WO2020095581A1 - Nanodiamond-dispersed composition - Google Patents

Nanodiamond-dispersed composition Download PDF

Info

Publication number
WO2020095581A1
WO2020095581A1 PCT/JP2019/038911 JP2019038911W WO2020095581A1 WO 2020095581 A1 WO2020095581 A1 WO 2020095581A1 JP 2019038911 W JP2019038911 W JP 2019038911W WO 2020095581 A1 WO2020095581 A1 WO 2020095581A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanodiamond
particles
mass
dispersion composition
dispersant
Prior art date
Application number
PCT/JP2019/038911
Other languages
French (fr)
Japanese (ja)
Inventor
木本訓弘
梅本浩一
城大輔
柏木健
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2020095581A1 publication Critical patent/WO2020095581A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups

Definitions

  • the present invention relates to a nanodiamond dispersion composition. More specifically, the present invention relates to compositions in which nanodiamond particles are dispersed in an organic dispersion medium.
  • This application claims the priority of Japanese Patent Application No. 2018-208309 filed in Japan on November 5, 2018, and the content thereof is incorporated herein.
  • nanodiamond particles have mechanical strength, high refractive index, thermal conductivity, insulating property, antioxidant property, action of promoting crystallization of resin and the like.
  • Techniques relating to the production of such nanodiamonds are described in, for example, Patent Document 1 and Patent Document 2 below.
  • nanodiamond particles generally have a large proportion of surface atoms, the total sum of van der Waals forces that can act between surface atoms of adjacent particles is large, and they are easily aggregated.
  • a phenomenon called agglutination in which Coulomb interaction between crystal faces of adjacent crystallites contributes to form a very strong aggregation may occur. Therefore, it was very difficult to disperse the nanodiamond particles in the organic solvent in the state of primary particles.
  • an object of the present invention is to provide a nanodiamond dispersion composition having excellent dispersibility of nanodiamond particles in an organic dispersion medium.
  • the present inventors have conducted extensive studies to achieve the above object, and by using a specific dispersant, it is possible to obtain a nanodiamond dispersion composition having excellent dispersibility of nanodiamond particles in an organic dispersion medium. I found it.
  • the present invention has been completed based on these findings.
  • the present invention comprises an organic dispersion medium, nanodiamond particles dispersed in the organic dispersion medium, and a dispersant having a mass average molecular weight of 500 or more and an amine value of 15 mgKOH / g or more.
  • a nanodiamond dispersion composition including the same is provided.
  • the average dispersed particle diameter of the nanodiamond particles is preferably 20 to 150 nm.
  • the haze value of the nanodiamond dispersion composition is preferably 5 or less.
  • the SP value of the organic dispersion medium is preferably 6.0 to 12.0 (cal / cm) 1/2 .
  • the viscosity of the nanodiamond dispersion composition at 25 ° C. is preferably 20 to 90 mPa ⁇ s.
  • the dispersant preferably contains a compound having a structure derived from polyalkylene glycol monoalkyl ether.
  • the above dispersant preferably contains a compound having a carbamate structure.
  • the above dispersant preferably contains a compound having a structure derived from polycaprolactone.
  • the content ratio of the nanodiamond particles in the nanodiamond dispersion composition may be 0.01 to 5.0% by mass.
  • the nanodiamond particles are preferably surface-modified nanodiamonds having a silane compound bonded to the surface.
  • the nanodiamond dispersion composition of the present invention has excellent dispersibility of nanodiamond particles in an organic dispersion medium.
  • the nanodiamond dispersion composition (ND dispersion composition) of the present invention has an organic dispersion medium, nanodiamond particles (ND particles) dispersed in the organic dispersion medium, a mass average molecular weight of 500 or more, and And a dispersant having an amine value of 15 mgKOH / g or more.
  • a dispersant having a mass average molecular weight of 500 or more and an amine value of 15 mgKOH / g or more may be referred to as a dispersant (A).
  • the average dispersed particle diameter (D50, median diameter) of the ND particles in the ND dispersion composition of the present invention is preferably 2 to 240 nm, more preferably 4 to 200 nm, more preferably 10 to 180 nm, further preferably 20 to 150 nm. Is.
  • the average dispersed particle diameter can be measured by a dynamic light scattering method. Since the ND dispersion composition of the present invention has excellent dispersibility of ND particles, it can be dispersed in an organic dispersion medium with an average dispersed particle diameter within the above range.
  • the content ratio of the ND particles in the ND dispersion composition of the present invention is, for example, 0.01 to 5.0% by mass, preferably 0.1 to 4.0% by mass, more preferably 0.25 to 3.0% by mass. %, And more preferably 0.5 to 2.0 mass%. When the content ratio is within the above range, the dispersibility of the ND particles is more excellent.
  • the content of the dispersant (A) in the ND dispersion composition of the present invention is, for example, 10 to 10,000 parts by mass, preferably 50 to 100 parts by mass based on 100 parts by mass of the total amount of ND particles in the ND dispersion composition of the present invention.
  • the amount is 1000 parts by mass, more preferably 70 to 300 parts by mass.
  • the ND dispersion composition of the present invention may be diluted at the time of use so that the content ratio of ND particles becomes low (for example, 0.1 to 2000 mass ppm), and the content of the dispersant (A) in this case is
  • the amount of ND particles in the ND dispersion composition of the present invention is preferably 1,000 to 1,000,000 parts by mass, more preferably 2,000 to 100,000 parts by mass, and particularly preferably 3,000 to 50,000 parts by mass, based on 100 parts by mass.
  • the content ratio of the solvent in the ND dispersion composition of the present invention is, for example, 90 to 99.9999% by mass.
  • the content ratio of the organic dispersion medium in the total amount of the solvent is, for example, 60% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the haze value of the ND dispersion composition of the present invention is preferably 5 or less, more preferably 3 or less, further preferably 1 or less, particularly preferably 0.5 or less. Since the ND dispersion composition of the present invention has excellent dispersibility of ND particles, the ND dispersion composition having the above haze value can be obtained. The haze value can be measured based on JIS K7136.
  • the viscosity of the ND dispersion composition of the present invention at 25 ° C. is preferably 0.2 to 120 mPa ⁇ s, more preferably 10 to 100 mPa ⁇ s, and further preferably 20 to 90 mPa ⁇ s. Since the ND dispersion composition of the present invention has excellent dispersibility of ND particles, it has excellent dispersibility in an organic dispersion medium even when the viscosity is within the above range.
  • the rotor and the rotation speed of the rotor at the time of measuring the viscosity are appropriately selected according to the measured value.
  • the viscosity can be measured using, for example, an EMS viscometer (trade name "EMS1000", manufactured by Kyoto Electronics Manufacturing Co., Ltd.).
  • the ND dispersion composition of the present invention may consist of only ND particles, a dispersant (A), and an organic dispersion medium, or may contain other components.
  • Other components include, for example, dispersants other than dispersant (A), surfactants, thickeners, coupling agents, rust inhibitors, corrosion inhibitors, freezing point depressants, antifoaming agents, antiwear additives. , Preservatives, coloring agents and the like.
  • the content ratio of the dispersant (A) is preferably 90% by mass or more, more preferably 95% by mass or more, further preferably 99% by mass or more based on the total amount of the dispersant in the ND dispersion composition of the present invention. Is.
  • the content ratio of the other components is, for example, 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, further preferably 5% by mass or less, based on the total amount of the ND dispersion composition of the present invention. It is particularly preferably 1% by mass or less. Therefore, the total content ratio of the ND particles, the dispersant (A), and the organic dispersion medium is, for example, 70% by mass or more, preferably 80% by mass or more, and more preferably based on the total amount of the ND dispersion composition of the present invention. 90 mass% or more, more preferably 95 mass% or more, and particularly preferably 99 mass% or more.
  • the ND particles are not particularly limited, and known or commonly used nanodiamond particles can be used.
  • the ND particles may be surface-modified ND (surface-modified ND) particles or may be non-surface-modified ND particles.
  • the ND particles that are not surface-modified have hydroxyl groups (—OH) on the surface.
  • the ND particles may be used alone or in combination of two or more.
  • Examples of the compound or functional group that surface-modifies the ND particles in the surface-modified ND include a silane compound, a carboxyl group (—COOH), a phosphonate ion or a phosphonic acid residue, a surface-modifying group having a vinyl group at the end, and an amide.
  • a silane compound a carboxyl group (—COOH), a phosphonate ion or a phosphonic acid residue, a surface-modifying group having a vinyl group at the end, and an amide.
  • a cation of a cationic surfactant a group containing a polyglycerin chain, a group containing a polyethylene glycol chain, and the like.
  • a silane compound is preferable from the viewpoint of being more excellent in dispersibility in an organic dispersion medium in combination with the dispersant (A). That is, it is preferable that the surface-modified ND is a surface-modified ND in which a silane compound is bonded to the surface.
  • the silane compound preferably has a hydrolyzable group and an aliphatic hydrocarbon group.
  • the silane compound used for the surface modification of the ND particles may be only one kind or two or more kinds.
  • silane compounds it is preferable to contain at least a compound represented by the following formula (1-1).
  • R 1 , R 2 and R 3 are the same or different and each represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms.
  • R 4 represents an aliphatic hydrocarbon group having 1 or more carbon atoms.
  • Examples of the aliphatic hydrocarbon group having 1 to 3 carbon atoms in R 1 , R 2 and R 3 include linear or branched alkyl groups such as methyl, ethyl, propyl and isopropyl groups; vinyl and allyl groups. And straight-chain or branched-chain alkenyl groups; and alkynyl groups such as ethynyl group and propynyl group. Of these, a linear or branched alkyl group is preferable.
  • R 4 is an aliphatic hydrocarbon group having 1 or more carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl, n-octyl, 2-ethylhexyl.
  • R 4 is higher in lipophilicity and can be a larger steric hindrance, so that it has an excellent effect of suppressing aggregation and can impart a higher degree of dispersibility, and thus R 4 is an aliphatic carbon atom having 4 or more carbon atoms.
  • a hydrogen group is preferable, and an aliphatic hydrocarbon group having 6 or more carbon atoms is particularly preferable.
  • the upper limit of the carbon number of the aliphatic hydrocarbon group is, for example, 25, preferably 20, and more preferably 12.
  • As the aliphatic hydrocarbon group a linear or branched alkyl group or alkenyl group is preferable, and a linear or branched alkyl group is particularly preferable.
  • R 4 is an aliphatic hydrocarbon group having 4 or more carbon atoms, it exhibits affinity for an organic dispersion medium, and since it may cause larger steric hindrance, it is excellent in the aggregation suppressing effect, and further contains a group containing an oxygen atom.
  • OR 1 'group and OR 2 ' group in the formula (1) show an affinity for the organic dispersion medium, so that the affinity for the organic dispersion medium is excellent and the dispersibility is further enhanced in the organic dispersion medium. can do.
  • examples of the ND particles surface-modified with a silane compound include ND particles having a structure surface-modified with a group represented by the following formula (1).
  • R 4 represents an aliphatic hydrocarbon group having 1 or more carbon atoms.
  • R 1 'and R 2 ' are the same or different and each is a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, or a group represented by the following formula (a).
  • the bond with a wavy line in the formula bonds to the surface of the nanodiamond particle.
  • R 4 represents an aliphatic hydrocarbon group having 1 or more carbon atoms.
  • R 3 and R 5 are the same or different and each represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms.
  • m and n are the same or different and each represents an integer of 0 or more.
  • the bond with a wavy line is bonded to the surface of the nanodiamond particle.
  • R 4 in the formula (1) correspond to R 4 in the formula (1-1).
  • the aliphatic hydrocarbon group having 1 to 3 carbon atoms in R 1 ′, R 2 ′, R 3 and R 5 in the above formula (1) is, for example, a straight chain such as methyl, ethyl, propyl or isopropyl group. Or a branched alkyl group; a linear or branched alkenyl group such as vinyl or allyl group; an alkynyl group such as ethynyl group or propynyl group. Of these, a linear or branched alkyl group is preferable.
  • ⁇ m and n are the numbers of structural units shown in parentheses, and are the same or different and represent an integer of 0 or more.
  • the method of bonding the 2 or more structural units may be random, alternating, or block.
  • the silane compound surface-modified ND particles include, for example, a group represented by the following formula (1 ′) and other surface functional groups (eg, amino group, hydroxyl group, carboxyl group). It may have other functional groups such as groups).
  • the other functional groups may be only one kind or two or more kinds.
  • R 1 ′ and R 4 are the same as above.
  • the bond with a wavy line in the formula bonds to the surface of the nanodiamond particle.
  • the compound When a silane compound (particularly, a compound represented by the above formula (1-1)) is used as the compound to be surface-treated, the compound may be, for example, an OR 1 group or an OR 2 group in the above formula (1-1). , OR 3 groups and other hydrolyzable alkoxysilyl groups are easily hydrolyzed to form silanol groups.
  • one of the silanol groups is dehydrated and condensed with a hydroxyl group present on the surface of the ND particles to form a covalent bond.
