to the rigidity of the material of the spacer 5 used for the entire section, and it is possible to maintain sufficiently high reliability against electromagnetic mechanical force.

【0023】セクション間絶縁で絶縁上最弱点となる最
内側素線端部の絶縁強度を前記第一、第二の発明により
強化した場合、次に弱点となる部分はハイセルキャップ
巻線のターン間電界強度によるターン楔状ギャップ部で
のスペーサ5の界面での破壊である。この現象について
は前記の端部と同一である。これに対し本発明の構造に
よれば図7に示すように素線間の楔状ギャップ部を油よ
りも絶縁耐力の高いエラストマーでほぼ埋める形とな
る。このためセクション間絶縁としてはスペーサのない
一般部分での素線間楔状ギャップ部分での破壊でほぼ決
まる値まで耐力を向上させることができ、セクション間
絶縁寸法あるいは素線絶縁厚さの低減によるコンパクト
化が可能となる。
When the insulation strength of the end of the innermost wire, which is the weakest point in terms of insulation in inter-section insulation, is enhanced by the first and second inventions, the next weakest point is the turn of the high cell cap winding. It is destruction at the interface of the spacer 5 in the turn wedge-shaped gap portion due to the inter-field strength. This phenomenon is the same as the above-mentioned end portion. On the other hand, according to the structure of the present invention, as shown in FIG. 7, the wedge-shaped gap between the wires is substantially filled with the elastomer having a higher dielectric strength than oil. Therefore, for inter-section insulation, it is possible to improve the proof strength to a value that is almost determined by the breakdown in the wedge-shaped gap between strands in the general area without spacers. Can be realized.

【0024】本エラストマーは薄く作業時変形し易く巻
線作業時に取り付けることは作業性が悪く手間がかか
る。したがってスペーサ単独の状態あるいはスペーサを
図5に示すような形状に切断する前の素材の状態でエラ
ストマーをあらかじめスペーサ5に接着ないしは熱溶着
などにより一体化をしておくことにより作業性を改善す
ることが可能となる。
This elastomer is thin and easily deformed at the time of working, and it is troublesome and time-consuming to attach it at the time of winding work. Therefore, the workability can be improved by preliminarily adhering the elastomer to the spacer 5 or integrating the same with the spacer 5 in the state of the spacer alone or the material before the spacer is cut into the shape as shown in FIG. Is possible.

【0025】発明の第六の実施例について図面を参照し
て説明する。図8は本発明に係る円板状巻線の断面図を
示したものである。絶縁筒3上に等間隔に中央部が薄く
両端が厚いレール9を並べその上に円板状に巻線を巻き
上げた物である。図9および図10に段付レールの側面図
を示す。中央のレールの薄い部分は冷却のための油道と
しては寸法が小さく、冷却に必要な油量を流すことがで
きないため、セクション間に軸方向に油を通すため中間
油道用間隔片10を巻き込んで油道を形成している。
A sixth embodiment of the invention will be described with reference to the drawings. FIG. 8 shows a cross-sectional view of the disk-shaped winding according to the present invention. A rail 9 having a thin central portion and thick ends is arranged on the insulating cylinder 3 at equal intervals, and a disk-shaped winding is wound on the rail 9. 9 and 10 show side views of the stepped rail. Since the thin part of the center rail is small as an oil passage for cooling and it is not possible to flow the amount of oil required for cooling, the intermediate oil passage spacing piece 10 is used to pass oil axially between the sections. Entrained to form an oil passage.

