JPH05159917A - Fluorosilicon ferromagnetic fine particle and its manufacture, and magnetic fluid and its manufacture - Google Patents

Fluorosilicon ferromagnetic fine particle and its manufacture, and magnetic fluid and its manufacture

Info

Publication number
JPH05159917A
JPH05159917A JP32608391A JP32608391A JPH05159917A JP H05159917 A JPH05159917 A JP H05159917A JP 32608391 A JP32608391 A JP 32608391A JP 32608391 A JP32608391 A JP 32608391A JP H05159917 A JPH05159917 A JP H05159917A
Authority
JP
Japan
Prior art keywords
fluorosilicon
fine particles
ferromagnetic fine
chemical
magnetic fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32608391A
Other languages
Japanese (ja)
Inventor
Hideo Sawada
英夫 沢田
Norio Yoshino
則夫 好野
Takeo Matsumoto
竹男 松本
Masaharu Nakayama
雅陽 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP32608391A priority Critical patent/JPH05159917A/en
Publication of JPH05159917A publication Critical patent/JPH05159917A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/445Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids the magnetic component being a compound, e.g. Fe3O4

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Lubricants (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To elevate dispersion stability, and improve low torque, cold resistance, chemical resistance, and insulation property, and besides, remove the compatibility with water, etc., by silicifying ferromagnetic substance fine particles with fluorosilicon oligomer. CONSTITUTION:A fluorosilicon group is introduced into the surface of a ferromagnetic substance fine particle by silicifying a ferromagnetic fine particle such as magnetite, etc., with specified fluorosilicon oligomer. Next, this fluorosilicon ferromagnetic substance fine particle obtained is thrown in a low boiling point fluoric solvent so as to do cracking with a crusher. Next, a perfluoro solvent such as a kind of perfluoropolyether, etc., is added and is agitated and dispersed. Then, the low boiling point fluoric solvent is removed by heating the dispersed solution. Here, at need, an interface activator is added. Hereby, dispersion stability ups, and besides heat resistance and mechanical strength increases, and mechanical strength also increases, and besides compatibility to water and hydrocarbon oil can be removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規なフルオロシリコ
ン系強磁性体微粒子、磁性流体及びそれらの製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to novel fluorosilicon-based ferromagnetic fine particles, magnetic fluid, and a method for producing them.

【0002】[0002]

【従来の技術】磁性流体は、マグネタイト、フェライ
ト、鉄、コバルト等の強磁性体微粒子が液体中に分散す
る極めて安定なコロイド溶液であり、該溶液自体がみか
け上強い磁性を示すという特性を有する。故に液体であ
るにもかかわらず磁石等によりその挙動を自在に制御で
きるため、ダンピング剤、磁気ディスク等のシール機構
におけるシール剤又は航空宇宙用シーリング剤など種々
の分野で応用されている。
2. Description of the Related Art A magnetic fluid is an extremely stable colloidal solution in which ferromagnetic fine particles such as magnetite, ferrite, iron, cobalt, etc. are dispersed in a liquid, and the solution itself has a characteristic that it exhibits strong magnetic properties. .. Therefore, even though it is a liquid, its behavior can be freely controlled by a magnet or the like, and therefore it is applied in various fields such as a damping agent, a sealing agent in a sealing mechanism of a magnetic disk or a sealing agent for aerospace.

【0003】しかしながら、前述の分野においては、低
トルク、耐寒性、耐薬品性、絶縁性に加えて、さらに、
水及び炭化水素系オイルに対する相溶性のないことが要
求されているが、従来一般に用いられている炭化水素系
溶媒を分散溶液とした磁性流体においては、前述の要求
を十分に満たすことができないという問題がある。そこ
で、ペルフオロ系溶媒を分散溶液として用い、またフル
オロカーボン系界面活性剤の存在下にて、強磁性耐微粒
子を分散させた磁性流体が提案されているが(米国特許
第3,784,471号明細書)、該磁性流体において
は、界面活性剤とペルフルオロ系溶媒との親和性が、経
時的に低下し、磁性流体の分散安定性が劣化するという
問題がある。
However, in the above-mentioned fields, in addition to low torque, cold resistance, chemical resistance and insulation,
Although it is required that they are incompatible with water and hydrocarbon-based oils, it is said that the above-mentioned requirements cannot be sufficiently satisfied in magnetic fluids that are conventionally used as a dispersion solution of a hydrocarbon-based solvent. There's a problem. Therefore, there has been proposed a magnetic fluid in which ferromagnetic fine particles are dispersed in the presence of a fluorocarbon surfactant, using a perfluoro solvent as a dispersion solution (US Pat. No. 3,784,471). In the magnetic fluid, there is a problem that the affinity between the surfactant and the perfluoro solvent decreases with time, and the dispersion stability of the magnetic fluid deteriorates.

【0004】従って、ペルフルオロ系溶媒に対する分散
安定性の高い強磁性体微粒子及び分散安定性が高く、且
つ低トルク、耐寒性、耐薬品性、絶縁性に優れ、また水
及び炭化水素系オイルに対する相溶性のない磁性流体の
開発が強く望まれているのが現状である。
Accordingly, ferromagnetic fine particles having high dispersion stability in a perfluoro solvent and high dispersion stability, low torque, cold resistance, chemical resistance, and insulation properties, and a phase for water and hydrocarbon oils. At present, there is a strong demand for the development of magnetic fluids that are not soluble.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、ペル
フルオロ系溶媒等に対する分散安定性が高いフルオロシ
リコン系強磁性体微粒子及びその製造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide fluorosilicone ferromagnetic fine particles having a high dispersion stability in a perfluorosolvent and the like, and a method for producing the same.

【0006】また本発明の目的は、低トルク、耐寒性、
耐薬品性、絶縁性に優れ、また水及び炭化水素系オイル
に対する相溶性がなく、更には分散安定性に優れる磁性
流体及びその製造方法を提供することにある。
Another object of the present invention is low torque, cold resistance,
It is an object of the present invention to provide a magnetic fluid having excellent chemical resistance and insulating properties, having no compatibility with water and hydrocarbon oils, and having excellent dispersion stability, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明によれば、強磁性
体微粒子を、下記一般式化3で表わされるフルオロシリ
コンオリゴマー(以下フルオロシリコンオリゴマー1と
称す)でシリル化してなるフルオロシリコン系強磁性体
微粒子が提供される。
According to the present invention, a ferromagnetic silicon fine particle is obtained by silylating ferromagnetic fine particles with a fluorosilicon oligomer represented by the following general formula 3 (hereinafter referred to as fluorosilicon oligomer 1). Magnetic particles are provided.