  • the remaining two silanol groups can be condensed with silanol groups of other silane compounds to form a siloxane bond (Si-O-Si), and the ND particles have an affinity for an organic dispersion medium. Can be imparted, and even more excellent dispersibility can be exhibited in the organic dispersion medium.
  • organic dispersion medium As the organic dispersion medium, a known or common organic solvent can be used. Among them, the SP value [solubility parameter ( ⁇ ) by Hildebrandt, unit: (cal / cm) 1/2 at 25 ° C.] is 6.0 to 12.0 (from the viewpoint of more excellent dispersibility of ND particles).
  • the SP value is preferably 8.2 or less (eg 6.0 to 8.2) or 9.0 or more (eg 9.0 to 12.0), more preferably 8.0 or less (eg
  • the organic dispersion medium is preferably 6.5 to 8.0) or 9.2 or more (for example, 9.2 to 12.0).
  • the SP value of the mixture of at least one organic dispersion medium is preferably within the above range, and the SP value of each organic dispersion medium may be outside the above range.
  • organic dispersion medium examples include alkanes such as hexane (SP: 7.0); acetone (SP: 10.0), methyl ethyl ketone (MEK, SP: 9.3), methyl isobutyl ketone (MIBK, SP: 8).
  • alkanes such as hexane (SP: 7.0); acetone (SP: 10.0), methyl ethyl ketone (MEK, SP: 9.3), methyl isobutyl ketone (MIBK, SP: 8).
  • the dispersant (A) has a mass average molecular weight of 500 or more and an amine value of 15 mgKOH / g or more. By using such a dispersant, the dispersibility of the ND particles in the organic dispersion medium is particularly excellent.
  • the dispersant (A) only one kind may be used, or two or more kinds may be used.
  • the mass average molecular weight of the dispersant (A) is 500 or more, preferably 650 or more, more preferably 950 or more.
  • the mass average molecular weight is preferably 20,000 or less, more preferably 10,000 or less.
  • the mass average molecular weight is a standard polystyrene-equivalent molecular weight measured by gel permeation chromatography (GPC).
  • the amine value of the dispersant (A) is 15 mgKOH / g or more, preferably 18 mgKOH / g or more, more preferably 20 mgKOH / g or more, further preferably 30 mgKOH / g or more.
  • the amine value is preferably 100 mgKOH / g or less, more preferably 90 mgKOH / g or less, still more preferably 60 mgKOH / g or less.
  • a compound having a structure derived from polyalkylene glycol monoalkyl ether (particularly a structure derived from polyethylene glycol monoalkyl ether or a structure derived from polypropylene glycol monoalkyl ether), a compound having a carbamate structure
  • a compound having a structure derived from polycaprolactone is preferable.
  • the above compounds may each contain only one kind or may contain two or more kinds. Further, one compound may have one kind or two kinds or more of the above structures.
  • a commercially available product may be used as the dispersant (A).
  • examples of commercially available dispersants (A) include, for example, trade name “DISPERBYK-2008”, trade name “BYK-9076”, trade name “BYK-9077”, trade name “ANTI-TERRA-U” (above, BIC -Chemie) and the like.
  • the ND dispersion composition of the present invention can be preferably used, for example, as an additive that imparts the characteristics of fine ND particles to a resin or the like (for example, a heat or photocurable resin or a thermoplastic resin).
  • the properties of the ND particles include, for example, mechanical strength, high refractive index, thermal conductivity, insulating property, antioxidant property, crystallization promoting action, and dendrite suppressing action.
  • the composition obtained by adding the ND dispersion composition of the present invention to a resin is, for example, a functional hybrid material, a thermal function (heat resistance, heat storage, heat conduction, heat insulation, etc.) material, photonics (organic EL element, LED, liquid crystal display, optical disk, etc.) material, bio / biocompatible material, coating material, film (hard coat film such as touch panel and various displays, heat shield film, etc.) material, sheet material, screen (transparent transparent screen, etc.) It can be preferably used as a material, a filler (heat radiation filler, mechanical property improving filler, etc.) material, a heat-resistant plastic substrate (flexible display substrate, etc.) material, a lithium ion battery material, etc.
  • a filler heat radiation filler, mechanical property improving filler, etc.
  • a heat-resistant plastic substrate flexible display substrate, etc.
  • lithium ion battery material etc.
  • the ND dispersion composition of the present invention is preferably used as a lubricant or lubricant (initial familiarization application, main lubrication application, etc.) applied to sliding parts of machine parts (eg, automobiles, aircrafts, etc.). it can.
  • the ND dispersion composition of the present invention can be produced, for example, by mixing the organic dispersion medium with ND particles, the dispersant (A), and, if necessary, other components.
  • a dispersion composition using surface-modified ND particles can be produced through a step (modification step) of reacting a compound to be surface-treated with ND particles in an organic dispersion medium.
  • the solvent used in the modification step may be used as it is as the organic dispersion medium in the ND dispersion composition, or the solvent may be exchanged after the modification step.
  • the modification step when the ND particles include an ND particle aggregate in which the ND particles are aggregated to form secondary particles, the reaction between the compound for surface modification and the ND particles is performed. It is preferable to carry out while crushing or dispersing. Thereby, the ND particle aggregate can be crushed into primary particles, the surface of the ND primary particles can be modified, and the dispersibility of the nanodiamond particles in the ND dispersion composition can be improved. Because it will be.
  • the mass ratio (former: latter) of the ND particles to be subjected to the reaction in the modification step and the compound to be surface-treated (particularly, the silane compound) is, for example, 2: 1 to 1:20.
  • the concentration of the ND particles in the organic dispersion medium when the surface treatment is performed is, for example, 0.5 to 10% by mass, and the concentration of the compound is, for example, 5 to 40% by mass.
  • the reaction time for surface treatment is, for example, 4 to 20 hours. Further, the above reaction is preferably performed while cooling the generated heat with ice water or the like.
  • Examples of the method of crushing or dispersing the ND particles include a method of treating with a high shear mixer, high shear mixer, homomixer, ball mill, bead mill, high pressure homogenizer, ultrasonic homogenizer, colloid mill, jet mill and the like. .. Above all, it is preferable to perform the ultrasonic treatment in the presence of a crushing medium (for example, zirconia beads or the like).
  • a crushing medium for example, zirconia beads or the like.
  • the diameter of the crushing media is, for example, 15 to 500 ⁇ m, preferably 15 to 300 ⁇ m, and particularly preferably 15 to 100 ⁇ m.
  • an ND dispersion composition using an organic dispersion medium in which the dispersibility of ND particles is relatively low
  • a dispersant is added to an ND dispersion liquid in which the dispersibility of ND particles is relatively high, and the mixture is stirred, and then ND is used with an evaporator or the like. It can also be produced by distilling off the organic dispersion medium in the dispersion liquid, then newly mixing and stirring the organic dispersion medium, that is, by exchanging the organic dispersion medium.
  • the method of exchanging the organic dispersion medium without making the ND particles into a dry powder is adopted, and the wettability between the organic dispersion medium before and after the exchange and By appropriately selecting both organic dispersion media in consideration of solubility, ND particles are easily nano-dispersed in the organic dispersion media having relatively low dispersibility.
  • an ND dispersion composition in which ND particles are dispersed in an organic solvent is obtained.
  • the above ND particles can be manufactured, for example, by the detonation method.
  • the detonation method include an air-cooled detonation method and a water-cooled detonation method.
  • the air-cooled detonation method is preferable in that ND particles having smaller primary particles than the water-cooled detonation method can be obtained.
  • Detonation may be performed in the atmosphere, or in an inert gas atmosphere such as a nitrogen atmosphere, an argon atmosphere, or a carbon dioxide atmosphere.
  • an inert gas atmosphere such as a nitrogen atmosphere, an argon atmosphere, or a carbon dioxide atmosphere.
  • ND particles used in the present invention are not limited to those obtained by the following production method.
  • a molded explosive equipped with an electric detonator is installed inside a pressure-resistant container for detonation, and the container is hermetically sealed in the container in which the atmospheric gas of atmospheric composition and the explosive used coexist. ..
  • the container is made of, for example, iron, and the volume of the container is, for example, 0.5 to 40 m 3 .
  • As explosive it is possible to use a mixture of trinitrotoluene (TNT) and cyclotrimethylenetrinitroamine or hexogen (RDX).
  • TNT trinitrotoluene
  • RDX cyclotrimethylenetrinitroamine or hexogen
  • the mass ratio of TNT and RDX is, for example, in the range of 40/60 to 60/40.
  • Detonation refers to an explosion caused by a chemical reaction, in which the flame surface in which the reaction occurs moves at a high speed exceeding the speed of sound.
  • the explosive used causes partially incomplete combustion to release carbon as a raw material, and ND particles are generated by the action of the pressure and energy of the shock wave generated by the explosion.
  • the generated ND particles are extremely strongly assembled between adjacent primary particles or crystallites due to Coulomb interaction between crystal faces in addition to the action of Van der Waals force, and form an aggregate.
  • the ND particle coarse product (including the agglomerates and soot of the ND particles produced as described above) adhering to the inner wall of the container was scraped off with a spatula to remove the ND particle coarse particles. Collect the product.
  • a crude product of ND particles can be obtained by the method described above. In addition, it is possible to obtain a desired amount of the crude nanodiamond product by performing the above-mentioned nanodiamond production process a necessary number of times.
  • the raw material nanodiamond product is treated with a strong acid in, for example, a water solvent to remove the metal oxide.
  • the crude nanodiamond product obtained by the detonation method is likely to contain a metal oxide, and the metal oxide is an oxide such as Fe, Co, or Ni derived from the container or the like used in the detonation method. ..
  • the metal oxide can be dissolved and removed from the crude nanodiamond product by applying a strong acid in an aqueous solvent (acid treatment).
  • the strong acid used for this acid treatment is preferably a mineral acid, and examples thereof include hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, and aqua regia.
  • the strong acids may be used alone or in combination of two or more.
  • the concentration of the strong acid used in the acid treatment is, for example, 1 to 50% by mass.
  • the acid treatment temperature is, for example, 70 to 150 ° C.
  • the acid treatment time is, for example, 0.1 to 24 hours.
  • the acid treatment can be carried out under reduced pressure, normal pressure, or increased pressure.
  • the solid content (including the nanodiamond aggregate) is washed with water, for example, by decantation. It is preferable to repeatedly wash the solid content with water by decantation until the pH of the precipitation liquid reaches, for example, 2 to 3.
  • the above acid treatment may be omitted.
  • the oxidation treatment step is a step of removing graphite from the ND particle crude product using an oxidizing agent.
  • the ND particle crude product obtained by the detonation method contains graphite (graphite), but this graphite does not form ND particle crystals out of the carbon released by the incomplete combustion of the explosive used. Derived from carbon.
  • Graphite can be removed from the ND particle crude product by reacting the ND particle crude product with an oxidizing agent in a water solvent.
  • an oxygen-containing group such as a carboxyl group or a hydroxyl group can be introduced on the surface of the ND particles by causing the oxidizing agent to act.
  • Examples of the oxidizing agent used in this oxidation treatment include chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid, nitric acid, mixtures thereof, and at least one acid selected from these.
  • the mixed acid with other acid for example, sulfuric acid etc.
  • the mixing ratio (former / latter; mass ratio) of sulfuric acid and nitric acid in the above mixed acid is, for example, 60/40 to 95/5, but even under a pressure near normal pressure (eg, 0.5 to 2 atm).
  • a pressure near normal pressure eg, 0.5 to 2 atm.
  • the upper limit is, for example, 200 ° C.
  • graphite can be efficiently oxidized and removed, which is preferable.
  • the lower limit is preferably 65/35, more preferably 70/30.
  • the upper limit is preferably 90/10, more preferably 85/15, further preferably 80/20.
  • the mixing ratio is 60/40 or more, the content of sulfuric acid having a high boiling point is high, so that the reaction temperature becomes 120 ° C. or more under a pressure near normal pressure, and the graphite removal efficiency tends to improve. is there.
  • the mixing ratio is 95/5 or less, the content of nitric acid, which greatly contributes to the oxidation of graphite, increases, so that the graphite removal efficiency tends to improve.
  • the amount of the oxidizing agent (particularly the above-mentioned mixed acid) used is, for example, 10 to 50 parts by mass, preferably 15 to 40 parts by mass, and more preferably 20 to 40 parts by mass with respect to 1 part by mass of the nanodiamond crude product.
  • the amount of sulfuric acid used in the mixed acid is, for example, 5 to 48 parts by mass, preferably 10 to 35 parts by mass, and more preferably 15 to 30 parts by mass with respect to 1 part by mass of the nanodiamond crude product.
  • the amount of nitric acid used in the mixed acid is, for example, 2 to 20 parts by mass, preferably 4 to 10 parts by mass, and more preferably 5 to 8 parts by mass with respect to 1 part by mass of the nanodiamond crude product.
  • a catalyst may be used together with the mixed acid.
  • the efficiency of removing graphite can be further improved.
  • the catalyst include copper (II) carbonate and the like.