【0026】高低圧巻線間の主ギャップ絶縁の寸法は前
記線路端部最内側素線端部絶縁を除くと主ギャップを構
成するバリヤ絶縁の各バリヤ間の油道寸法で決まる許容
電界により決定される。この許容電界は油道寸法との間
に2式が成り立つためバリヤ間油道を小さくすることに
より許容電界強度が上昇し、主ギャップ寸法としては短
縮することが可能である。しかし巻線全体を見ると電気
的には線路端である巻線中央部が一番高く、端の中性点
端(単巻変圧器の場合は中圧線路端)に近づくほど電位
は低くなる。このように巻線全長で見た場合主ギャップ
にかかる電界辻度は一様でなく線路端部が高く中性点端
は低い。したがって、線路端から離れるにしたがって電
界強度が下がることから許容電界強度から決まる油道寸
法も中性点端に近付くほど大きくてよいことになる。し
たがって電界強度的に許される範囲では一般の変圧器の
標準構造である巻線内側レール部分を軸方向油道とする
ことのほうが巻線に中間油道を付けるよりも価格上昇を
押さえメリットが生じる。以上述べたように主ギャップ
の電界強度の高い部分では巻線の作業性は多少犠牲にし
ても巻線に隣接した主ギャップ油道を小さくして、その
絶縁破壊許容電界強度を高めることにより変圧器のコン
パクト化を行うことのほうがコストメリットは大きくな
るが、電界強度的にその必要性がなくなった部分では標
準構造として巻線作業性を追及することにより巻線とし
ての体格には影響を与えず価格を低減できる効果が生じ
る。
The size of the main gap insulation between the high and low voltage windings is determined by the allowable electric field determined by the oil passage size between the barriers of the barrier insulation that constitutes the main gap except for the line end innermost strand end insulation. It Since this allowable electric field and the size of the oil passage satisfy the two equations, the allowable electric field strength is increased by reducing the oil passage between the barriers, and the main gap size can be shortened. However, looking at the winding as a whole, the center of the winding, which is the end of the line electrically, is the highest, and the potential becomes lower as it approaches the neutral point end (the end of the medium voltage line in the case of an autotransformer). .. In this way, when viewed along the entire length of the winding, the electric field intensity applied to the main gap is not uniform and the line end is high and the neutral point end is low. Therefore, the electric field strength decreases as the distance from the line end increases, so that the oil passage size determined by the allowable electric field strength may be increased as the position approaches the neutral point end. Therefore, in the range where the electric field strength is allowed, using the rail inside the winding, which is the standard structure of general transformers, as the oil passage in the winding direction has a merit of suppressing the price increase rather than providing an intermediate oil passage in the winding. .. As described above, in the part where the electric field strength of the main gap is high, even if the workability of the winding is sacrificed to some extent, the main gap oil passage adjacent to the winding is made smaller and the allowable breakdown electric field strength is increased to transform Although the cost merit will be greater if the equipment is made more compact, the physical structure of the winding will be affected by pursuing the workability of the winding as a standard structure in the part where the need for electric field strength is eliminated. Therefore, the price can be reduced.

【0027】図11に他の実施例を示す。図8では軸方向
中間油道位置を半径方向でそろえる目的で、巻線の電位
は巻線の全長でほぼ連続的に変化するが、構造的には電
界強度的に問題の生じなくなる場所を境に油道構造を変
えている。しかし、巻線の全長とレール厚さの変化を考
えてみると大容量変圧器を考えた場合長さは約2mに対
し厚さ変化はたかだか6〜8mm程度であり、この程度で
あれば中間油道位置が半径方向的に変わることによる冷
却面での影響は無視できる。むしろ電位的には全長で連
続的に変化していることから油道寸法も連続的に変えた
方が油道の許容電界強度も連続的に変化し巻線全長にわ
たっての裕度の連続性という点から見ても好ましい。さ
らに大容量器では運転中に巻線にかかる電磁機械力によ
り軸方向力が働くことになるが、図9の方式に比べ図11
の方が巻線の支持という点で連続性がありより好ましい
といえる。
FIG. 11 shows another embodiment. In FIG. 8, the electric potential of the winding changes almost continuously over the entire length of the winding in order to align the axial intermediate oil passage positions in the radial direction, but at a position where the electric field strength does not cause a problem structurally. The oil passage structure is changed to. However, considering the change in the total length of the winding and the rail thickness, when considering a large-capacity transformer, the change in thickness is about 6 to 8 mm for a length of about 2 m. The effect on the cooling surface due to the radial change of the oil passage position can be ignored. Rather, since the potential changes continuously over the entire length, continuously changing the oil passage size also changes the allowable electric field strength of the oil passage continuously, which is called continuity of tolerance over the entire winding length. It is also preferable from the point of view. Furthermore, in a large-capacity device, an axial force acts due to the electromagnetic mechanical force applied to the winding wire during operation.
It is more preferable that the method has continuity in terms of supporting the winding.