【0008】[0008]

【化3】 [Chemical 3]

【0009】また本発明によれば、前記フルオロシリコ
ンオリゴマー1と強磁性体微粒子とを反応させることを
特徴とするフルオロシリコン系強磁性体微粒子の製造方
法が提供される。
Further, according to the present invention, there is provided a method for producing fluorosilicone-based ferromagnetic fine particles, which comprises reacting the fluorosilicone oligomer 1 with ferromagnetic fine particles.

【0010】更に本発明によれば前記フルオロシリコン
系強磁性体微粒子を主成分として含む磁性流体が提供さ
れる。
Further, according to the present invention, there is provided a magnetic fluid containing the fluorosilicon-based ferromagnetic fine particles as a main component.

【0011】更にまた本発明によれば前記フルオロシリ
コン系強磁性体微粒子をペルフルオロ系溶剤に分散させ
ることを特徴とする磁性流体の製造方法が提供される。
Further, according to the present invention, there is provided a method for producing a magnetic fluid, characterized in that the fluorosilicon-based ferromagnetic fine particles are dispersed in a perfluoro-based solvent.

【0012】以下本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0013】本発明のフルオロシリコン系強磁性体微粒
子は、特定のフルオロシリコンオリゴマーで強磁性体微
粒子をシリル化処理し、強磁性体微粒子の表面にフルオ
ロシリコン基を導入した強磁性体微粒子である。
The fluorosilicon-based ferromagnetic fine particles of the present invention are ferromagnetic fine particles obtained by subjecting the ferromagnetic fine particles to a silylation treatment with a specific fluorosilicon oligomer to introduce a fluorosilicon group on the surface of the ferromagnetic fine particles. ..

【0014】本発明の強磁性体微粒子の粒径は、50〜
1000Åの範囲とするのが好ましい。前記粒径が50
Å未満の場合には、製造が困難であり、1000Åを超
えると粒子が沈降して安定性が低下するので好ましくな
い。
The particle size of the ferromagnetic fine particles of the present invention is from 50 to 50.
It is preferably in the range of 1000Å. The particle size is 50
If it is less than Å, the production is difficult, and if it exceeds 1000 Å, the particles settle and the stability decreases, which is not preferable.

【0015】本発明のフルオロシリコン系強磁性体微粒
子において、前記強磁性体微粒子をシリル化処理する際
に用いる前記特定のフルオロシリコンオリゴマーは、前
記一般式化3で表わされるフルオロシリコンオリゴマー
1である。前記フルオロシリコンオリゴマー1におい
て、R2若しくはR3の炭素数が5以上の場合には、製造
が困難であり、またn1が10を超える場合又はn2が8
を超える場合には、溶媒に対する溶解性が低下するので
使用できない。更にmが10を超える場合には、製造が
困難である。更にまた前記フルオロシリコンオリゴマー
1の平均分子量は、500〜10000の範囲とするの
が好ましい。前記平均分子量が、前記範囲外の場合には
製造が困難であるので好ましくない。
In the fluorosilicon-based ferromagnetic fine particles of the present invention, the specific fluorosilicon oligomer used when the ferromagnetic fine particles are subjected to the silylation treatment is the fluorosilicon oligomer 1 represented by the general formula 3. .. In the fluorosilicone oligomer 1, when R 2 or R 3 has 5 or more carbon atoms, it is difficult to produce, and when n 1 exceeds 10, or n 2 is 8
If it exceeds, the solubility in the solvent decreases, and therefore it cannot be used. Further, when m exceeds 10, the production is difficult. Furthermore, the average molecular weight of the fluorosilicone oligomer 1 is preferably in the range of 500 to 10,000. When the average molecular weight is out of the above range, the production is difficult, which is not preferable.

【0016】また前記フルオロシリコンオリゴマー1に
おいて、適用可能なRF、すなわち−(CF2)n1Xまた
は下記一般式化4を具体的に列挙すると、F3C−,F
(CF22−,F(CF23−,F(CF24−,F
(CF25−,F(CF26−,F(CF27−,F
(CF28−,F(CF29−,F(CF210−,H
CF2−,H(CF22−,H(CF23−,H(C
24−,H(CF25−,H(CF26−,H(CF
27−,H(CF28−,H(CF29−,H(C
210−,ClCF2−,Cl(CF22−,Cl(C
23−,Cl(CF24−,Cl(CF25−,Cl
(CF26−,Cl(CF27−,Cl(CF28−,
Cl(CF29−,Cl(CF210−,下記化学式化
5、化6、化7、化8、化9、化10、化11、化1
2、化13である。
In the fluorosilicone oligomer 1, the applicable RF, namely,-(CF 2 ) n 1 X or the following general formula 4 is specifically listed. F 3 C-, F
(CF 2 ) 2 −, F (CF 2 ) 3 −, F (CF 2 ) 4 −, F
(CF 2 ) 5 −, F (CF 2 ) 6 −, F (CF 2 ) 7 −, F
(CF 2 ) 8 −, F (CF 2 ) 9 −, F (CF 2 ) 10 −, H
CF 2 -, H (CF 2 ) 2 -, H (CF 2) 3 -, H (C
F 2 ) 4 −, H (CF 2 ) 5 −, H (CF 2 ) 6 −, H (CF
2) 7 -, H (CF 2) 8 -, H (CF 2) 9 -, H (C
F 2 ) 10 −, ClCF 2 −, Cl (CF 2 ) 2 −, Cl (C
F 2) 3 -, Cl ( CF 2) 4 -, Cl (CF 2) 5 -, Cl
(CF 2 ) 6 −, Cl (CF 2 ) 7 −, Cl (CF 2 ) 8 −,
Cl (CF 2 ) 9 −, Cl (CF 2 ) 10 −, the following chemical formulas 5, 5, 6, 7, 8, 9, 10, 11, and 1
2 and 13

【0017】[0017]

【化4】 [Chemical 4]

【0018】[0018]

【化5】 [Chemical 5]

【0019】[0019]

【化6】 [Chemical 6]

【0020】[0020]

【化7】 [Chemical 7]

【0021】[0021]

【化8】 [Chemical 8]

【0022】[0022]

【化9】 [Chemical 9]

【0023】[0023]

【化10】 [Chemical 10]

【0024】[0024]

【化11】 [Chemical 11]

【0025】[0025]

【化12】 [Chemical 12]

【0026】[0026]

【化13】 [Chemical 13]

【0027】前記フルオロシリコンオリゴマー1として
は、具体的には例えば、下記一般式化14、化15、化
16、化17、化18、化19、化20、化21、化2
2、化23、化24、化25、化26、化27、化2
8、化29、化30、化31、化32、化33、化3
4、化35、化36、化37、化38、化39等を好ま
しく挙げることができる(尚、式中mは、1〜10の整
数を示す)。
Specific examples of the fluorosilicone oligomer 1 include those represented by the following general formulas 14, 15, 15, 16, 17, 18, 19, 20, 21, and 2.
2, 23, 24, 25, 26, 27, 2
8, Chemical 29, Chemical 30, Chemical 31, Chemical 32, Chemical 33, Chemical 3
4, Chemical formula 35, Chemical formula 36, Chemical formula 37, Chemical formula 38, Chemical formula 39 and the like can be mentioned (where m is an integer of 1 to 10).