  • the amount of the catalyst used is, for example, about 0.01 to 10 parts by mass with respect to 100 parts by mass of the nanodiamond crude product.
  • the oxidation treatment temperature is 100 to 200 ° C., for example.
  • the oxidation treatment time is, for example, 1 to 24 hours.
  • the oxidation treatment can be performed under reduced pressure, normal pressure, or increased pressure.
  • alkali and hydrogen peroxide may be allowed to act on the ND particles in a water solvent.
  • the metal oxide remaining on the ND particles can be removed, and the separation of the primary particles from the agglomerate can be promoted.
  • the alkali used for this treatment include sodium hydroxide, ammonia, potassium hydroxide and the like.
  • the concentration of alkali is, for example, 0.1 to 10 mass%
  • the concentration of hydrogen peroxide is, for example, 1 to 15 mass%
  • the treatment temperature is, for example, 40 to 100 ° C.
  • the treatment time is For example, it is 0.5 to 5 hours.
  • the alkaline hydrogen peroxide treatment can be performed under reduced pressure, normal pressure, or increased pressure.
  • the oxidation treatment step or the alkaline hydrogen peroxide treatment step it is preferable to remove the supernatant by, for example, decantation. Moreover, it is preferable to wash the solid content with water during decantation. Although the supernatant liquid at the beginning of washing with water is colored, it is preferable to repeatedly wash the solid content with water until the supernatant liquid becomes transparent visually.
  • the ND particles may be subjected to a crushing treatment.
  • a crushing treatment for example, a high shear mixer, high shear mixer, homomixer, ball mill, bead mill, high pressure homogenizer, ultrasonic homogenizer, colloid mill, etc. can be used.
  • the crushing treatment may be performed wet (for example, crushing treatment in a state of being suspended in water) or may be performed dry. When it is carried out by a dry method, it is preferable to provide a drying step before the crushing treatment.
  • drying process It is preferable to provide a drying step after the above alkaline hydrogen peroxide treatment step. For example, after the liquid content is evaporated from the ND particle-containing solution obtained through the above alkaline hydrogen peroxide treatment step by using a spray dryer or an evaporator, the residual solid content generated by this is heated in a drying oven. Dry by drying. The heating and drying temperature is, for example, 40 to 150 ° C. ND particles are obtained through such a drying process.
  • the ND particles may be subjected to oxidation treatment (for example, oxygen oxidation) or reduction treatment (for example, hydrogenation treatment) in a gas phase, if necessary.
  • oxidation treatment for example, oxygen oxidation
  • reduction treatment for example, hydrogenation treatment
  • reduction treatment for example, hydrogenation treatment
  • Examples 1-5 The surface-modified ND particles and the ND dispersion composition were manufactured through the following steps.
  • a nanodiamond generation process by the detonation method was performed.
  • a molded explosive with an electric detonator attached was placed inside a pressure-resistant container for detonation, and the container was sealed.
  • the container is made of iron and has a volume of 15 m 3 .
  • As the explosive 0.50 kg of a mixture of TNT and RDX was used.
  • the mass ratio of TNT and RDX (TNT / RDX) in this explosive is 50/50.
  • the electric detonator was detonated and the explosive was detonated in the container (generation of nanodiamond by detonation method).
  • the temperature of the container and its inside was lowered by leaving it to stand at room temperature for 24 hours. After this cooling, the crude nanodiamond product (including the agglomerates and soot of the nanodiamond particles produced by the above detonation method) adhering to the inner wall of the container is scraped off with a spatula, The crude product was collected.
  • an acid treatment step was performed on the crude nanodiamond product obtained by performing the above-described production steps multiple times. Specifically, a slurry obtained by adding 6 L of 10 mass% hydrochloric acid to 200 g of the crude nanodiamond product was subjected to a heat treatment for 1 hour under reflux under normal pressure conditions. The heating temperature in this acid treatment is 85 to 100 ° C. Next, after cooling, the solid content (including the nanodiamond aggregate and soot) was washed with water by decantation. The solid content was repeatedly washed with water by decantation until the pH of the precipitation liquid reached 2 from the low pH side.
  • an oxidation process was performed. Specifically, after adding 6 L of 98% by mass sulfuric acid and 1 L of 69% by mass nitric acid to a precipitation liquid (including a nanodiamond aggregate) obtained through decantation after acid treatment, This slurry was subjected to heat treatment for 48 hours under reflux under normal pressure conditions. The heating temperature in this oxidation treatment is 140 to 160 ° C. Next, after cooling, the solid content (including the nanodiamond aggregate) was washed with water by decantation. When the supernatant liquid was colored at the beginning of washing with water, the solid content was repeatedly washed with water by decantation until the supernatant liquid became transparent visually.
  • 0.3 g of the nanodiamond particles obtained in the above drying step was weighed into a reaction container, 13.5 g of MIBK and 1.2 g of hexyltrimethoxysilane as a silane compound were added, and the mixture was stirred for 10 minutes.
  • zirconia beads registered trademark “YTZ”, manufactured by Tosoh Corporation, diameter 30 ⁇ m
  • YTZ zirconia beads
  • UP-400s model “UP-400s”, manufactured by Heelscher
  • the ND particles were reacted with the silane compound by sonication. At first, it was gray, but the particle size gradually decreased and the dispersion state improved, and finally it became a uniform, black liquid.
  • MIBK dispersion liquid MIBK dispersion liquid
  • ND dispersion composition (Preparation of ND dispersion composition) To 10 g of the surface-modified ND dispersion obtained above, 0.2 g of a dispersant was added and stirred, and then MIBK was distilled off by a rotary evaporator, and a dispersion medium was added to make the total weight 10 g. In this way, an ND dispersion composition was prepared.
  • the nanodiamond concentration of the ND dispersion composition was 2% by mass. The nanodiamond concentration was determined from the absorbance at 350 nm.
  • the dispersant and dispersion medium used in Examples 1 to 5 are as follows. The dispersants used in Examples 1 to 5 all have a structure derived from polyalkylene glycol monoalkyl ether.
  • Example 1 Dispersant: Mass average molecular weight 1000, amine number 19, having a structure derived from polyethylene glycol monoalkyl ether, dispersion medium: hexane
  • Example 2 Dispersant: Dispersion medium having a mass average molecular weight of 3600, an amine value of 48, a structure derived from polypropylene glycol monoalkyl ether, a carbamate structure, and a structure derived from polycaprolactone: Hexane
  • Example 3 Dispersant: mass average molecular weight 700, amine value 66, having a structure derived from polypropylene glycol monoalkyl ether, dispersion medium: hexane
  • Example 4 Dispersant: Mass average molecular weight 1400, amine value 44, having a structure derived from polyethylene glycol monoalkyl ether, dispersion medium: POE
  • Example 5 Dispersant: Dispersion medium having a mass average molecular weight of 3600, an amine value of 48, a
  • Comparative Examples 1 and 2 An ND dispersion composition was prepared in the same manner as in the Example except that the following was used as the dispersion medium without using the dispersant. Comparative Example 1 Dispersion medium: Hexane Comparative Example 2 Dispersion medium: POE
  • Haze value The ND dispersion compositions obtained in Examples and Comparative Examples were measured using a haze measuring device (trade name "Hazemeter 300A", manufactured by Nippon Denshoku Industries Co., Ltd.). Each sample solution used for measurement was subjected to ultrasonic cleaning for 10 minutes by an ultrasonic cleaning machine. The thickness (inner dimension) of the measuring glass cell filled with the sample liquid and used for the measurement is 1 mm, and the optical path length in the sample relating to the measurement is 1 mm. In addition, "-" in the table indicates that the measurement was not performed.
  • Viscosity The ND dispersion compositions obtained in Examples and Comparative Examples were measured using an EMS viscometer (trade name “EMS1000”, manufactured by Kyoto Electronics Manufacturing Co., Ltd.). 500 ⁇ L of sample and ⁇ 2 mm aluminum balls were put in a test tube, and the temperature was 25 ° C. and the rotation speed was 1000 rpm, and measurement was performed.
  • EMS1000 manufactured by Kyoto Electronics Manufacturing Co., Ltd.
  • Organic dispersion medium Nanodiamond particles dispersed in the organic dispersion medium, A dispersant having a mass average molecular weight of 500 or more and an amine value of 15 mgKOH / g or more;
  • a nanodiamond dispersion composition comprising: [2] The nanodiamond dispersion composition according to [1], wherein the average dispersed particle diameter of the nanodiamond particles is 2 to 240 nm (preferably 4 to 200 nm, more preferably 10 to 180 nm, further preferably 20 to 150 nm). ..
  • nanodiamond dispersion composition according to [1] or [2], which has a haze value of 5 or less (preferably 3 or less, more preferably 1 or less, still more preferably 0.5 or less).
  • the viscosity according to any one of [1] to [4] which has a viscosity at 25 ° C. of 0.2 to 120 mPa ⁇ s (preferably 10 to 100 mPa ⁇ s, more preferably 20 to 90 mPa ⁇ s).
  • Nano diamond dispersion composition is preferably 10 to 100 mPa ⁇ s, more preferably 20 to 90 mPa ⁇ s.
  • the dispersant contains a compound having a structure derived from polyalkylene glycol monoalkyl ether (preferably derived from polyethylene glycol monoalkyl ether or polypropylene glycol alkyl ether).
  • the nanodiamond dispersion composition as described in 1.
  • the dispersant contains a compound having a structure derived from polycaprolactone.
  • the dispersant has a structure derived from polyalkylene glycol monoalkyl ether (preferably derived from polyethylene glycol monoalkyl ether or derived from polypropylene glycol alkyl ether), a carbamate structure, and a structure derived from polycaprolactone [1 ]
  • the nano diamond dispersion composition as described in any one of [5].
  • the nanodiamond dispersion composition according to any one of [1] to [9], wherein the dispersant has a mass average molecular weight of 650 or more (preferably 950 or more).
  • the dispersant has an amine value of 18 mgKOH / g or more (preferably 20 mgKOH / g or more, more preferably 30 mgKOH / g or more). Composition.
  • the SP value of the organic dispersion medium is 6.0 to 8.2 (cal / cm) 1/2 (preferably 6.5 to 8.0 (cal / cm) 1/2 ) [1] ⁇ The nanodiamond dispersion composition according to any one of [13].
  • the SP value of the organic dispersion medium is 9.0 to 12.0 (cal / cm) 1/2 (preferably 9.2 to 12.0 (cal / cm) 1/2 ) [1] ⁇
  • the content ratio of the dispersant is 90 mass% or more (95 mass% or more, more preferably 99 mass% or more) with respect to the total amount of the dispersant in the nanodiamond dispersion composition [1].
  • the nanodiamond dispersion composition according to any one of to [15].
  • the content of the dispersant in the nanodiamond dispersion composition is 10 to 10000 parts by mass (preferably 50 to 1000 parts by mass) based on 100 parts by mass of the total amount of the nanodiamond particles in the nanodiamond dispersion composition.
  • the content ratio of the nanodiamond particles is 0.01 to 5.0% by mass (preferably 0.1 to 4.0% by mass, more preferably 0.25 to 3.0% by mass, still more preferably 0.1.
  • the nanodiamond dispersion composition according to any one of [1] to [17], which is 5 to 2.0% by mass). [19]
  • the content ratio of the nanodiamond particles in the nanodiamond dispersion composition is 0.1 to 2000 mass ppm, and the content of the dispersant is 1000 with respect to 100 parts by mass of the total amount of the nanodiamond particles.
  • the total content ratio of the nanodiamond particles, the dispersant, and the organic dispersion medium is 70% by mass or more (preferably 80% by mass or more, and more preferably, based on the total amount of the nanodiamond dispersion composition. 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 99% by mass or more), the nanodiamond dispersion composition according to any one of [1] to [19].
  • R 1 , R 2 and R 3 are the same or different and each represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms.
  • R 4 represents an aliphatic hydrocarbon group having 1 or more carbon atoms.

Abstract

Provided is a nanodiamond-dispersed composition, in which the dispersibility of nanodiamond particles in an organic dispersion medium is excellent. A nanodiamond-dispersed composition comprising an organic dispersion medium, nanodiamond particles dispersed in the organic dispersion medium, and a dispersing agent having a mass average molecular weight of 500 or more and an amine value of 15 mgKOH/g or more. The average dispersion particle diameter of the nanodiamond particles is preferably 20 to 150 nm. The haze value of the nanodiamond composition is preferably 5 or less.

Description

ナノダイヤモンド分散組成物Nano diamond dispersion composition
 本発明は、ナノダイヤモンド分散組成物に関する。より詳細には、本発明は、有機分散媒中にナノダイヤモンド粒子が分散した組成物に関する。本願は、2018年11月5日に日本に出願した特願2018-208309号の優先権を主張し、その内容をここに援用する。 The present invention relates to a nanodiamond dispersion composition. More specifically, the present invention relates to compositions in which nanodiamond particles are dispersed in an organic dispersion medium. This application claims the priority of Japanese Patent Application No. 2018-208309 filed in Japan on November 5, 2018, and the content thereof is incorporated herein.