【0028】レール材質としては一般にプレスボード材
が使用されるがプレスボードの比誘電率は油の2.2 に対
し4.5 程度と高くバリヤ絶縁構造の場合、電気的に油ギ
ャップとプレスボードレールとの並列構造となる訳であ
るが絶縁的にはその境界面が弱点となることが多く平均
絶縁耐力的にも耐圧のばらつきもレールが無い場合に比
べ劣ることが実験的に確かめられている。構造上レール
を省略することは困難であることから入れた場合の影響
を最小化することが好ましい。このような目的から図9
または図11のレール9に比誘電率がプレスボードに比較
して油に近いプラスティックを使用することにより、よ
り絶縁耐力に優れ安定した変圧器を提供することが可能
となる。
Press board material is generally used as the rail material, but the relative permittivity of the press board is as high as about 4.5 compared to 2.2 for oil, and in the case of a barrier insulation structure, the oil gap is electrically parallel to the press board rail. Although it is a structure, it has been experimentally confirmed that, in terms of insulation, the interface is often a weak point and the average dielectric strength and the variation in withstand voltage are inferior to those without rails. Since it is difficult to omit the rail because of its structure, it is preferable to minimize the influence when the rail is inserted. For such a purpose, FIG.
Alternatively, by using a plastic whose relative dielectric constant is closer to oil than that of the press board for the rail 9 in FIG. 11, it is possible to provide a stable transformer having a higher dielectric strength.

【0029】以上の記述は主として油入変圧器を対象と
して述べてきたが近時実用化が進められているガス絶縁
またはフロロカーボン絶縁変圧器においてもその効果は
減るものではなく、特にガス絶縁の場合その特性から油
より一層絶縁破壊は電界強度に依存することから発明
1.2,4においてはその効果は助長されることにな
る。なお、この場合は素線絶縁としては油入変圧器で使
用されるクラフト紙に替わってプラスティックを使用し
た方が絶縁耐力的により優れていることはいうまでもな
い。
The above description has been made mainly for oil-filled transformers, but the effect is not diminished even in gas-insulated or fluorocarbon-insulated transformers which have recently been put into practical use, and particularly in the case of gas-insulated transformers. Because of the characteristics, the dielectric breakdown is more dependent on the electric field strength than the oil, so that the effects are promoted in Inventions 1.2 and 4. In this case, needless to say, it is better to use plastic as the wire insulation in place of the kraft paper used in the oil-filled transformer because of its better dielectric strength.

【0030】[0030]

【発明の効果】以上のように本発明によれば、相隣り合
う円板状巻線を構成するセクション間でその間に加わる
最大電位差素線を巻線の内径側から2ターン目に配置し
たハイセルキャップ巻線において、最内側素線とその隣
接素線間にほぼ素線形状に合った形に成形された高弾性
プラスティック間隔片を挿入して巻回するようにしたの
で、絶縁特性に優れ、巻線の高占積率を達成し、しかも
使用材料も高価とならず、作業性に優れた静止誘導電器
の巻線を得ることができる。
As described above, according to the present invention, the maximum potential difference wire added between the sections constituting the adjacent disk-shaped windings is arranged at the second turn from the inner diameter side of the winding. In the cell cap winding, a high-elasticity plastic spacing piece formed in a shape that almost matches the shape of the wire is inserted between the innermost wire and its adjacent wire, so that the wire is wound and the insulation characteristics are excellent. In addition, it is possible to obtain a winding wire of a static induction machine which achieves a high space factor of the winding wire, does not require expensive materials, and is excellent in workability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による静止誘導電機機器巻線の線路端部
の一部を示した断面図。
FIG. 1 is a sectional view showing a part of a line end of a winding of a static induction electric device according to the present invention.

【図2】他の実施例を示した巻線の線路端部の一部の断
面図。
FIG. 2 is a sectional view of a part of a line end portion of a winding showing another embodiment.

【図3】他の実施例を示した巻線の線路端の一部の断面
図。
FIG. 3 is a sectional view of a part of a line end of a winding showing another embodiment.

【図4】図3で最内側素線に電界緩和詰物と間隔片とを
取り付けた状態を示す断面部分図。
FIG. 4 is a partial cross-sectional view showing a state in which an electric field relaxation filling material and a spacing piece are attached to the innermost wire in FIG.

【図5】本発明の巻線用スペーサの平面図。FIG. 5 is a plan view of a winding spacer of the present invention.

【図6】図5の側面図。FIG. 6 is a side view of FIG.