【0028】[0028]

【化14】 [Chemical 14]

【0029】[0029]

【化15】 [Chemical 15]

【0030】[0030]

【化16】 [Chemical 16]

【0031】[0031]

【化17】 [Chemical 17]

【0032】[0032]

【化18】 [Chemical 18]

【0033】[0033]

【化19】 [Chemical 19]

【0034】[0034]

【化20】 [Chemical 20]

【0035】[0035]

【化21】 [Chemical 21]

【0036】[0036]

【化22】 [Chemical formula 22]

【0037】[0037]

【化23】 [Chemical formula 23]

【0038】[0038]

【化24】 [Chemical formula 24]

【0039】[0039]

【化25】 [Chemical 25]

【0040】[0040]

【化26】 [Chemical formula 26]

【0041】[0041]

【化27】 [Chemical 27]

【0042】[0042]

【化28】 [Chemical 28]

【0043】[0043]

【化29】 [Chemical 29]

【0044】[0044]

【化30】 [Chemical 30]

【0045】[0045]

【化31】 [Chemical 31]

【0046】[0046]

【化32】 [Chemical 32]

【0047】[0047]

【化33】 [Chemical 33]

【0048】[0048]

【化34】 [Chemical 34]

【0049】[0049]

【化35】 [Chemical 35]

【0050】[0050]

【化36】 [Chemical 36]

【0051】[0051]

【化37】 [Chemical 37]

【0052】[0052]

【化38】 [Chemical 38]

【0053】[0053]

【化39】 [Chemical Formula 39]

【0054】前記フルオロシリコンオリゴマー1を調製
するには、例えば下記一般式化40で表わされる過酸化
ジフルオロアルカノイルと下記一般式化41で表される
ビニル基含有有機ケイ素化合物とを、好ましくはモル比
で1:1.0〜10.0の範囲、特に好ましくは1:
1.2〜5.0の範囲で仕込み、反応温度を、好ましく
は−20〜+150℃の範囲、特に好ましくは0〜10
0℃の範囲にて、反応時間を好ましくは30分〜20時
間、特に好ましくは3〜10時間の範囲で反応させる等
して得ることができる。
To prepare the fluorosilicone oligomer 1, for example, a difluoroalkanoyl peroxide represented by the following general formula 40 and a vinyl group-containing organosilicon compound represented by the following general formula 41 are preferably used in a molar ratio. In the range of 1: 1.0 to 10.0, particularly preferably 1:
Charged in the range of 1.2 to 5.0, and the reaction temperature is preferably in the range of -20 to + 150 ° C, particularly preferably 0 to 10.
The reaction can be performed at 0 ° C. for a reaction time of preferably 30 minutes to 20 hours, particularly preferably 3 to 10 hours.

【0055】[0055]

【化40】 [Chemical 40]

【0056】[0056]

【化41】 [Chemical 41]

【0057】この際用いる前記過酸化ジフルオロアルカ
ノイル中のRFは、前記フルオロシリコンオリゴマー1
において具体的に列挙したRFと同様であり、前記過酸
化ジフルオロアルカノイルとしては、具体的には例えば
過酸化ジペルフルオロ−2−メチル−3−オキサヘキサ
ノイル、過酸化ジペルフルオロ−2,5−ジメチル−
3,6−ジオキサノナノイル、過酸化ジペルフルオロ−
2,5,8−トリメチル−3,6,9−トリオキサドデ
カノイル、過酸化ジペルフルオロブチリル、過酸化ジペ
ルフルオロヘプタノイル等を好ましく挙げることができ
る。また前記ビニル基含有有機ケイ素化合物としては、
トリメトキシビニルシラン、3−メタクリロキシプロピ
ルトリメトキシシラン、トリエトキシビニルシラン、ト
リイソプロポキシビニルシラン、3−メタクリロキシプ
ロピルジエトキシメチルシラン等を好ましく挙げること
ができる。
RF in the difluoroalkanoyl peroxide used at this time is the fluorosilicone oligomer 1
Are the same as RF specifically listed in the above, and specific examples of the difluoroalkanoyl peroxide include diperfluoro-2-methyl-3-oxahexanoyl peroxide and diperfluoro-2,5-dimethyl peroxide. −
3,6-dioxanonanoyl, diperfluoro peroxide
Preferable examples include 2,5,8-trimethyl-3,6,9-trioxadodecanoyl, diperfluorobutyryl peroxide, diperfluoroheptanoyl peroxide, and the like. Further, as the vinyl group-containing organosilicon compound,
Preferable examples include trimethoxyvinylsilane, 3-methacryloxypropyltrimethoxysilane, triethoxyvinylsilane, triisopropoxyvinylsilane, and 3-methacryloxypropyldiethoxymethylsilane.

【0058】また本発明のフルオロシリコン系強磁性体
微粒子において前記フルオロシリコンオリゴマー1でシ
リル化される前記強磁性体微粒子としては、通常用いら
れる強磁性体微粒子であれば、特に限定されるものでは
なく、具体的には例えば、第1鉄イオンと第2鉄イオン
とを任意の割合、好ましくは重量比で1:0.01〜1
00の範囲で混合したマグネタイト;一般式 MO.Fe2O3
又は RO.6Fe2O2(式中Mは、コバルト、ニッケル、
マンガン、銅、亜鉛等を示し、Rは、バリウム、ストロ
ンチウム等を示す)で示される鉄化合物、硫酸ニッケ
ル、硫酸亜鉛、マンガン亜鉛フェライト、ニッケル亜鉛
フェライト、コバルトフェライト、ニッケルフェライ
ト、マンガンフェライト、鉄、コバルト、希土類等の強
磁性金属等を好ましく挙げることができる。
In the fluorosilicone ferromagnetic fine particles of the present invention, the ferromagnetic fine particles to be silylated with the fluorosilicone oligomer 1 are not particularly limited as long as they are normally used ferromagnetic fine particles. None, specifically, for example, ferrous ion and ferric ion in an arbitrary ratio, preferably in a weight ratio of 1: 0.01-1.
Magnetite mixed in the range of 00; general formula MO.Fe 2 O 3
Or RO.6Fe 2 O 2 (where M is cobalt, nickel,
An iron compound represented by manganese, copper, zinc, etc., and R represents barium, strontium, etc.), nickel sulfate, zinc sulfate, manganese zinc ferrite, nickel zinc ferrite, cobalt ferrite, nickel ferrite, manganese ferrite, iron, Preferable examples include ferromagnetic metals such as cobalt and rare earths.