 ナノサイズの微細な物質は、バルク状態では発現し得ない新しい特性を有することが知られている。例えば、ナノダイヤモンド粒子(=ナノサイズのダイヤモンド粒子)は、機械的強度、高屈折率、熱伝導性、絶縁性、酸化防止性、樹脂などの結晶化を促進する作用などを有する。そのようなナノダイヤモンドの製造に関する技術については、例えば下記の特許文献1及び特許文献2に記載されている。 It is known that nano-sized fine substances have new properties that cannot be expressed in the bulk state. For example, nanodiamond particles (= nanosize diamond particles) have mechanical strength, high refractive index, thermal conductivity, insulating property, antioxidant property, action of promoting crystallization of resin and the like. Techniques relating to the production of such nanodiamonds are described in, for example, Patent Document 1 and Patent Document 2 below.
特開2005-001983号公報Japanese Patent Laid-Open No. 2005-001983 特開2010-126669号公報JP, 2010-126669, A
 しかし、ナノダイヤモンド粒子は、一般に、表面原子の割合が大きいので、隣接粒子の表面原子間で作用し得るファンデルワールス力の総和が大きく、凝集(aggregation)しやすい。これに加えて、ナノダイヤモンド粒子の場合、隣接結晶子の結晶面間クーロン相互作用が寄与して非常に強固に集成する凝着(agglutination)という現象が生じ得る。そのため、ナノダイヤモンド粒子を一次粒子の状態で有機溶媒に分散させることは非常に困難であった。 However, since nanodiamond particles generally have a large proportion of surface atoms, the total sum of van der Waals forces that can act between surface atoms of adjacent particles is large, and they are easily aggregated. In addition to this, in the case of nanodiamond particles, a phenomenon called agglutination in which Coulomb interaction between crystal faces of adjacent crystallites contributes to form a very strong aggregation may occur. Therefore, it was very difficult to disperse the nanodiamond particles in the organic solvent in the state of primary particles.
 従って、本発明の目的は、有機分散媒中のナノダイヤモンド粒子の分散性に優れるナノダイヤモンド分散組成物を提供することにある。 Therefore, an object of the present invention is to provide a nanodiamond dispersion composition having excellent dispersibility of nanodiamond particles in an organic dispersion medium.
 本発明者らは、上記目的を達成するため鋭意検討した結果、特定の分散剤を用いることにより、有機分散媒中のナノダイヤモンド粒子の分散性に優れるナノダイヤモンド分散組成物を得ることができることを見出した。本発明はこれらの知見に基づいて完成させたものである。 The present inventors have conducted extensive studies to achieve the above object, and by using a specific dispersant, it is possible to obtain a nanodiamond dispersion composition having excellent dispersibility of nanodiamond particles in an organic dispersion medium. I found it. The present invention has been completed based on these findings.
 すなわち、本発明は、有機分散媒と、上記有機分散媒中に分散しているナノダイヤモンド粒子と、質量平均分子量が500以上であり、且つアミン価が15mgKOH/g以上である分散剤と、を含むナノダイヤモンド分散組成物を提供する。 That is, the present invention comprises an organic dispersion medium, nanodiamond particles dispersed in the organic dispersion medium, and a dispersant having a mass average molecular weight of 500 or more and an amine value of 15 mgKOH / g or more. A nanodiamond dispersion composition including the same is provided.
 上記ナノダイヤモンド粒子の平均分散粒子径は20~150nmであることが好ましい。 The average dispersed particle diameter of the nanodiamond particles is preferably 20 to 150 nm.
 上記ナノダイヤモンド分散組成物はヘイズ値が5以下であることが好ましい。 The haze value of the nanodiamond dispersion composition is preferably 5 or less.
 上記有機分散媒のSP値は6.0~12.0(cal/cm)1/2であることが好ましい。 The SP value of the organic dispersion medium is preferably 6.0 to 12.0 (cal / cm) 1/2 .
 上記ナノダイヤモンド分散組成物は25℃における粘度が20~90mPa・sであることが好ましい。 The viscosity of the nanodiamond dispersion composition at 25 ° C. is preferably 20 to 90 mPa · s.
 上記分散剤はポリアルキレングリコールモノアルキルエーテル由来の構造を有する化合物を含むことが好ましい。 The dispersant preferably contains a compound having a structure derived from polyalkylene glycol monoalkyl ether.
 上記分散剤はカーバメート構造を有する化合物を含むことが好ましい。 The above dispersant preferably contains a compound having a carbamate structure.
 上記分散剤はポリカプロラクトン由来の構造を有する化合物を含むことが好ましい。 The above dispersant preferably contains a compound having a structure derived from polycaprolactone.
 上記ナノダイヤモンド分散組成物はナノダイヤモンド粒子の含有割合が0.01~5.0質量%であってもよい。 The content ratio of the nanodiamond particles in the nanodiamond dispersion composition may be 0.01 to 5.0% by mass.
 上記ナノダイヤモンド粒子は、シラン化合物が表面に結合した表面修飾ナノダイヤモンドであることが好ましい。 The nanodiamond particles are preferably surface-modified nanodiamonds having a silane compound bonded to the surface.
 本発明のナノダイヤモンド分散組成物は、有機分散媒中のナノダイヤモンド粒子の分散性に優れる。 The nanodiamond dispersion composition of the present invention has excellent dispersibility of nanodiamond particles in an organic dispersion medium.
 本発明のナノダイヤモンド分散組成物(ND分散組成物)は、有機分散媒と、上記有機分散媒中に分散しているナノダイヤモンド粒子(ND粒子)と、質量平均分子量が500以上であり、且つアミン価が15mgKOH/g以上である分散剤と、を含む。なお、本明細書において、質量平均分子量が500以上であり、且つアミン価が15mgKOH/g以上である分散剤を分散剤(A)と称する場合がある。 The nanodiamond dispersion composition (ND dispersion composition) of the present invention has an organic dispersion medium, nanodiamond particles (ND particles) dispersed in the organic dispersion medium, a mass average molecular weight of 500 or more, and And a dispersant having an amine value of 15 mgKOH / g or more. In the present specification, a dispersant having a mass average molecular weight of 500 or more and an amine value of 15 mgKOH / g or more may be referred to as a dispersant (A).
 本発明のND分散組成物中におけるND粒子の平均分散粒子径(D50、メディアン径)は、2~240nmが好ましく、より好ましくは4~200nm、より好ましくは10~180nm、さらに好ましくは20~150nmである。上記平均分散粒子径は、動的光散乱法によって測定することができる。本発明のND分散組成物はND粒子の分散性に優れるため、上記範囲内の平均分散粒子径で有機分散媒中に分散することができる。 The average dispersed particle diameter (D50, median diameter) of the ND particles in the ND dispersion composition of the present invention is preferably 2 to 240 nm, more preferably 4 to 200 nm, more preferably 10 to 180 nm, further preferably 20 to 150 nm. Is. The average dispersed particle diameter can be measured by a dynamic light scattering method. Since the ND dispersion composition of the present invention has excellent dispersibility of ND particles, it can be dispersed in an organic dispersion medium with an average dispersed particle diameter within the above range.
 本発明のND分散組成物中のND粒子の含有割合は、例えば0.01~5.0質量%、好ましくは0.1~4.0質量%、より好ましくは0.25~3.0質量%、さらに好ましくは0.5~2.0質量%である。含有割合が上記範囲内であると、ND粒子の分散性がより優れる。 The content ratio of the ND particles in the ND dispersion composition of the present invention is, for example, 0.01 to 5.0% by mass, preferably 0.1 to 4.0% by mass, more preferably 0.25 to 3.0% by mass. %, And more preferably 0.5 to 2.0 mass%. When the content ratio is within the above range, the dispersibility of the ND particles is more excellent.
 本発明のND分散組成物中の分散剤(A)の含有量は、本発明のND分散組成物中のND粒子の総量100質量部に対して、例えば10~10000質量部、好ましくは50~1000質量部、より好ましくは70~300質量部である。分散剤(A)の含有量が上記範囲内であると、本発明のND分散組成物中のND粒子の分散性によりいっそう優れる。なお、本発明のND分散組成物は、ND粒子の含有割合が低くなるよう(例えば0.1~2000質量ppm)使用時に希釈されてもよく、この場合の分散剤(A)の含有量は、本発明のND分散組成物中のND粒子の総量100質量部に対して、1000~1000000質量部が好ましく、より好ましくは2000~100000質量部、特に好ましくは3000~50000質量部である。 The content of the dispersant (A) in the ND dispersion composition of the present invention is, for example, 10 to 10,000 parts by mass, preferably 50 to 100 parts by mass based on 100 parts by mass of the total amount of ND particles in the ND dispersion composition of the present invention. The amount is 1000 parts by mass, more preferably 70 to 300 parts by mass. When the content of the dispersant (A) is within the above range, the dispersibility of the ND particles in the ND dispersion composition of the present invention is further excellent. The ND dispersion composition of the present invention may be diluted at the time of use so that the content ratio of ND particles becomes low (for example, 0.1 to 2000 mass ppm), and the content of the dispersant (A) in this case is The amount of ND particles in the ND dispersion composition of the present invention is preferably 1,000 to 1,000,000 parts by mass, more preferably 2,000 to 100,000 parts by mass, and particularly preferably 3,000 to 50,000 parts by mass, based on 100 parts by mass.
 本発明のND分散組成物中の溶媒の含有割合は、例えば90~99.9999質量%である。そして、溶媒の総量における有機分散媒の含有割合は、例えば60質量%以上、好ましくは70質量%以上、さら好ましくは80質量%以上、特に好ましくは90質量%以上である。 The content ratio of the solvent in the ND dispersion composition of the present invention is, for example, 90 to 99.9999% by mass. The content ratio of the organic dispersion medium in the total amount of the solvent is, for example, 60% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
 本発明のND分散組成物は、ヘイズ値が5以下であることが好ましく、より好ましくは3以下、さらに好ましくは1以下、特に好ましくは0.5以下である。本発明のND分散組成物はND粒子の分散性に優れるため、上記ヘイズ値のND分散組成物を得ることができる。上記ヘイズ値は、JIS K 7136に基づいて測定することができる。 The haze value of the ND dispersion composition of the present invention is preferably 5 or less, more preferably 3 or less, further preferably 1 or less, particularly preferably 0.5 or less. Since the ND dispersion composition of the present invention has excellent dispersibility of ND particles, the ND dispersion composition having the above haze value can be obtained. The haze value can be measured based on JIS K7136.
 本発明のND分散組成物の25℃における粘度は、0.2~120mPa・sが好ましく、より好ましくは10~100mPa・s、さらに好ましくは20~90mPa・sである。本発明のND分散組成物はND粒子の分散性に優れるため、上記粘度が上記範囲内においても有機分散媒中の分散性に優れる。上記粘度の測定の際の回転子及び回転子の回転速度は、測定値に応じて適宜選択される。上記粘度は、例えば、EMS粘度計(商品名「EMS1000」、京都電子工業株式会社製)を用いて測定することができる。 The viscosity of the ND dispersion composition of the present invention at 25 ° C. is preferably 0.2 to 120 mPa · s, more preferably 10 to 100 mPa · s, and further preferably 20 to 90 mPa · s. Since the ND dispersion composition of the present invention has excellent dispersibility of ND particles, it has excellent dispersibility in an organic dispersion medium even when the viscosity is within the above range. The rotor and the rotation speed of the rotor at the time of measuring the viscosity are appropriately selected according to the measured value. The viscosity can be measured using, for example, an EMS viscometer (trade name "EMS1000", manufactured by Kyoto Electronics Manufacturing Co., Ltd.).
 本発明のND分散組成物は、ND粒子、分散剤(A)、及び有機分散媒のみからなるものであってもよく、その他の成分を含有していてもよい。その他の成分としては、例えば、分散剤(A)以外の分散剤、界面活性剤、増粘剤、カップリング剤、防錆剤、腐食防止剤、凝固点降下剤、消泡剤、耐摩耗添加剤、防腐剤、着色料などが挙げられる。なお、分散剤(A)の含有割合は、本発明のND分散組成物中の分散剤の総量に対して90質量%以上が好ましく、より好ましくは95質量%以上、さらに好ましくは99質量%以上である。上記その他の成分の含有割合は、本発明のND分散組成物総量に対して、例えば30質量%以下、好ましくは20質量%以下、さらに好ましくは10質量%以下、さらに好ましくは5質量%以下、特に好ましくは1質量%以下である。従って、ND粒子、分散剤(A)、及び有機分散媒の合計の含有割合は、本発明のND分散組成物総量に対して、例えば70質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、特に好ましくは99質量%以上である。 The ND dispersion composition of the present invention may consist of only ND particles, a dispersant (A), and an organic dispersion medium, or may contain other components. Other components include, for example, dispersants other than dispersant (A), surfactants, thickeners, coupling agents, rust inhibitors, corrosion inhibitors, freezing point depressants, antifoaming agents, antiwear additives. , Preservatives, coloring agents and the like. The content ratio of the dispersant (A) is preferably 90% by mass or more, more preferably 95% by mass or more, further preferably 99% by mass or more based on the total amount of the dispersant in the ND dispersion composition of the present invention. Is. The content ratio of the other components is, for example, 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, further preferably 5% by mass or less, based on the total amount of the ND dispersion composition of the present invention. It is particularly preferably 1% by mass or less. Therefore, the total content ratio of the ND particles, the dispersant (A), and the organic dispersion medium is, for example, 70% by mass or more, preferably 80% by mass or more, and more preferably based on the total amount of the ND dispersion composition of the present invention. 90 mass% or more, more preferably 95 mass% or more, and particularly preferably 99 mass% or more.