【図7】スペーサを巻線に取り付けたときの状況を示す
断面拡大図。
FIG. 7 is an enlarged cross-sectional view showing a situation where a spacer is attached to a winding.

【図8】本発明によるレールを取り付け状況を示す巻線
断面図。
FIG. 8 is a winding cross-sectional view showing how the rail according to the present invention is attached.

【図9】レールの側面図。FIG. 9 is a side view of the rail.

【図10】レールの断面側面図。FIG. 10 is a sectional side view of the rail.

【図11】レールの他の実施例を示す側面図。FIG. 11 is a side view showing another embodiment of the rail.

【図12】ハイセルキャップ巻線の巻き方を示す断面概
念図。
FIG. 12 is a conceptual sectional view showing how to wind a high cell cap winding.

【図13】ハイセルキャップ巻線に雷インパルス電圧を
加えたときの巻線線路端部分の電界の集中状況を示す電
界解析例。
FIG. 13 is an electric field analysis example showing a state of electric field concentration at a winding line end portion when a lightning impulse voltage is applied to the high cell cap winding.

【図14】ハイセルキャップ巻線の巻き方の他の例をし
めす断面概念図。
FIG. 14 is a conceptual sectional view showing another example of how to wind a high cell cap winding.

【図15】巻線線路端の素線への電界集中を緩和するた
めの従来方法の巻線断面部分図。
FIG. 15 is a partial cross-sectional view of a winding of a conventional method for relaxing electric field concentration on a wire at the end of a winding wire.

【図16】スペーサにより電界が不連続となる状況を示
す電界解析例。
FIG. 16 is an electric field analysis example showing a situation in which an electric field is discontinuous due to a spacer.

【符号の説明】[Explanation of symbols]

1…導体、2…素線絶縁、3…基礎絶縁筒、4…レー
ル、5…スペーサ、6…間隔片、7…電界緩和詰物、8
…高弾性プラスティックスペーサ、9…段付レール、10
…中間油道用詰物、11…L形絶縁物
DESCRIPTION OF SYMBOLS 1 ... Conductor, 2 ... Elemental insulation, 3 ... Basic insulation cylinder, 4 ... Rail, 5 ... Spacer, 6 ... Spacing piece, 7 ... Electric field relaxation packing, 8
… High-elasticity plastic spacers, 9… Stepped rails, 10
… Filling for intermediate oilways, 11… L type insulation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 相隣り合う円板状巻線を構成するセクシ
ョン間でその間に加わる最大電位差素線を巻線の内径側
から2ターン目に配置したハイセルキャップ巻線におい
て、最内側素線とその隣接素線間にほぼ素線形状に合っ
た形に成形された高弾性プラスティック間隔片を挿入し
て巻回したことを特徴とする静止誘導電器の巻線。
1. A high cell cap winding in which a maximum potential difference wire applied between the sections constituting adjacent disk-shaped windings is arranged at the second turn from the inner diameter side of the winding, and the innermost wire is provided. A winding of a static induction electric device, characterized in that a high-elasticity plastic spacing piece formed into a shape substantially conforming to the shape of a wire is inserted and wound between the adjacent wire and the adjacent wire.
【請求項2】 円板状巻線を構成するセクションで、そ
の最内側素線の内径側に密着して片面は平坦で片面は素
線形状に合った形で、幅は素線絶縁上幅寸法にほぼ同じ
で適当な厚さに成形された高弾性プラスティック電界緩
和詰物を当てて巻回したことを特徴とする静止誘導電器
の巻線。
2. A section constituting a disk-shaped winding, which is in close contact with the inner diameter side of the innermost strand of the wire, has one side flat and one side conforming to the shape of the strand, and the width is the upper insulation width of the strand. A winding of a static induction electric device, characterized in that it is wound by applying a high-elasticity plastic electric field relaxation filling material having substantially the same size and an appropriate thickness.
【請求項3】 請求項1において、間に挿入する間隔片
として請求範囲2で使用した詰物と同じ形状の物をその
平坦な面を背中合わせとして使用したことを特徴とする
静止誘導電器の巻線。
3. The winding of a static induction electric machine according to claim 1, wherein a flat member having the same shape as that of the padding used in claim 2 is used as a backing piece to be inserted therebetween. ..
【請求項4】 円板状巻線を形成するためにセクション
間に円周方向に等間隔で配置されたスペーサにおいて巻
線セクションに接する面に厚さ0.1 〜1mmの高弾性プラ
スティックを配置し、残り厚さは圧縮特性に優れた絶縁
物で構成したことを特徴とする静止誘導電器の巻線。
4. A high elasticity plastic having a thickness of 0.1 to 1 mm is arranged on a surface in contact with the winding section in spacers arranged at equal intervals in a circumferential direction between the sections to form a disk-shaped winding, Remaining thickness is a winding of a static induction machine characterized by being made of an insulator with excellent compression characteristics.
【請求項5】 線路端を巻線高さ中央部に配置し、上下
2回路で構成される円板状巻線において、巻線基礎絶縁
筒上に等間隔で配置したレールの厚さを巻線中央部では
薄く、巻線端部では厚くし、その上に巻線を巻回するこ
とを特徴とした静止誘導電器の巻線。
5. A disk-shaped winding having a line end arranged at the center of the winding height and comprising two upper and lower circuits, and winding the thickness of rails arranged at equal intervals on a winding basic insulating cylinder. A winding of a static induction electric device, characterized in that the central part of the wire is thin and the end part of the wire is thick, and the winding is wound on it.
【請求項6】 請求項5でレール材質として比誘電率3.
5 以下のプラスティック材を使用した静止誘導電器の巻
線。
6. The relative permittivity of the rail material according to claim 5 is 3.
Winding of a static induction machine using plastic material of 5 or less.
【請求項7】 請求項1乃至6において素線絶縁として
プラスティックフィルムを使用したSF6 ガス入あるい
はパーフロロカーボン入静止誘導電器の巻線。
7. The winding of an SF 6 gas-filled or perfluorocarbon-filled static induction electric device according to claim 1, wherein a plastic film is used as the wire insulation.
JP3325455A 1991-12-10 1991-12-10 Winding for stationary induction device Pending JPH05159943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3325455A JPH05159943A (en) 1991-12-10 1991-12-10 Winding for stationary induction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3325455A JPH05159943A (en) 1991-12-10 1991-12-10 Winding for stationary induction device