【0059】本発明のフルオロシリコン系強磁性体微粒
子の製造方法は、前記フルオロシリコンオリゴマー1と
前記強磁性体微粒子とを反応させて、強磁性体微粒子表
面をシランカップリング処理し、前記強磁性体微粒子表
面にフルオロシリコン基を導入することを特徴とする。
In the method for producing fluorosilicon-based ferromagnetic fine particles according to the present invention, the fluorosilicon oligomer 1 and the ferromagnetic fine particles are reacted with each other, and the surface of the ferromagnetic fine particles is subjected to silane coupling treatment to obtain the ferromagnetic material. It is characterized in that a fluorosilicone group is introduced into the surface of the body particles.

【0060】前記反応を行うには、例えば、前記強磁性
体微粒子の水溶液又は水スラリーに、アンモニア水、水
酸化ナトリウム、水酸化カリウム等のアルカリを、前記
水スラリー100重量部に対して好ましくは0.01〜
100重量部加え、次いでトルエン等の有機溶媒を好ま
しくは0.01〜1000重量部及びオレイン酸、リノ
ール酸、リノレイン酸等の不飽和脂肪酸を好ましくは
0.1〜1000重量部を分散剤として加えて、好まし
くは0〜200℃にて撹拌下熟成を行ない分散溶液を得
る。この際、該分散溶液中における強磁性体微粒子の含
有割合は、0.1〜1000g/リットルとするのが好
ましい。次いで得られた分散溶液中の水分を分離除去し
た後、前記フルオロシリコンオリゴマー1を加え、用い
る有機溶媒の沸点以上の温度にて、好ましくは10分〜
100時間加熱還流して反応させる。この際必要に応じ
て、更にアンモニア水等を加えて加熱撹拌を行なっても
よい。次いで水等を用いて洗浄及び瀘別を行なう等して
本発明のフルオロシリコン強磁性体微粒子を得ることが
できる。
To carry out the reaction, for example, an aqueous solution or an aqueous slurry of the ferromagnetic fine particles is preferably added with an alkali such as aqueous ammonia, sodium hydroxide or potassium hydroxide with respect to 100 parts by weight of the aqueous slurry. 0.01 ~
100 parts by weight of organic solvent such as toluene is preferably added in an amount of 0.01 to 1000 parts by weight, and unsaturated fatty acid such as oleic acid, linoleic acid, or linoleic acid is added in an amount of preferably 0.1 to 1000 parts by weight as a dispersant. Then, aging is preferably carried out at 0 to 200 ° C. with stirring to obtain a dispersion solution. At this time, the content ratio of the ferromagnetic fine particles in the dispersion solution is preferably 0.1 to 1000 g / liter. Then, after water in the obtained dispersion solution is separated and removed, the fluorosilicone oligomer 1 is added, and the temperature is not lower than the boiling point of the organic solvent used, preferably for 10 minutes to
Heat and reflux for 100 hours to react. At this time, if necessary, ammonia water or the like may be further added and the mixture may be heated and stirred. Then, the fluorosilicon ferromagnetic fine particles of the present invention can be obtained by washing and filtering with water or the like.

【0061】前記反応を行なう際の、前記強磁性体微粒
子を含む分散溶液と前記フルオロシリコンオリゴマー1
との仕込み比は、体積比で、1:0.01〜100の範
囲とするのが好ましい。前記フルオロシリコンオリゴマ
ー1の仕込み割合が、0.01未満の場合にはフルオロ
シリコンオリゴマーによってもたらされる表面性能が低
下し、100を超えると粒子が沈降して安定性が低下す
るので好ましくない。
When carrying out the reaction, the dispersion solution containing the ferromagnetic fine particles and the fluorosilicone oligomer 1 are used.
It is preferable that the charging ratio of the above is in the range of 1: 0.01 to 100 in terms of volume ratio. When the charging ratio of the fluorosilicone oligomer 1 is less than 0.01, the surface performance brought about by the fluorosilicone oligomer is lowered, and when it exceeds 100, the particles are precipitated and the stability is lowered, which is not preferable.

【0062】本発明の磁性流体は、前記フルオロシリコ
ン系強磁性体微粒子を主成分として含むことを特徴と
し、前記フルオロシリコン系強磁性体微粒子を分散媒に
分散させたものである。
The magnetic fluid of the present invention is characterized by containing the fluorosilicon-based ferromagnetic fine particles as a main component, and the fluorosilicon-based ferromagnetic fine particles dispersed in a dispersion medium.

【0063】前記分散媒としては、CF3-[-(OCF(CF3)C
F2)n-(OCF2)m]-OCF3,CF3-[-(OCF(CF3)CF2)n-(OCF2)m]-
OCF2COOH,CF3-[-(OCF(CF3)CF2)n-(OCF2)m]-OCF2CH2O
H,CF3-[-(OCF(CF3)CF2)n-(OCF2)m]-OCF2SO3OH,CF3-[-
(OCF(CF3)CF2)n-(OCF2)m]-OCF2PO3H,CF3-[-(OCF(CF3)C
F2)n-(OCF2)m]-OCF2OH,CF3-[-(OCF(CF3)CF2)n-(OCF2)
m]-OCF2NH2,F-[(CF3)CFCF2O]m-CF2(CF3),F-[(CF3)CFC
F2O]m-CFH(CF3),-(CF2CFCl)n- 等で表わされる化合
物;ヘキサフルオロプロペンオキシドのオリゴメル化等
により得られるペルフルオロポリエーテル類などのペル
フルオロ系溶剤を好ましく挙げることができ、市販品を
用いることもできる。
As the dispersion medium, CF 3 -[-(OCF (CF 3 ) C
F 2 ) n- (OCF 2 ) m] -OCF 3 , CF 3 -[-(OCF (CF 3 ) CF 2 ) n- (OCF 2 ) m]-
OCF 2 COOH, CF 3 -[-(OCF (CF 3 ) CF 2 ) n- (OCF 2 ) m] -OCF 2 CH 2 O
H, CF 3 -[-(OCF (CF 3 ) CF 2 ) n- (OCF 2 ) m] -OCF 2 SO 3 OH, CF 3 -[-
(OCF (CF 3 ) CF 2 ) n- (OCF 2 ) m] -OCF 2 PO 3 H, CF 3 -[-(OCF (CF 3 ) C
F 2 ) n- (OCF 2 ) m] -OCF 2 OH, CF 3 -[-(OCF (CF 3 ) CF 2 ) n- (OCF 2 )
m] -OCF 2 NH 2 , F-[(CF 3 ) CFCF 2 O] m-CF 2 (CF 3 ), F-[(CF 3 ) CFC
Compounds represented by F 2 O] m-CFH (CF 3 ),-(CF 2 CFCl) n-, and the like; preferred are perfluoro solvents such as perfluoropolyethers obtained by oligomerization of hexafluoropropene oxide. Alternatively, a commercially available product can be used.