(ナノダイヤモンド粒子)
 上記ND粒子は、特に限定されず、公知乃至慣用のナノダイヤモンド粒子を用いることができる。上記ND粒子は、表面修飾されたND(表面修飾ND)粒子であっていてもよいし、表面修飾されていないND粒子であってもよい。なお、表面修飾されていないND粒子は、表面にヒドロキシル基(-OH)を有する。ND粒子は、一種のみを用いてもよいし二種以上を用いてもよい。
(Nano diamond particles)
The ND particles are not particularly limited, and known or commonly used nanodiamond particles can be used. The ND particles may be surface-modified ND (surface-modified ND) particles or may be non-surface-modified ND particles. The ND particles that are not surface-modified have hydroxyl groups (—OH) on the surface. The ND particles may be used alone or in combination of two or more.
 上記表面修飾NDにおいてND粒子を表面修飾する化合物又は官能基としては、例えば、シラン化合物、カルボキシル基(-COOH)、ホスホン酸イオン若しくはホスホン酸残基、末端にビニル基を有する表面修飾基、アミド基、カチオン界面活性剤のカチオン、ポリグリセリン鎖を含む基、ポリエチレングリコール鎖を含む基などが挙げられる。 Examples of the compound or functional group that surface-modifies the ND particles in the surface-modified ND include a silane compound, a carboxyl group (—COOH), a phosphonate ion or a phosphonic acid residue, a surface-modifying group having a vinyl group at the end, and an amide. Group, a cation of a cationic surfactant, a group containing a polyglycerin chain, a group containing a polyethylene glycol chain, and the like.
 上記表面修飾NDにおいてND粒子を表面修飾する化合物又は官能基としては、中でも、分散剤(A)との組み合わせにより有機分散媒中の分散性により優れる観点から、シラン化合物が好ましい。すなわち、上記表面修飾NDは、シラン化合物が表面に結合した表面修飾NDであることが好ましい。 As the compound or functional group for surface-modifying the ND particles in the above-mentioned surface-modified ND, a silane compound is preferable from the viewpoint of being more excellent in dispersibility in an organic dispersion medium in combination with the dispersant (A). That is, it is preferable that the surface-modified ND is a surface-modified ND in which a silane compound is bonded to the surface.
 上記シラン化合物としては、加水分解性基及び脂肪族炭化水素基を有することが好ましい。ND粒子の表面修飾に用いるシラン化合物は、一種のみであってもよいし、二種以上であってもよい。 The silane compound preferably has a hydrolyzable group and an aliphatic hydrocarbon group. The silane compound used for the surface modification of the ND particles may be only one kind or two or more kinds.
 上記シラン化合物としては、中でも、下記式(1-1)で表される化合物を少なくとも含有することが好ましい。 Among the above silane compounds, it is preferable to contain at least a compound represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1-1)中、R1、R2、R3は、同一又は異なって、炭素数1~3の脂肪族炭化水素基を示す。R4は炭素数1以上の脂肪族炭化水素基を示す。 In the above formula (1-1), R 1 , R 2 and R 3 are the same or different and each represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms. R 4 represents an aliphatic hydrocarbon group having 1 or more carbon atoms.
 上記R1、R2、R3における炭素数1~3の脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル基等の直鎖状又は分岐鎖状アルキル基;ビニル、アリル基等の直鎖状又は分岐鎖状アルケニル基;エチニル基、プロピニル基等のアルキニル基などが挙げられる。中でも、直鎖状又は分岐鎖状アルキル基が好ましい。 Examples of the aliphatic hydrocarbon group having 1 to 3 carbon atoms in R 1 , R 2 and R 3 include linear or branched alkyl groups such as methyl, ethyl, propyl and isopropyl groups; vinyl and allyl groups. And straight-chain or branched-chain alkenyl groups; and alkynyl groups such as ethynyl group and propynyl group. Of these, a linear or branched alkyl group is preferable.
 上記R4は炭素数1以上の脂肪族炭化水素基であり、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ペンチル、ヘキシル、n-オクチル、2-エチルヘキシル、ノニル、イソノニル、デシル、イソデシル、ラウリル、ミリスチル、イソミリスチル、ブチルオクチル、イソセチル、ヘキシルデシル、ステアリル、イソステアリル、オクチルデシル、オクチルドデシル、イソベヘニル基等の直鎖状又は分岐鎖状アルキル基;ビニル、アリル、1-ブテニル、7-オクテニル、8-ノネニル、9-デセニル、11-ドデセニル、オレイル基等の直鎖状又は分岐鎖状アルケニル基;エチニル、プロピニル、デシニル、ペンタデシニル、オクタデシニル基等の直鎖状又は分岐鎖状アルキニル基などが挙げられる。 R 4 is an aliphatic hydrocarbon group having 1 or more carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl, n-octyl, 2-ethylhexyl. , Nonyl, isononyl, decyl, isodecyl, lauryl, myristyl, isomyristyl, butyloctyl, isocetyl, hexyldecyl, stearyl, isostearyl, octyldecyl, octyldodecyl, isobehenyl group, and other linear or branched alkyl groups; vinyl Straight-chain or branched-chain alkenyl groups such as allyl, 1-butenyl, 7-octenyl, 8-nonenyl, 9-decenyl, 11-dodecenyl and oleyl groups; direct groups such as ethynyl, propynyl, decynyl, pentadecynyl and octadecynyl groups. Chain or branched alkynyl group, etc. And the like.
 R4は、中でも、親油性がより高く、また、より大きな立体障害となり得ることから凝集抑制効果に優れ、より高度の分散性を付与することができる点で、炭素数4以上の脂肪族炭化水素基が好ましく、特に好ましくは炭素数6以上の脂肪族炭化水素基である。なお、脂肪族炭化水素基の炭素数の上限は、例えば25、好ましくは20、より好ましくは12である。また、脂肪族炭化水素基としては、直鎖状又は分岐鎖状のアルキル基若しくはアルケニル基が好ましく、特に好ましくは直鎖状又は分岐鎖状アルキル基である。 Among them, R 4 is higher in lipophilicity and can be a larger steric hindrance, so that it has an excellent effect of suppressing aggregation and can impart a higher degree of dispersibility, and thus R 4 is an aliphatic carbon atom having 4 or more carbon atoms. A hydrogen group is preferable, and an aliphatic hydrocarbon group having 6 or more carbon atoms is particularly preferable. In addition, the upper limit of the carbon number of the aliphatic hydrocarbon group is, for example, 25, preferably 20, and more preferably 12. As the aliphatic hydrocarbon group, a linear or branched alkyl group or alkenyl group is preferable, and a linear or branched alkyl group is particularly preferable.
 R4は炭素数が4以上の脂肪族炭化水素基であると、有機分散媒に対する親和性を示し、また、より大きな立体障害となり得ることから凝集抑制効果に優れ、さらに、酸素原子を含む基(式(1)中のOR1’基とOR2’基)が有機分散媒に対する親和性を示すため、有機分散媒に対する親和性に優れ、有機分散媒中においてよりいっそう優れた分散性を発揮することができる。 When R 4 is an aliphatic hydrocarbon group having 4 or more carbon atoms, it exhibits affinity for an organic dispersion medium, and since it may cause larger steric hindrance, it is excellent in the aggregation suppressing effect, and further contains a group containing an oxygen atom. (OR 1 'group and OR 2 ' group in the formula (1)) show an affinity for the organic dispersion medium, so that the affinity for the organic dispersion medium is excellent and the dispersibility is further enhanced in the organic dispersion medium. can do.
 従って、シラン化合物により表面修飾されたND粒子(シラン化合物表面修飾ND粒子)としては、例えば、下記式(1)で表される基で表面修飾された構造を有するND粒子が挙げられる。 Therefore, examples of the ND particles surface-modified with a silane compound (silane compound surface-modified ND particles) include ND particles having a structure surface-modified with a group represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式(1)中、R4は、炭素数1以上の脂肪族炭化水素基を示す。R1’、R2’は同一又は異なって、水素原子、炭素数1~3の脂肪族炭化水素基、又は下記式(a)で表される基である。式中の波線が付された結合手がナノダイヤモンド粒子の表面に結合する。 In the above formula (1), R 4 represents an aliphatic hydrocarbon group having 1 or more carbon atoms. R 1 'and R 2 ' are the same or different and each is a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, or a group represented by the following formula (a). The bond with a wavy line in the formula bonds to the surface of the nanodiamond particle.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(a)中、R4は炭素数1以上の脂肪族炭化水素基を示す。R3、R5は同一又は異なって、水素原子、又は炭素数1~3の脂肪族炭化水素基を示す。m、nは同一又は異なって、0以上の整数を示す。なお、ケイ素原子から左にのびる結合手が酸素原子に結合する。また、波線が付された結合手はナノダイヤモンド粒子の表面に結合する。上記式(1)中のR4は式(1-1)中のR4に対応する。 In the above formula (a), R 4 represents an aliphatic hydrocarbon group having 1 or more carbon atoms. R 3 and R 5 are the same or different and each represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms. m and n are the same or different and each represents an integer of 0 or more. The bond extending from the silicon atom to the left bonds to the oxygen atom. In addition, the bond with a wavy line is bonded to the surface of the nanodiamond particle. R 4 in the formula (1) correspond to R 4 in the formula (1-1).
 上記式(1)中のR1’、R2’、R3、R5における炭素数1~3の脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル基等の直鎖状又は分岐鎖状アルキル基;ビニル、アリル基等の直鎖状又は分岐鎖状アルケニル基;エチニル基、プロピニル基等のアルキニル基などが挙げられる。中でも、直鎖状又は分岐鎖状アルキル基が好ましい。 The aliphatic hydrocarbon group having 1 to 3 carbon atoms in R 1 ′, R 2 ′, R 3 and R 5 in the above formula (1) is, for example, a straight chain such as methyl, ethyl, propyl or isopropyl group. Or a branched alkyl group; a linear or branched alkenyl group such as vinyl or allyl group; an alkynyl group such as ethynyl group or propynyl group. Of these, a linear or branched alkyl group is preferable.
 m、nは括弧内に示される構成単位の数であり、同一又は異なって0以上の整数を示す。m、nが2以上である場合、2個以上の構成単位の結合方法としては、ランダム、交互、ブロックの何れであってもよい。 ㆍ m and n are the numbers of structural units shown in parentheses, and are the same or different and represent an integer of 0 or more. When m and n are 2 or more, the method of bonding the 2 or more structural units may be random, alternating, or block.
 上記シラン化合物表面修飾ND粒子は、上記式(1)で表される基以外にも、例えば下記式(1’)で表される基、その他の表面官能基(例えば、アミノ基、水酸基、カルボキシル基等)などのその他の官能基を有していてもよい。上記その他の官能基は、一種のみであってもよく、二種以上であってもよい。 In addition to the group represented by the formula (1), the silane compound surface-modified ND particles include, for example, a group represented by the following formula (1 ′) and other surface functional groups (eg, amino group, hydroxyl group, carboxyl group). It may have other functional groups such as groups). The other functional groups may be only one kind or two or more kinds.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(1’)中、R1’、R4は上記に同じ。式中の波線が付された結合手がナノダイヤモンド粒子の表面に結合する。 In the above formula (1 ′), R 1 ′ and R 4 are the same as above. The bond with a wavy line in the formula bonds to the surface of the nanodiamond particle.
 表面処理を施す化合物としてシラン化合物(特に、上記式(1-1)で表される化合物)を使用した場合、上記化合物は、例えば上記式(1-1)中のOR1基、OR2基、OR3基などの加水分解性アルコキシシリル基が容易に加水分解してシラノール基を形成するため、例えばシラノール基のうちの1個がND粒子の表面に存在する水酸基と脱水縮合して共有結合を形成すると共に、残りの2個のシラノール基に、他のシラン化合物のシラノール基が縮合してシロキサン結合(Si-O-Si)を形成することができ、ND粒子に有機分散媒に対する親和性を付与することができ、有機分散媒中において、よりいっそう優れた分散性を発揮することができる。 When a silane compound (particularly, a compound represented by the above formula (1-1)) is used as the compound to be surface-treated, the compound may be, for example, an OR 1 group or an OR 2 group in the above formula (1-1). , OR 3 groups and other hydrolyzable alkoxysilyl groups are easily hydrolyzed to form silanol groups. For example, one of the silanol groups is dehydrated and condensed with a hydroxyl group present on the surface of the ND particles to form a covalent bond. And the remaining two silanol groups can be condensed with silanol groups of other silane compounds to form a siloxane bond (Si-O-Si), and the ND particles have an affinity for an organic dispersion medium. Can be imparted, and even more excellent dispersibility can be exhibited in the organic dispersion medium.