Publications (1)

Publication Number Publication Date
JPH05159943A true JPH05159943A (en) 1993-06-25

Family

ID=18177061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3325455A Pending JPH05159943A (en) 1991-12-10 1991-12-10 Winding for stationary induction device

Country Status (1)

Country Link
JP (1) JPH05159943A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447040B1 (en) * 2009-06-05 2014-10-06 엘에스산전 주식회사 Cast resin transformer and its making method
JP2020068356A (en) * 2018-10-26 2020-04-30 東芝産業機器システム株式会社 Stationary induction apparatus winding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447040B1 (en) * 2009-06-05 2014-10-06 엘에스산전 주식회사 Cast resin transformer and its making method
JP2020068356A (en) * 2018-10-26 2020-04-30 東芝産業機器システム株式会社 Stationary induction apparatus winding

Similar Documents

Publication Publication Date Title
JP2000173836A (en) Electrostatic induction equipment
US8183972B2 (en) Oil filled transformer with spacers and spacers for separating and supporting stacked windings
US3996544A (en) Cylindrical winding for induction electrical apparatus
JPH05159943A (en) Winding for stationary induction device
JPS6260801B2 (en)
US3548357A (en) Encapsulated electrical inductive apparatus
CA3033409C (en) High voltage cable for a winding and electromagnetic induction device comprising the same
JP3593484B2 (en) Disk winding of stationary induction machine
WO2017067798A1 (en) Dry type cast transformer with flexible connection terminal
US3691498A (en) Resin impregnated transformer coil assembly
JP2017016852A (en) Capacitor bushing and manufacturing method thereof
JPH05291060A (en) Transformer winding wire
US3307074A (en) Transformer structure with built-in overvoltage protection
JP6789862B2 (en) Rest inducer
JP3520181B2 (en) Mold type current transformer
JPH10340818A (en) Winding for induction electrical appliance
JPH05190354A (en) Stationary induction machine
JPS6212645B2 (en)
JPH09219327A (en) Transformer
JPS6344283B2 (en)
JPS6344282B2 (en)
KR960002437Y1 (en) Gas insulation condensor for three-phase
JPH04123410A (en) Transformer
JPH03138916A (en) Static induction device
JPS63211710A (en) Multiplex cylindrical coil winding