【0064】また前記分散媒と、前記フルオロシリコン
系強磁性体微粒子との配合割合は、重量比で1:0.0
1〜100とするのが好ましい。前記フルオロシリコン
系強磁性体微粒子の配合割合が0.01未満の場合に
は、所望の磁性流体が得られず、100を超えると分散
安定性が低下するので好ましくない。
The mixing ratio of the dispersion medium and the fluorosilicon-based ferromagnetic fine particles is 1: 0.0 by weight.
It is preferably 1 to 100. If the compounding ratio of the fluorosilicone ferromagnetic fine particles is less than 0.01, the desired magnetic fluid cannot be obtained, and if it exceeds 100, the dispersion stability decreases, which is not preferable.

【0065】また本発明の磁性流体には、前記フルオロ
シリコン系強磁性体微粒子及び前記分散媒に、更にアニ
オン系、カチオン系、ノニオン系等の界面活性剤を、特
に好ましくはフッ素系の界面活性剤を加えてもよい。
In the magnetic fluid of the present invention, the fluorosilicon-based ferromagnetic fine particles and the dispersion medium further contain an anionic, cationic, or nonionic surfactant, and particularly preferably a fluorine-based surfactant. Agents may be added.

【0066】本発明の磁性流体の製造方法は、前記フル
オロシリコン系強磁性体微粒子をペルフルオロ系溶剤に
分散させることを特徴とする。
The method for producing a magnetic fluid according to the present invention is characterized in that the fluorosilicon-based ferromagnetic fine particles are dispersed in a perfluoro-based solvent.

【0067】前記ペルフルオロ系溶媒は、前記分散媒と
して具体的に列挙したペルフルオロ系溶媒と同様であ
る。
The perfluoro-based solvent is the same as the perfluoro-based solvent specifically listed as the dispersion medium.

【0068】前記分散を行なうには、例えば先ず前記フ
ルオロシリコン系強磁性体微粒子を、フロン113
{「ダイフロン113」(商品名、ダイキン工業(株)
製)}等の低沸点フッ素系溶媒に投入し、遊星型ボール
ミル等の粉砕機にて解砕を行なう。次いで前記ペルフル
オロ系溶剤を添加し、撹拌により分散させた後、得られ
る分散溶液を加熱して前記低沸点のフッ素系溶媒を除去
する方法若しくは前記粉砕機にて解砕した後、前記低沸
点フッ素系溶媒を加熱により除去し、次いで前記ペルフ
ルオロ系溶媒を加えて分散させる方法、または前記低沸
点フッ素系溶媒を用いずに直接前記ペルフルオロ系溶媒
に分散させる方法等により行うことができる。またこの
際必要に応じてフッ素系等の界面活性剤を加えて分散を
行なうこともできる。
In order to carry out the dispersion, for example, the fluorosilicon-based ferromagnetic particles are first added to the flon 113.
{"DAIFLON 113" (Brand name, Daikin Industries, Ltd.
)}, Etc., and crush with a crusher such as a planetary ball mill. Then, the perfluoro-based solvent is added and dispersed by stirring, and then the resulting dispersion solution is heated to remove the low-boiling fluorine-based solvent or crushed by the pulverizer, and then the low-boiling fluorine is added. The system solvent can be removed by heating, and then the perfluoro system solvent can be added to disperse the system solvent, or the system can be dispersed directly in the perfluoro system solvent without using the low boiling point fluorine system solvent. At this time, if necessary, a surfactant such as a fluorine-based agent may be added for dispersion.

【0069】[0069]

【発明の効果】本発明のフルオロシリコン系強磁性体微
粒子は、表面を特定のフルオロシリコンにより表面改質
された強磁性体微粒子であり、フルオロシリコン基が化
学結合により導入されているため、フッ素及びケイ素に
起因する性質を長期間維持することができ、ペルフルオ
ロ系溶媒等に対して高い親和性を示す。
EFFECT OF THE INVENTION The fluorosilicon-based ferromagnetic fine particles of the present invention are ferromagnetic fine particles whose surface is surface-modified with a specific fluorosilicon, and the fluorosilicon group is introduced by a chemical bond. Also, the properties attributed to silicon can be maintained for a long period of time, and it has a high affinity for perfluoro solvents and the like.

【0070】更に本発明の磁性流体は、前記フルオロシ
リコン系強磁性体微粒子を用いているため、安定性に優
れ、従来の炭化水素系オイルを分散剤としている磁性流
体に比して耐熱性、耐摩擦性、化学的安定性、撥油性等
の優れた特性を付与することができる。従って、ダンピ
ング剤、磁気ディスク等のシール機構におけるシーリン
グ剤、航空宇宙用シーリング剤等の用途に有用である。
Further, since the magnetic fluid of the present invention uses the above-mentioned fluorosilicon-based ferromagnetic fine particles, it has excellent stability and heat resistance as compared with the conventional magnetic fluid using a hydrocarbon oil as a dispersant. Excellent properties such as abrasion resistance, chemical stability and oil repellency can be imparted. Therefore, it is useful as a damping agent, a sealing agent in a sealing mechanism of a magnetic disk, a sealing agent for aerospace and the like.

【0071】また本発明のフルオロシリコン系強磁性体
微粒子の製造方法及び磁性流体の製造方法は、容易に且
つ短時間で目的とするフルオロシリコン系強磁性体微粒
子及び磁性流体を得ることができる。
The fluorosilicon-based ferromagnetic fine particles and the magnetic fluid manufacturing method of the present invention can easily obtain the desired fluorosilicon-based ferromagnetic fine particles and magnetic fluid in a short time.

【0072】[0072]

【実施例】以下本発明を実施例及び比較例により更に詳
細に説明するが、本発明はこれらに限定されるものでは
ない。
The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0073】[0073]

【実施例1】塩化第1鉄7.6g(0.06mol)及
び塩化第2鉄14.6g(0.09mol)を、蒸留水
50mlに溶解した。次いで得られた溶液を撹拌しなが
ら28重量%アンモニア水溶液2mlを添加して、アル
カリ性に調節し、マグネタイトの水スラリーを調製し
た。次いでトルエン50mlにオレイン酸5mlを溶解
した溶液を90℃に加熱し、急速に撹拌しながら得られ
たマグネタイトの水スラリーを投入した後、撹拌をと
め、同温度に保持しながら加熱を行ない、水層と油層と
に分離した。水層を除去した後、得られた油層にトルエ
ンを加え100mlに調節し、マグネタイト分散液を得
た。
Example 1 7.6 g (0.06 mol) of ferric chloride and 14.6 g (0.09 mol) of ferric chloride were dissolved in 50 ml of distilled water. Next, 2 ml of 28 wt% ammonia aqueous solution was added to the resulting solution while stirring to adjust the solution to be alkaline, and a water slurry of magnetite was prepared. Next, a solution prepared by dissolving 5 ml of oleic acid in 50 ml of toluene was heated to 90 ° C., and while rapidly stirring, the resulting water slurry of magnetite was added, stirring was stopped, heating was performed while maintaining the same temperature, and water was added. Separated into layers and oil layer. After removing the aqueous layer, toluene was added to the obtained oil layer to adjust the volume to 100 ml to obtain a magnetite dispersion liquid.