(有機分散媒)
 上記有機分散媒としては、公知乃至慣用の有機溶媒を用いることができる。中でも、よりND粒子の分散性に優れる観点から、SP値[ヒルデブラントによる溶解性パラメーター(δ)、25℃における、単位:(cal/cm)1/2]が6.0~12.0(であることが好ましい。特に、本発明のND分散組成物は、分散剤(A)を配合することでND粒子の分散性が低い有機溶媒を用いた場合であってもND粒子の分散性が優れることから、上記SP値が、好ましくは8.2以下(例えば6.0~8.2)又は9.0以上(例えば9.0~12.0)、より好ましくは8.0以下(例えば6.5~8.0)又は9.2以上(例えば9.2~12.0)である有機分散媒であることが好ましい。上記有機分散媒は、一種のみを用いてもよいし、二種以上を用いてもよい。なお、二種以上の有機分散媒を用いる場合、二種以上の有機分散媒の混合物のSP値が上記範囲であることが好ましく、それぞれの有機分散媒のSP値は上記の範囲外であってもよい。
(Organic dispersion medium)
As the organic dispersion medium, a known or common organic solvent can be used. Among them, the SP value [solubility parameter (δ) by Hildebrandt, unit: (cal / cm) 1/2 at 25 ° C.] is 6.0 to 12.0 (from the viewpoint of more excellent dispersibility of ND particles). Particularly, in the ND dispersion composition of the present invention, even when an organic solvent having a low dispersibility of ND particles is used by blending the dispersant (A), the dispersibility of the ND particles is Since it is excellent, the SP value is preferably 8.2 or less (eg 6.0 to 8.2) or 9.0 or more (eg 9.0 to 12.0), more preferably 8.0 or less (eg The organic dispersion medium is preferably 6.5 to 8.0) or 9.2 or more (for example, 9.2 to 12.0). More than one kind may be used, and when two or more kinds of organic dispersion media are used, The SP value of the mixture of at least one organic dispersion medium is preferably within the above range, and the SP value of each organic dispersion medium may be outside the above range.
 上記有機分散媒としては、例えば、ヘキサン(SP:7.0)等のアルカン;アセトン(SP:10.0)、メチルエチルケトン(MEK、SP:9.3)、メチルイソブチルケトン(MIBK、SP:8.4)等のケトン;ジオキサン(SP:9.8)、テトラヒドロフラン(SP:9.1)等のエーテル;n-プロパノール(SP:11.9)、イソプロパノール(IPA、SP:11.5)、ヘキサノール(SP:10.7)、シクロヘキサノール(SP:11.4)等のアルコール;酢酸エチル(SP:9.1)、ポリオールエステル(SP:9.6)等のエステル;トルエン(SP:8.8)、アルキルベンゼン(SP:7.6)等の芳香族化合物;クロロホルム(SP:9.3)、塩化メチレン(SP:9.7)、二塩化エチレン(SP:9.8)等のハロゲン化炭化水素;エチレンカーボネート/ジエチルカーボネート(EC/DEC=1/1:体積比)混合溶媒(SP:11.75)、エチレンカーボネート/ジエチルカーボネート/メチルエチルカーボネート(1/1/1:体積比)混合溶媒(SP:10.97)等のカーボネート化合物;ポリα-オレフィン(SP:6.0~8.0程度)等のポリオレフィン;鉱油(SP:6.0~8.0程度)、酢酸(SP:12.4)、アセトニトリル(SP:11.8)などが挙げられる。 Examples of the organic dispersion medium include alkanes such as hexane (SP: 7.0); acetone (SP: 10.0), methyl ethyl ketone (MEK, SP: 9.3), methyl isobutyl ketone (MIBK, SP: 8). .4) and other ketones; dioxane (SP: 9.8), tetrahydrofuran (SP: 9.1) and other ethers; n-propanol (SP: 11.9), isopropanol (IPA, SP: 11.5), Alcohols such as hexanol (SP: 10.7) and cyclohexanol (SP: 11.4); esters such as ethyl acetate (SP: 9.1) and polyol ester (SP: 9.6); toluene (SP: 8) .8), alkylbenzene (SP: 7.6) and other aromatic compounds; chloroform (SP: 9.3), methylene chloride (SP: 9.7), ethyl dichloride. Halogenated hydrocarbons such as ethylene carbonate (SP: 9.8); ethylene carbonate / diethyl carbonate (EC / DEC = 1/1: volume ratio) mixed solvent (SP: 11.75), ethylene carbonate / diethyl carbonate / methyl ethyl Carbonate (1/1/1: volume ratio) mixed solvent (SP: 10.97) and other carbonate compounds; poly-α-olefin (SP: about 6.0 to 8.0) and other polyolefins; mineral oil (SP: 6) 0.0 to 8.0), acetic acid (SP: 12.4), acetonitrile (SP: 11.8) and the like.
(分散剤(A))
 分散剤(A)は、質量平均分子量が500以上であり、且つアミン価が15mgKOH/g以上である。このような分散剤を用いることで、有機分散媒中のND粒子の分散性が特に優れる。分散剤(A)は、一種のみを用いてもよいし、二種以上を用いてもよい。
(Dispersant (A))
The dispersant (A) has a mass average molecular weight of 500 or more and an amine value of 15 mgKOH / g or more. By using such a dispersant, the dispersibility of the ND particles in the organic dispersion medium is particularly excellent. As the dispersant (A), only one kind may be used, or two or more kinds may be used.
 分散剤(A)の質量平均分子量は500以上であり、好ましくは650以上、より好ましくは950以上である。また、上記質量平均分子量は、20000以下が好ましく、より好ましくは10000以下である。本明細書において、質量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)により測定される標準ポリスチレン換算の分子量である。 The mass average molecular weight of the dispersant (A) is 500 or more, preferably 650 or more, more preferably 950 or more. The mass average molecular weight is preferably 20,000 or less, more preferably 10,000 or less. In the present specification, the mass average molecular weight is a standard polystyrene-equivalent molecular weight measured by gel permeation chromatography (GPC).
 分散剤(A)のアミン価は15mgKOH/g以上であり、好ましくは18mgKOH/g以上、より好ましくは20mgKOH/g以上、さらに好ましくは30mgKOH/g以上である。また、上記アミン価は、100mgKOH/g以下が好ましく、より好ましくは90mgKOH/g以下、さらに好ましくは60mgKOH/g以下である。 The amine value of the dispersant (A) is 15 mgKOH / g or more, preferably 18 mgKOH / g or more, more preferably 20 mgKOH / g or more, further preferably 30 mgKOH / g or more. The amine value is preferably 100 mgKOH / g or less, more preferably 90 mgKOH / g or less, still more preferably 60 mgKOH / g or less.
 分散剤(A)としては、中でも、ポリアルキレングリコールモノアルキルエーテル由来の構造(特に、ポリエチレングリコールモノアルキルエーテル由来の構造、又はポリプロピレングリコールモノアルキルエーテル由来の構造)を有する化合物、カーバメート構造を有する化合物、ポリカプロラクトン由来の構造を有する化合物が好ましい。上記化合物は、それぞれ、一種のみを含んでいてもよいし、二種以上を含んでいてもよい。また、1つの化合物が単独で上記構造のうちの一種又は二種以上を有していてもよい。 As the dispersant (A), among others, a compound having a structure derived from polyalkylene glycol monoalkyl ether (particularly a structure derived from polyethylene glycol monoalkyl ether or a structure derived from polypropylene glycol monoalkyl ether), a compound having a carbamate structure A compound having a structure derived from polycaprolactone is preferable. The above compounds may each contain only one kind or may contain two or more kinds. Further, one compound may have one kind or two kinds or more of the above structures.
 分散剤(A)は、市販品を用いることもできる。分散剤(A)の市販品としては、例えば、商品名「DISPERBYK-2008」、商品名「BYK-9076」、商品名「BYK-9077」、商品名「ANTI-TERRA-U」(以上、ビック・ケミー社製)などが挙げられる。 A commercially available product may be used as the dispersant (A). Examples of commercially available dispersants (A) include, for example, trade name “DISPERBYK-2008”, trade name “BYK-9076”, trade name “BYK-9077”, trade name “ANTI-TERRA-U” (above, BIC -Chemie) and the like.
 本発明のND分散組成物は、例えば、微細なND粒子が有する特性を樹脂など(例えば、熱若しくは光硬化性樹脂や熱可塑性樹脂など)に付与する添加剤として好ましく使用することができる。上記ND粒子が有する特性としては、例えば、機械的強度、高屈折率、熱伝導性、絶縁性、酸化防止性、結晶化促進作用、デンドライト抑制作用などが挙げられる。そして、本発明のND分散組成物を樹脂に添加して得られる組成物は、例えば、機能性ハイブリッド材料、熱的機能(耐熱、蓄熱、熱電導、断熱等)材料、フォトニクス(有機EL素子、LED、液晶ディスプレイ、光ディスク等)材料、バイオ・生体適合性材料、コーティング材料、フィルム(タッチパネルや各種ディスプレイなどのハードコートフィルム、遮熱フィルム等)材料、シート材料、スクリーン(透過型透明スクリーン等)材料、フィラー(放熱用フィラー、機械特性向上用フィラー等)材料、耐熱性プラスチック基板(フレキシブルディスプレイ用基板等)材料、リチウムイオン電池等材料として好ましく使用することができる。また、本発明のND分散組成物は、その他、機械部品(例えば、自動車や航空機等)の摺動部などに適用する減摩剤又は潤滑剤(初期なじみ用途、本潤滑用途等)として好ましく使用できる。 The ND dispersion composition of the present invention can be preferably used, for example, as an additive that imparts the characteristics of fine ND particles to a resin or the like (for example, a heat or photocurable resin or a thermoplastic resin). The properties of the ND particles include, for example, mechanical strength, high refractive index, thermal conductivity, insulating property, antioxidant property, crystallization promoting action, and dendrite suppressing action. The composition obtained by adding the ND dispersion composition of the present invention to a resin is, for example, a functional hybrid material, a thermal function (heat resistance, heat storage, heat conduction, heat insulation, etc.) material, photonics (organic EL element, LED, liquid crystal display, optical disk, etc.) material, bio / biocompatible material, coating material, film (hard coat film such as touch panel and various displays, heat shield film, etc.) material, sheet material, screen (transparent transparent screen, etc.) It can be preferably used as a material, a filler (heat radiation filler, mechanical property improving filler, etc.) material, a heat-resistant plastic substrate (flexible display substrate, etc.) material, a lithium ion battery material, etc. In addition, the ND dispersion composition of the present invention is preferably used as a lubricant or lubricant (initial familiarization application, main lubrication application, etc.) applied to sliding parts of machine parts (eg, automobiles, aircrafts, etc.). it can.
(ナノダイヤモンド分散組成物の製造方法)
 本発明のND分散組成物は、例えば、上記有機分散媒中にND粒子及び分散剤(A)、さらに必要に応じてその他の成分を混合することで製造することができる。例えば、表面修飾ND粒子を用いた分散組成物は、有機分散媒中において、表面処理を施す化合物をND粒子に反応させる工程(修飾化工程)を経て製造することができる。この場合、修飾化工程に用いた溶媒をそのままND分散組成物における有機分散媒としてもよいし、修飾化工程の後に溶媒交換を行ってもよい。
(Method for producing nanodiamond dispersion composition)
The ND dispersion composition of the present invention can be produced, for example, by mixing the organic dispersion medium with ND particles, the dispersant (A), and, if necessary, other components. For example, a dispersion composition using surface-modified ND particles can be produced through a step (modification step) of reacting a compound to be surface-treated with ND particles in an organic dispersion medium. In this case, the solvent used in the modification step may be used as it is as the organic dispersion medium in the ND dispersion composition, or the solvent may be exchanged after the modification step.
 上記修飾化工程において、ND粒子中にND粒子が凝着して二次粒子を形成したND粒子凝集体が含まれる場合には、表面修飾を施す化合物とND粒子との反応を、ND粒子を解砕若しくは分散化しつつ行うことが好ましい。これにより、ND粒子凝集体を一次粒子にまで解砕することができ、ND一次粒子の表面を修飾することができ、ND分散組成物中のナノダイヤモンド粒子の分散性を向上することが可能となるからである。 In the modification step, when the ND particles include an ND particle aggregate in which the ND particles are aggregated to form secondary particles, the reaction between the compound for surface modification and the ND particles is performed. It is preferable to carry out while crushing or dispersing. Thereby, the ND particle aggregate can be crushed into primary particles, the surface of the ND primary particles can be modified, and the dispersibility of the nanodiamond particles in the ND dispersion composition can be improved. Because it will be.
 修飾化工程における反応に供するND粒子と表面処理を施す化合物(特に、シラン化合物)との質量比(前者:後者)は、例えば2:1~1:20である。また、表面処理を施す際の上記有機分散媒中のND粒子の濃度は、例えば0.5~10質量%であり、上記化合物の濃度は、例えば5~40質量%である。 The mass ratio (former: latter) of the ND particles to be subjected to the reaction in the modification step and the compound to be surface-treated (particularly, the silane compound) is, for example, 2: 1 to 1:20. The concentration of the ND particles in the organic dispersion medium when the surface treatment is performed is, for example, 0.5 to 10% by mass, and the concentration of the compound is, for example, 5 to 40% by mass.
 表面処理のための反応時間は、例えば4~20時間である。また、上記反応は、発生する熱を、氷水などを用いて冷却しながら行うことが好ましい。 The reaction time for surface treatment is, for example, 4 to 20 hours. Further, the above reaction is preferably performed while cooling the generated heat with ice water or the like.
 ND粒子を解砕若しくは分散化する方法としては、例えば、高剪断ミキサー、ハイシアーミキサー、ホモミキサー、ボールミル、ビーズミル、高圧ホモジナイザー、超音波ホモジナイザー、コロイドミル、ジェットミルなどにより処理する方法が挙げられる。中でも、解砕メディア(例えば、ジルコニアビーズなど)の存在下で超音波処理を施すことが好ましい。 Examples of the method of crushing or dispersing the ND particles include a method of treating with a high shear mixer, high shear mixer, homomixer, ball mill, bead mill, high pressure homogenizer, ultrasonic homogenizer, colloid mill, jet mill and the like. .. Above all, it is preferable to perform the ultrasonic treatment in the presence of a crushing medium (for example, zirconia beads or the like).
 上記解砕メディア(例えば、ジルコニアビーズなど)の直径は、例えば15~500μm、好ましくは15~300μm、特に好ましくは15~100μmである。 The diameter of the crushing media (for example, zirconia beads) is, for example, 15 to 500 μm, preferably 15 to 300 μm, and particularly preferably 15 to 100 μm.
 また、ND粒子の分散性が比較的低い有機分散媒を用いたND分散組成物を得る場合、ND粒子の分散性が比較的高いND分散液に分散剤を添加・撹拌し、エバポレーターなどでND分散液中の有機分散媒を留去した後、新たに有機分散媒を混合して撹拌する、すなわち有機分散媒の交換によっても製造することができる。ND粒子がナノ分散した分散液を一度得た後、ND粒子を乾燥粉体とすることなく有機分散媒を交換する方法を採用すること、また、交換前後の有機分散媒同士との濡れ性や溶解性を考慮して両有機分散媒を適宜選択することで、分散性が比較的低い有機分散媒中にND粒子がナノ分散しやすくなる。 Further, when obtaining an ND dispersion composition using an organic dispersion medium in which the dispersibility of ND particles is relatively low, a dispersant is added to an ND dispersion liquid in which the dispersibility of ND particles is relatively high, and the mixture is stirred, and then ND is used with an evaporator or the like. It can also be produced by distilling off the organic dispersion medium in the dispersion liquid, then newly mixing and stirring the organic dispersion medium, that is, by exchanging the organic dispersion medium. After obtaining the dispersion liquid in which the ND particles are nano-dispersed once, the method of exchanging the organic dispersion medium without making the ND particles into a dry powder is adopted, and the wettability between the organic dispersion medium before and after the exchange and By appropriately selecting both organic dispersion media in consideration of solubility, ND particles are easily nano-dispersed in the organic dispersion media having relatively low dispersibility.
 以上のようにして、ND粒子が有機溶媒中に分散したND分散組成物が得られる。 As described above, an ND dispersion composition in which ND particles are dispersed in an organic solvent is obtained.
 なお、上記ND粒子は、例えば爆轟法によって製造することができる。上記爆轟法には、空冷式爆轟法、水冷式爆轟法が挙げられる。中でも、空冷式爆轟法が水冷式爆轟法よりも一次粒子が小さいND粒子を得ることができる点で好ましい。 The above ND particles can be manufactured, for example, by the detonation method. Examples of the detonation method include an air-cooled detonation method and a water-cooled detonation method. Above all, the air-cooled detonation method is preferable in that ND particles having smaller primary particles than the water-cooled detonation method can be obtained.
 爆轟は大気雰囲気下で行ってもよく、窒素雰囲気、アルゴン雰囲気、二酸化炭素雰囲気などの不活性ガス雰囲気下で行ってもよい。 Detonation may be performed in the atmosphere, or in an inert gas atmosphere such as a nitrogen atmosphere, an argon atmosphere, or a carbon dioxide atmosphere.
 ND粒子の製造方法の一例を以下に説明するが、本発明で使用するND粒子は以下の製造方法によって得られるものに限定されない。 An example of a method for producing ND particles will be described below, but the ND particles used in the present invention are not limited to those obtained by the following production method.
(生成工程)
 成形された爆薬に電気雷管が装着されたものを爆轟用の耐圧性容器の内部に設置し、容器内において大気組成の常圧の気体と使用爆薬とが共存する状態で、容器を密閉する。容器は例えば鉄製で、容器の容積は例えば0.5~40m3である。爆薬としては、トリニトロトルエン(TNT)とシクロトリメチレントリニトロアミンすなわちヘキソーゲン(RDX)との混合物を使用することができる。TNTとRDXの質量比(TNT/RDX)は、例えば40/60~60/40の範囲である。
(Generation process)
A molded explosive equipped with an electric detonator is installed inside a pressure-resistant container for detonation, and the container is hermetically sealed in the container in which the atmospheric gas of atmospheric composition and the explosive used coexist. .. The container is made of, for example, iron, and the volume of the container is, for example, 0.5 to 40 m 3 . As explosive, it is possible to use a mixture of trinitrotoluene (TNT) and cyclotrimethylenetrinitroamine or hexogen (RDX). The mass ratio of TNT and RDX (TNT / RDX) is, for example, in the range of 40/60 to 60/40.
 生成工程では、次に、電気雷管を起爆させ、容器内で爆薬を爆轟させる。爆轟とは、化学反応に伴う爆発のうち反応の生じる火炎面が音速を超えた高速で移動するものをいう。爆轟の際、使用爆薬が部分的に不完全燃焼を起こして遊離した炭素を原料として、爆発で生じた衝撃波の圧力とエネルギーの作用によってND粒子が生成する。生成したND粒子は、隣接する一次粒子ないし結晶子の間がファンデルワールス力の作用に加えて結晶面間クーロン相互作用が寄与して非常に強固に集成し、凝着体を形成する。 In the generation process, next, detonate the electric detonator and detonate explosives in the container. Detonation refers to an explosion caused by a chemical reaction, in which the flame surface in which the reaction occurs moves at a high speed exceeding the speed of sound. At the time of detonation, the explosive used causes partially incomplete combustion to release carbon as a raw material, and ND particles are generated by the action of the pressure and energy of the shock wave generated by the explosion. The generated ND particles are extremely strongly assembled between adjacent primary particles or crystallites due to Coulomb interaction between crystal faces in addition to the action of Van der Waals force, and form an aggregate.
 生成工程では、次に、室温において24時間程度放置することにより放冷し、容器及びその内部を降温させる。この放冷の後、容器の内壁に付着しているND粒子粗生成物(上述のようにして生成したND粒子の凝着体及び煤を含む)をヘラで掻き取る作業を行い、ND粒子粗生成物を回収する。以上のような方法によって、ND粒子の粗生成物を得ることができる。また、以上のようなナノダイヤモンド生成工程を必要回数行うことによって、所望量のナノダイヤモンド粗生成物を取得することが可能である。 In the production process, next, let stand for 24 hours at room temperature to allow it to cool and lower the temperature of the container and its inside. After this cooling, the ND particle coarse product (including the agglomerates and soot of the ND particles produced as described above) adhering to the inner wall of the container was scraped off with a spatula to remove the ND particle coarse particles. Collect the product. A crude product of ND particles can be obtained by the method described above. In addition, it is possible to obtain a desired amount of the crude nanodiamond product by performing the above-mentioned nanodiamond production process a necessary number of times.
(酸処理工程)
 酸処理工程では、原料であるナノダイヤモンド粗生成物に例えば水溶媒中で強酸を作用させて金属酸化物を除去する。爆轟法で得られるナノダイヤモンド粗生成物には金属酸化物が含まれやすく、この金属酸化物は、爆轟法に使用される容器などに由来するFe、Co、Niなどの酸化物である。例えば水溶媒中で強酸を作用させることにより、ナノダイヤモンド粗生成物から金属酸化物を溶解・除去することができる(酸処理)。この酸処理に用いられる強酸としては、鉱酸が好ましく、例えば、塩酸、フッ化水素酸、硫酸、硝酸、王水が挙げられる。上記強酸は、一種を用いてもよいし、二種以上を用いてもよい。酸処理で使用される強酸の濃度は例えば1~50質量%である。酸処理温度は例えば70~150℃である。酸処理時間は例えば0.1~24時間である。また、酸処理は、減圧下、常圧下、又は加圧下で行うことが可能である。このような酸処理の後、例えばデカンテーションにより、固形分(ナノダイヤモンド凝着体を含む)の水洗を行う。沈殿液のpHが例えば2~3に至るまで、デカンテーションによる当該固形分の水洗を反復して行うのが好ましい。爆轟法で得られるナノダイヤモンド粗生成物における金属酸化物の含有量が少ない場合には、以上のような酸処理を省略してもよい。
(Acid treatment step)
In the acid treatment step, the raw material nanodiamond product is treated with a strong acid in, for example, a water solvent to remove the metal oxide. The crude nanodiamond product obtained by the detonation method is likely to contain a metal oxide, and the metal oxide is an oxide such as Fe, Co, or Ni derived from the container or the like used in the detonation method. .. For example, the metal oxide can be dissolved and removed from the crude nanodiamond product by applying a strong acid in an aqueous solvent (acid treatment). The strong acid used for this acid treatment is preferably a mineral acid, and examples thereof include hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, and aqua regia. The strong acids may be used alone or in combination of two or more. The concentration of the strong acid used in the acid treatment is, for example, 1 to 50% by mass. The acid treatment temperature is, for example, 70 to 150 ° C. The acid treatment time is, for example, 0.1 to 24 hours. The acid treatment can be carried out under reduced pressure, normal pressure, or increased pressure. After such acid treatment, the solid content (including the nanodiamond aggregate) is washed with water, for example, by decantation. It is preferable to repeatedly wash the solid content with water by decantation until the pH of the precipitation liquid reaches, for example, 2 to 3. When the content of metal oxide in the nanodiamond crude product obtained by the detonation method is small, the above acid treatment may be omitted.
(酸化処理工程)
 酸化処理工程は、酸化剤を用いてND粒子粗生成物からグラファイトを除去する工程である。爆轟法で得られるND粒子粗生成物にはグラファイト(黒鉛)が含まれるが、このグラファイトは、使用爆薬が部分的に不完全燃焼を起こして遊離した炭素のうちND粒子結晶を形成しなかった炭素に由来する。ND粒子粗生成物に、水溶媒中で酸化剤を作用させることにより、ND粒子粗生成物からグラファイトを除去することができる。また、酸化剤を作用させることにより、ND粒子表面にカルボキシル基や水酸基などの酸素含有基を導入することができる。
(Oxidation process)
The oxidation treatment step is a step of removing graphite from the ND particle crude product using an oxidizing agent. The ND particle crude product obtained by the detonation method contains graphite (graphite), but this graphite does not form ND particle crystals out of the carbon released by the incomplete combustion of the explosive used. Derived from carbon. Graphite can be removed from the ND particle crude product by reacting the ND particle crude product with an oxidizing agent in a water solvent. In addition, an oxygen-containing group such as a carboxyl group or a hydroxyl group can be introduced on the surface of the ND particles by causing the oxidizing agent to act.
 この酸化処理に用いられる酸化剤としては、例えば、クロム酸、無水クロム酸、二クロム酸、過マンガン酸、過塩素酸、硝酸、これらの混合物や、これらから選択される少なくとも1種の酸と他の酸(例えば硫酸など)との混酸、これらの塩が挙げられる。中でも、混酸(特に、硫酸と硝酸との混酸)を使用することが、環境に優しく、且つグラファイトを酸化・除去する作用に優れる点で好ましい。 Examples of the oxidizing agent used in this oxidation treatment include chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid, nitric acid, mixtures thereof, and at least one acid selected from these. The mixed acid with other acid (for example, sulfuric acid etc.), these salts are mentioned. Above all, it is preferable to use a mixed acid (particularly, a mixed acid of sulfuric acid and nitric acid) because it is environmentally friendly and has an excellent effect of oxidizing and removing graphite.