【0074】次いで得られたマグネタイト分散液10m
lを窒素雰囲気下にて計り取り、下記化学式化42で表
わされるフルオロシリコンオリゴマー2.0mlを加
え、120℃にて、3時間加熱還流を行った後、28重
量%アンモニア水溶液1mlを加え、更に30分間同温
にて加熱還流を行った。次いで室温下にまで冷却した
後、蒸留水100mlを加え撹拌を行い、得られたフル
オロシリコン系マグネタイトを水層に分散させた。次い
で水層とトルエン層とに分離させた後、トルエン層を除
去し、未反応のオレイン酸吸着マグネタイトを除去し
た。得られた水層を撹拌しながら、3N−HCl水溶液
をpH5.5になる迄投入し、静置した後、上澄みを除
去し、水洗を3回繰り返し行った。更にメタノール洗浄
により油状オレイン酸を除去し、120℃にて1時間加
熱した後、乾燥を行い本発明のフルオロシリコン系強磁
性体微粒子を2.8g得た。
Then, 10 m of the obtained magnetite dispersion liquid
l was weighed out under a nitrogen atmosphere, 2.0 ml of a fluorosilicone oligomer represented by the following chemical formula 42 was added, and the mixture was heated under reflux at 120 ° C. for 3 hours, and then 1 ml of a 28 wt% ammonia solution was added. The mixture was heated and refluxed at the same temperature for 30 minutes. Then, after cooling to room temperature, 100 ml of distilled water was added and stirred, and the obtained fluorosilicone magnetite was dispersed in the aqueous layer. Then, after separating into a water layer and a toluene layer, the toluene layer was removed and unreacted oleic acid-adsorbed magnetite was removed. While stirring the obtained aqueous layer, a 3N-HCl aqueous solution was added until the pH became 5.5, and the mixture was allowed to stand, then the supernatant was removed, and washing with water was repeated 3 times. Further, the oily oleic acid was removed by washing with methanol, and the mixture was heated at 120 ° C. for 1 hour and then dried to obtain 2.8 g of fluorosilicone ferromagnetic fine particles of the present invention.

【0075】[0075]

【化42】 [Chemical 42]

【0076】得られたフルオロシリコン系強磁性体微粒
子のIRスペクトルを測定したところ、1335cm~1
(CF3)、1240cm~1(CF2)、1200cm~1
(SiO)に吸収が認められ、フルオロアルキル基が導
入されていることを確認した。
The IR spectrum of the obtained fluorosilicon-based ferromagnetic fine particles was measured and found to be 1335 cm to 1
(CF 3), 1240cm ~ 1 (CF 2), 1200cm ~ 1
Absorption was observed in (SiO), and it was confirmed that a fluoroalkyl group was introduced.

【0077】更に得られたフルオロシリコン系強磁性体
微粒子2.8gを、フロン11310ml中に投入し、
遊星型ボールミルを用いて10分間解砕を行い、フロン
113中に分散させた。次いで得られた分散溶液5ml
を、ペルフルオロ系溶媒「ダイフロイル」(ダイキン工
業(株)製、商品名)2mlに混合し、40℃にて加熱
処理を行い、低沸点のフロン113を除去し、本発明の
磁性流体を得た。得られた磁性流体は、黒褐色の均一な
分散液であり、40℃で1か月静置しても分離せず安定
であった。更には磁場中においても安定であった。
Further, 2.8 g of the obtained fluorosilicone-based ferromagnetic fine particles was added to chlorofluorocarbon 11310 ml,
Crushing was performed for 10 minutes using a planetary ball mill and dispersed in Freon 113. 5 ml of the resulting dispersion solution
Was mixed with 2 ml of a perfluoro solvent “Daifloyl” (trade name, manufactured by Daikin Industries, Ltd.) and heat-treated at 40 ° C. to remove CFCs 113 having a low boiling point to obtain the magnetic fluid of the present invention. .. The obtained magnetic fluid was a black-brown uniform dispersion, and was stable without being separated even when left standing at 40 ° C. for 1 month. Furthermore, it was stable even in a magnetic field.

【0078】[0078]

【実施例2】前記化学式化42で表わされる化合物を、
下記化学式化43で表わされる化合物とした以外は、実
施例1と同様にして、本発明のフルオロシリコン系強磁
性体微粒子を2.3g得た。
Example 2 The compound represented by the chemical formula 42
2.3 g of the fluorosilicon-based ferromagnetic fine particles of the present invention was obtained in the same manner as in Example 1 except that the compound represented by the following chemical formula 43 was used.

【0079】[0079]

【化43】 [Chemical 43]

【0080】得られたフルオロシリコン系強磁性体微粒
子のIRスペクトルを測定したところ、1335cm~1
(CF3)、1245cm~1(CF2)、1200cm~1
(SiO)に吸収が認められ、フルオロアルキル基が導
入されていることを確認した。
The IR spectrum of the obtained fluorosilicon-based ferromagnetic fine particles was measured and found to be 1335 cm to 1
(CF 3), 1245cm ~ 1 (CF 2), 1200cm ~ 1
Absorption was observed in (SiO), and it was confirmed that a fluoroalkyl group was introduced.

【0081】更に得られたフルオロシリコン系強磁性体
微粒子2gを用いた以外は実施例1と同様に分散を行
い、本発明の磁性流体を得た。得られた磁性流体は、黒
褐色で、安定であり、更には磁場中においても安定であ
った。
Dispersion was performed in the same manner as in Example 1 except that 2 g of the obtained fluorosilicone-based ferromagnetic fine particles were used to obtain a magnetic fluid of the present invention. The obtained magnetic fluid was blackish brown, stable, and stable in a magnetic field.

【0082】[0082]

【実施例3】前記化学式化42で表わされる化合物を、
下記化学式化44で表わされる化合物とした以外は、実
施例1と同様にして、本発明のフルオロシリコン系強磁
性体微粒子を3.1g得た。
Example 3 The compound represented by the chemical formula 42
In the same manner as in Example 1 except that the compound represented by the following chemical formula 44 was used, 3.1 g of the fluorosilicon-based ferromagnetic fine particles of the present invention was obtained.

【0083】[0083]

【化44】 [Chemical 44]

【0084】得られたフルオロシリコン系強磁性体微粒
子のIRスペクトルを測定したところ、1330cm~1
(CF3)、1240cm~1(CF2)、1200cm ̄
(SiO)に吸収が認められ、フルオロアルキル基が
導入されていることを確認した。
The IR spectrum of the obtained fluorosilicon-based ferromagnetic fine particles was measured and found to be 1330 cm to 1
(CF 3 ), 1240 cm to 1 (CF 2 ), 1200 cm
Absorption was observed in 1 (SiO), and it was confirmed that a fluoroalkyl group was introduced.

【0085】更に得られたフルオロシリコン系強磁性体
微粒子2gを用いた以外は実施例1と同様に分散を行
い、本発明の磁性流体を得た。得られた磁性流体は、黒
褐色で、安定であり、更には磁場中においても安定であ
った。
Further, dispersion was performed in the same manner as in Example 1 except that 2 g of the obtained fluorosilicone ferromagnetic fine particles were used to obtain a magnetic fluid of the present invention. The obtained magnetic fluid was blackish brown, stable, and stable in a magnetic field.

【0086】[0086]

【実施例4】前記化学式化42で表わされる化合物を、
下記化学式化45で表わされる化合物とした以外は、実
施例1と同様にして、本発明のフルオロシリコン系強磁
性体微粒子を3.1g得た。
Example 4 The compound represented by the chemical formula 42
In the same manner as in Example 1 except that the compound represented by the following chemical formula 45 was used, 3.1 g of the fluorosilicone ferromagnetic fine particles of the present invention was obtained.

【0087】[0087]

【化45】 [Chemical 45]

【0088】得られたフルオロシリコン系強磁性体微粒
子のIRスペクトルを測定したところ、1330cm ̄
(CF3)、1245cm~1(CF2)及び1740c
m~1(>C=O)、1200cm~1(SiO)に吸収が
認められ、フルオロアルキル基及びメタクリロキシ基が
導入されていることを確認した。
The IR spectrum of the obtained fluorosilicon-based ferromagnetic fine particles was measured and found to be 1330 cm.
1 (CF 3 ), 1245 cm to 1 (CF 2 ) and 1740c
Absorption was observed in m- 1 (> C = O) and 1200 cm- 1 (SiO), and it was confirmed that a fluoroalkyl group and a methacryloxy group were introduced.

【0089】更に得られたフルオロシリコン系強磁性体
微粒子2gを用いた以外は実施例1と同様に分散を行
い、本発明の磁性流体を得た。得られた磁性流体は、黒
褐色で、安定であり、更には磁場中においても安定であ
った。
Further, dispersion was performed in the same manner as in Example 1 except that 2 g of the fluorosilicone-based ferromagnetic particles thus obtained were used to obtain a magnetic fluid of the present invention. The obtained magnetic fluid was blackish brown, stable, and stable in a magnetic field.

【0090】[0090]

【実施例5】前記化学式化42で表わされる化合物を、
下記化学式化46で表わされる化合物とした以外は、実
施例1と同様にして、本発明のフルオロシリコン系強磁
性体微粒子を2.7g得た。
Example 5 The compound represented by the chemical formula 42
2.7 g of the fluorosilicon-based ferromagnetic fine particles of the present invention was obtained in the same manner as in Example 1 except that the compound represented by the following chemical formula 46 was used.

【0091】[0091]

【化46】 [Chemical 46]

【0092】得られたフルオロシリコン系強磁性体微粒
子のIRスペクトルを測定したところ、1330cm~1
(CF3)、1235cm~1(CF2)、1200cm~1
(SiO)に吸収が認められ、フルオロアルキル基が導
入されていることを確認した。
The IR spectrum of the obtained fluorosilicon-based ferromagnetic fine particles was measured and found to be 1330 cm to 1
(CF 3), 1235cm ~ 1 (CF 2), 1200cm ~ 1
Absorption was observed in (SiO), and it was confirmed that a fluoroalkyl group was introduced.

【0093】更に得られたフルオロシリコン系強磁性体
微粒子2gを用いた以外は実施例1と同様に分散を行
い、本発明の磁性流体を得た。得られた磁性流体は、黒
褐色で、安定であり、更には磁場中においても安定であ
った。
Further, dispersion was performed in the same manner as in Example 1 except that 2 g of the obtained fluorosilicone-based ferromagnetic fine particles were used to obtain a magnetic fluid of the present invention. The obtained magnetic fluid was blackish brown, stable, and stable in a magnetic field.

【0094】[0094]

【実施例6】実施例1で用いたペルフルオロ系溶媒「ダ
イフロイル」(ダイキン工業(株)製、商品名)を、
「Galden Mono Acid」(エニモンテ(株)製、商品名)
2mlとした以外は、実施例1と同様にして本発明の磁
性流体を調製した。得られた磁性流体は、黒褐色で、安
定であり、更には磁場中においても安定であった。
[Example 6] The perfluoro solvent "Daifloyl" (trade name, manufactured by Daikin Industries, Ltd.) used in Example 1 was
"Galden Mono Acid" (trade name, manufactured by Enimonte Co., Ltd.)
The magnetic fluid of the present invention was prepared in the same manner as in Example 1 except that the amount was 2 ml. The obtained magnetic fluid was blackish brown, stable, and stable even in a magnetic field.

【0095】[0095]

【実施例7】実施例1で用いたペルフルオロ系溶媒「ダ
イフロイル」(ダイキン工業(株)製、商品名)を、
「Galden HT」(モンテフルオス(株)製、商品名)2
mlとした以外は、実施例1と同様にして本発明の磁性
流体を調製した。得られた磁性流体は、黒褐色で、安定
であり、更には磁場中においても安定であった。
[Example 7] The perfluoro solvent "Daifloyl" (trade name, manufactured by Daikin Industries, Ltd.) used in Example 1 was
"Galden HT" (manufactured by Montefluos Co., Ltd., trade name) 2
The magnetic fluid of the present invention was prepared in the same manner as in Example 1 except that the amount was changed to ml. The obtained magnetic fluid was blackish brown, stable, and stable in a magnetic field.

【0096】[0096]

【実施例8】実施例1で用いたペルフルオロ系溶媒「ダ
イフロイル」(ダイキン工業(株)製、商品名)を、
「BARRIERTA J60」(NOKクリューバー(株)製、商
品名)2mlとした以外は、実施例1と同様にして本発
明の磁性流体を調製した。得られた磁性流体は、黒褐色
で、安定であり、更には磁場中においても安定であっ
た。
[Example 8] The perfluoro solvent "Daifloyl" (trade name, manufactured by Daikin Industries, Ltd.) used in Example 1 was
The magnetic fluid of the present invention was prepared in the same manner as in Example 1 except that "BARRIERTA J60" (trade name, manufactured by NOK Clewer Co., Ltd.) was 2 ml. The obtained magnetic fluid was blackish brown, stable, and stable in a magnetic field.

【0097】[0097]

【比較例1】前記化学式化42で表わされる化合物を、
「TSL8257」(東芝シリコン(株)製、商品名、C6F13CH
2CH2Si(OCH3)3)とした以外は、実施例1と同様にして、
強磁性体微粒子を調製した。
Comparative Example 1 The compound represented by the chemical formula 42 is
"TSL8257" (Toshiba Silicon Co., Ltd., trade name, C 6 F 13 CH
2 CH 2 Si (OCH 3 ) 3 )
Ferromagnetic fine particles were prepared.

【0098】得られた強磁性体微粒子を、実施例1と同
様にしてペルフルオロ系溶媒に分散させたところ、全く
分散しなかった。
When the obtained ferromagnetic fine particles were dispersed in a perfluoro solvent in the same manner as in Example 1, they were not dispersed at all.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C10M 107:38 139:04) C10N 20:06 Z 8217−4H 30:04 30:08 40:14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C10M 107: 38 139: 04) C10N 20:06 Z 8217-4H 30:04 30:08 40:14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 強磁性体微粒子を、下記一般式化1で表
わされるフルオロシリコンオリゴマーでシリル化してな
るフルオロシリコン系強磁性体微粒子。 【化1】
1. Fluorosilicon-based ferromagnetic fine particles obtained by silylating ferromagnetic fine particles with a fluorosilicon oligomer represented by the following general formula 1. [Chemical 1]
【請求項2】 下記一般式化2で表わされるフルオロシ
リコンオリゴマーと強磁性体微粒子とを反応させること
を特徴とするフルオロシリコン系強磁性体微粒子の製造
方法。 【化2】
2. A method for producing fluorosilicon-based ferromagnetic fine particles, which comprises reacting a fluorosilicon oligomer represented by the following general formula 2 with ferromagnetic fine particles. [Chemical 2]
【請求項3】 請求項1記載のフルオロシリコン系強磁
性体微粒子を主成分として含む磁性流体。
3. A magnetic fluid containing the fluorosilicon-based ferromagnetic fine particles according to claim 1 as a main component.
【請求項4】 請求項1記載のフルオロシリコン系強磁
性体微粒子をペルフルオロ系溶剤に分散させることを特
徴とする磁性流体の製造方法。
4. A method for producing a magnetic fluid, which comprises dispersing the fluorosilicon-based ferromagnetic fine particles according to claim 1 in a perfluoro-based solvent.
JP32608391A 1991-12-10 1991-12-10 Fluorosilicon ferromagnetic fine particle and its manufacture, and magnetic fluid and its manufacture Pending JPH05159917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32608391A JPH05159917A (en) 1991-12-10 1991-12-10 Fluorosilicon ferromagnetic fine particle and its manufacture, and magnetic fluid and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32608391A JPH05159917A (en) 1991-12-10 1991-12-10 Fluorosilicon ferromagnetic fine particle and its manufacture, and magnetic fluid and its manufacture

Publications (1)

Publication Number Publication Date
JPH05159917A true JPH05159917A (en) 1993-06-25

Family

ID=18183921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32608391A Pending JPH05159917A (en) 1991-12-10 1991-12-10 Fluorosilicon ferromagnetic fine particle and its manufacture, and magnetic fluid and its manufacture

Country Status (1)

Country Link
JP (1) JPH05159917A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020442A1 (en) * 1993-03-12 1994-09-15 Daikin Industries, Ltd. Fluorinated aromatic compound
EP0667029A4 (en) * 1992-10-30 1995-06-13 Lord Corp Thixotropic magnetorheological materials.
US6261471B1 (en) 1999-10-15 2001-07-17 Shiro Tsuda Composition and method of making a ferrofluid having an improved chemical stability

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667029A4 (en) * 1992-10-30 1995-06-13 Lord Corp Thixotropic magnetorheological materials.
EP0667029A1 (en) * 1992-10-30 1995-08-16 Lord Corporation Thixotropic magnetorheological materials
US5645752A (en) * 1992-10-30 1997-07-08 Lord Corporation Thixotropic magnetorheological materials
WO1994020442A1 (en) * 1993-03-12 1994-09-15 Daikin Industries, Ltd. Fluorinated aromatic compound
US5741922A (en) * 1993-03-12 1998-04-21 Daikin Industries, Ltd. Fluorine-containing aromatic compounds
US6261471B1 (en) 1999-10-15 2001-07-17 Shiro Tsuda Composition and method of making a ferrofluid having an improved chemical stability
JP2003524293A (en) * 1999-10-15 2003-08-12 株式会社フェローテック Ferrofluid composition with improved chemical stability and method of manufacture
JP4799791B2 (en) * 1999-10-15 2011-10-26 株式会社フェローテック Magnetic fluid composition having improved chemical stability and method of manufacture

Similar Documents

Publication Publication Date Title
CN108048170B (en) Functionalized graphene loaded montmorillonite lubricating oil additive, preparation method and application thereof
CN1230501C (en) Stable magnetic rheological liquid and its preparation method
US6761747B2 (en) Dispersion containing pyrogenically manufactured abrasive particles with superparamagnetic domains
JP3717203B2 (en) Process for producing ultrafine particles from water-in-oil microemulsions
CN1088020A (en) Thixotropic magnetorheological materials
JP2003212882A (en) Solid surface-modified with amino group
CN108102763B (en) Serpentine/functionalized graphene lubricant additive, preparation method and application thereof
JP3862768B2 (en) Method for producing mixed ultrafine particles from PFPE microemulsion
Sun et al. Effect of MXene nanosheets attached to carbonyl iron microspheres on the performance and stability of magnetorheological fluid
US10081546B2 (en) Nano-diamond, method of manufacturing the same, and nano-fluid using the same
JPH05159917A (en) Fluorosilicon ferromagnetic fine particle and its manufacture, and magnetic fluid and its manufacture
US6068785A (en) Method for manufacturing oil-based ferrofluid
WO2020095581A1 (en) Nanodiamond-dispersed composition
JPH0642414B2 (en) Conductive magnetic fluid composition and method for producing the same
JPH06267731A (en) Surface-modified magnetic particle, manufacture thereof and magnetic fluid containing the same
JP3768564B2 (en) Silicone oil-based magnetic fluid and process for producing the same
JP3365471B2 (en) Fluorine-based magnetic fluid
US6712990B1 (en) Magnetorheological fluids and related method of preparation
JPWO2019146453A1 (en) Nanodiamond particle dispersion
JPH1050513A (en) Fluorine based magnetic fluid
JPH05299231A (en) Magnetic fluid
JP2023131428A (en) Surface-modified carbon nanoparticle and production method thereof and liquid dispersion and composite including surface-modified carbon nanoparticle
JP3027412B2 (en) Organic surface treatment agent
JP5077747B2 (en) Magnetic fluid, manufacturing method thereof, magnetic fluid bearing device and magnetic seal device using magnetic fluid
JP3324242B2 (en) Manufacturing method of magnetic fluid