 上記混酸における硫酸と硝酸との混合割合(前者/後者;質量比)は、例えば60/40~95/5であることが、常圧付近の圧力(例えば、0.5~2atm)の下でも、例えば130℃以上(特に好ましくは150℃以上。なお、上限は、例えば200℃)の温度で、効率よくグラファイトを酸化して除去することができる点で好ましい。下限は、好ましくは65/35、より好ましくは70/30である。また、上限は、好ましくは90/10、より好ましくは85/15、さらに好ましくは80/20である。上記混合割合が60/40以上であると、高沸点を有する硫酸の含有量が高いため、常圧付近の圧力下では、反応温度が例えば120℃以上となり、グラファイトの除去効率が向上する傾向がある。上記混合割合が95/5以下であると、グラファイトの酸化に大きく貢献する硝酸の含有量が多くなるため、グラファイトの除去効率が向上する傾向がある。 The mixing ratio (former / latter; mass ratio) of sulfuric acid and nitric acid in the above mixed acid is, for example, 60/40 to 95/5, but even under a pressure near normal pressure (eg, 0.5 to 2 atm). For example, at a temperature of 130 ° C. or higher (particularly preferably 150 ° C. or higher, the upper limit is, for example, 200 ° C.), graphite can be efficiently oxidized and removed, which is preferable. The lower limit is preferably 65/35, more preferably 70/30. Further, the upper limit is preferably 90/10, more preferably 85/15, further preferably 80/20. When the mixing ratio is 60/40 or more, the content of sulfuric acid having a high boiling point is high, so that the reaction temperature becomes 120 ° C. or more under a pressure near normal pressure, and the graphite removal efficiency tends to improve. is there. When the mixing ratio is 95/5 or less, the content of nitric acid, which greatly contributes to the oxidation of graphite, increases, so that the graphite removal efficiency tends to improve.
 酸化剤(特に、上記混酸)の使用量は、ナノダイヤモンド粗生成物1質量部に対して例えば10~50質量部、好ましくは15~40質量部、より好ましくは20~40質量部である。また、上記混酸中の硫酸の使用量は、ナノダイヤモンド粗生成物1質量部に対して例えば5~48質量部、好ましくは10~35質量部、より好ましくは15~30質量部である。また、上記混酸中の硝酸の使用量は、ナノダイヤモンド粗生成物1質量部に対して例えば2~20質量部、好ましくは4~10質量部、より好ましくは5~8質量部である。 The amount of the oxidizing agent (particularly the above-mentioned mixed acid) used is, for example, 10 to 50 parts by mass, preferably 15 to 40 parts by mass, and more preferably 20 to 40 parts by mass with respect to 1 part by mass of the nanodiamond crude product. The amount of sulfuric acid used in the mixed acid is, for example, 5 to 48 parts by mass, preferably 10 to 35 parts by mass, and more preferably 15 to 30 parts by mass with respect to 1 part by mass of the nanodiamond crude product. The amount of nitric acid used in the mixed acid is, for example, 2 to 20 parts by mass, preferably 4 to 10 parts by mass, and more preferably 5 to 8 parts by mass with respect to 1 part by mass of the nanodiamond crude product.
 また、酸化剤として上記混酸を使用する場合、混酸と共に触媒を使用してもよい。触媒を使用することにより、グラファイトの除去効率を一層向上させることができる。上記触媒としては、例えば、炭酸銅(II)などが挙げられる。触媒の使用量は、ナノダイヤモンド粗生成物100質量部に対して例えば0.01~10質量部程度である。 Also, when the above mixed acid is used as an oxidizing agent, a catalyst may be used together with the mixed acid. By using the catalyst, the efficiency of removing graphite can be further improved. Examples of the catalyst include copper (II) carbonate and the like. The amount of the catalyst used is, for example, about 0.01 to 10 parts by mass with respect to 100 parts by mass of the nanodiamond crude product.
 酸化処理温度は例えば100~200℃である。酸化処理時間は例えば1~24時間である。酸化処理は、減圧下、常圧下、又は加圧下で行うことが可能である。 The oxidation treatment temperature is 100 to 200 ° C., for example. The oxidation treatment time is, for example, 1 to 24 hours. The oxidation treatment can be performed under reduced pressure, normal pressure, or increased pressure.
(アルカリ過水処理工程)
 上記酸処理工程を経た後であっても、ND粒子に除去しきれなかった金属酸化物が残存する場合は、一次粒子間が非常に強く相互作用して集成している凝着体(二次粒子)の形態をとる。このような場合には、ND粒子に対して水溶媒中でアルカリ及び過酸化水素を作用させてもよい。これにより、ND粒子に残存する金属酸化物を除去することができ、凝着体から一次粒子の分離を促進することができる。この処理に用いられるアルカリとしては、例えば、水酸化ナトリウム、アンモニア、水酸化カリウムなどが挙げられる。アルカリ過水処理において、アルカリの濃度は例えば0.1~10質量%であり、過酸化水素の濃度は例えば1~15質量%であり、処理温度は例えば40~100℃であり、処理時間は例えば0.5~5時間である。また、アルカリ過水処理は、減圧下、常圧下、又は加圧下で行うことが可能である。
(Alkaline water treatment process)
Even after passing through the acid treatment step, if the metal oxide that cannot be completely removed remains in the ND particles, the coagulates (secondary particles) that are aggregated due to the extremely strong interaction between the primary particles (secondary particles) Particles). In such a case, alkali and hydrogen peroxide may be allowed to act on the ND particles in a water solvent. As a result, the metal oxide remaining on the ND particles can be removed, and the separation of the primary particles from the agglomerate can be promoted. Examples of the alkali used for this treatment include sodium hydroxide, ammonia, potassium hydroxide and the like. In the alkaline hydrogen peroxide treatment, the concentration of alkali is, for example, 0.1 to 10 mass%, the concentration of hydrogen peroxide is, for example, 1 to 15 mass%, the treatment temperature is, for example, 40 to 100 ° C., and the treatment time is For example, it is 0.5 to 5 hours. The alkaline hydrogen peroxide treatment can be performed under reduced pressure, normal pressure, or increased pressure.
 上記酸化処理工程あるいは上記アルカリ過水処理工程の後、例えばデカンテーションにより上澄みを除去することが好ましい。また、デカンテーションの際には、固形分の水洗を行うことが好ましい。水洗当初の上澄み液は着色しているが、上澄み液が目視で透明になるまで、当該固形分の水洗を反復して行うことが好ましい。 After the oxidation treatment step or the alkaline hydrogen peroxide treatment step, it is preferable to remove the supernatant by, for example, decantation. Moreover, it is preferable to wash the solid content with water during decantation. Although the supernatant liquid at the beginning of washing with water is colored, it is preferable to repeatedly wash the solid content with water until the supernatant liquid becomes transparent visually.
(解砕処理工程)
 ND粒子には、必要に応じて、解砕処理を施してもよい。解砕処理には、例えば、高剪断ミキサー、ハイシアーミキサー、ホモミキサー、ボールミル、ビーズミル、高圧ホモジナイザー、超音波ホモジナイザー、コロイドミルなどを使用することができる。なお、解砕処理は湿式(例えば、水などに懸濁した状態での解砕処理)で行ってもよいし、乾式で行ってもよい。乾式で行う場合は、解砕処理前に乾燥工程を設けることが好ましい。
(Crushing process)
If necessary, the ND particles may be subjected to a crushing treatment. For the crushing treatment, for example, a high shear mixer, high shear mixer, homomixer, ball mill, bead mill, high pressure homogenizer, ultrasonic homogenizer, colloid mill, etc. can be used. The crushing treatment may be performed wet (for example, crushing treatment in a state of being suspended in water) or may be performed dry. When it is carried out by a dry method, it is preferable to provide a drying step before the crushing treatment.
(乾燥工程)
 上記アルカリ過水処理工程の後、乾燥工程を設けることが好ましい。例えば、上記アルカリ過水処理工程を経て得られたND粒子含有溶液から噴霧乾燥装置やエバポレーターなどを使用して液分を蒸発させた後、これによって生じる残留固形分を乾燥用オーブン内での加熱乾燥によって乾燥させる。加熱乾燥温度は、例えば40~150℃である。このような乾燥工程を経ることにより、ND粒子が得られる。
(Drying process)
It is preferable to provide a drying step after the above alkaline hydrogen peroxide treatment step. For example, after the liquid content is evaporated from the ND particle-containing solution obtained through the above alkaline hydrogen peroxide treatment step by using a spray dryer or an evaporator, the residual solid content generated by this is heated in a drying oven. Dry by drying. The heating and drying temperature is, for example, 40 to 150 ° C. ND particles are obtained through such a drying process.
 また、ND粒子には、必要に応じて、気相にて酸化処理(例えば酸素酸化)や還元処理(例えば水素化処理)を施してもよい。気相にて酸化処理を施すことにより、表面にC=O基を多く有するND粒子が得られる。また、気相にて還元処理を施すことにより、表面にC-H基を多く有するND粒子が得られる。 Further, the ND particles may be subjected to oxidation treatment (for example, oxygen oxidation) or reduction treatment (for example, hydrogenation treatment) in a gas phase, if necessary. By performing the oxidation treatment in the gas phase, ND particles having many C = O groups on the surface can be obtained. Further, by performing the reduction treatment in the gas phase, ND particles having many C—H groups on the surface can be obtained.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 実施例1~5
 下記工程を経て、表面修飾ND粒子及びND分散組成物を製造した。
Examples 1-5
The surface-modified ND particles and the ND dispersion composition were manufactured through the following steps.
(表面修飾ND粒子の作製)
 まず、爆轟法によるナノダイヤモンドの生成工程を行った。本工程では、まず、成形された爆薬に電気雷管が装着されたものを爆轟用の耐圧性容器の内部に設置して容器を密閉した。容器は鉄製で、容器の容積は15m3である。爆薬としては、TNTとRDXとの混合物0.50kgを使用した。この爆薬におけるTNTとRDXの質量比(TNT/RDX)は、50/50である。次に、電気雷管を起爆させ、容器内で爆薬を爆轟させた(爆轟法によるナノダイヤモンドの生成)。次に、室温での24時間の放置により、容器及びその内部を降温させた。この放冷の後、容器の内壁に付着しているナノダイヤモンド粗生成物(上記爆轟法で生成したナノダイヤモンド粒子の凝着体と煤を含む)をヘラで掻き取る作業を行い、ナノダイヤモンド粗生成物を回収した。
(Preparation of surface modified ND particles)
First, a nanodiamond generation process by the detonation method was performed. In this step, first, a molded explosive with an electric detonator attached was placed inside a pressure-resistant container for detonation, and the container was sealed. The container is made of iron and has a volume of 15 m 3 . As the explosive, 0.50 kg of a mixture of TNT and RDX was used. The mass ratio of TNT and RDX (TNT / RDX) in this explosive is 50/50. Next, the electric detonator was detonated and the explosive was detonated in the container (generation of nanodiamond by detonation method). Next, the temperature of the container and its inside was lowered by leaving it to stand at room temperature for 24 hours. After this cooling, the crude nanodiamond product (including the agglomerates and soot of the nanodiamond particles produced by the above detonation method) adhering to the inner wall of the container is scraped off with a spatula, The crude product was collected.
 上述のような生成工程を複数回行うことによって取得されたナノダイヤモンド粗生成物に対し、次に、酸処理工程を行った。具体的には、当該ナノダイヤモンド粗生成物200gに6Lの10質量%塩酸を加えて得られたスラリーに対し、常圧条件での還流下で1時間の加熱処理を行った。この酸処理における加熱温度は85~100℃である。次に、冷却後、デカンテーションにより、固形分(ナノダイヤモンド凝着体と煤を含む)の水洗を行った。沈殿液のpHが低pH側から2に至るまで、デカンテーションによる当該固形分の水洗を反復して行った。 Next, an acid treatment step was performed on the crude nanodiamond product obtained by performing the above-described production steps multiple times. Specifically, a slurry obtained by adding 6 L of 10 mass% hydrochloric acid to 200 g of the crude nanodiamond product was subjected to a heat treatment for 1 hour under reflux under normal pressure conditions. The heating temperature in this acid treatment is 85 to 100 ° C. Next, after cooling, the solid content (including the nanodiamond aggregate and soot) was washed with water by decantation. The solid content was repeatedly washed with water by decantation until the pH of the precipitation liquid reached 2 from the low pH side.
 次に、酸化処理工程を行った。具体的には、酸処理後のデカンテーションを経て得た沈殿液(ナノダイヤモンド凝着体を含む)に、6Lの98質量%硫酸と1Lの69質量%硝酸とを加えてスラリーとした後、このスラリーに対し、常圧条件での還流下で48時間の加熱処理を行った。この酸化処理における加熱温度は140~160℃である。次に、冷却後、デカンテーションにより、固形分(ナノダイヤモンド凝着体を含む)の水洗を行った。水洗当初の上澄み液は着色しているところ、上澄み液が目視で透明になるまで、デカンテーションによる当該固形分の水洗を反復して行った。 Next, an oxidation process was performed. Specifically, after adding 6 L of 98% by mass sulfuric acid and 1 L of 69% by mass nitric acid to a precipitation liquid (including a nanodiamond aggregate) obtained through decantation after acid treatment, This slurry was subjected to heat treatment for 48 hours under reflux under normal pressure conditions. The heating temperature in this oxidation treatment is 140 to 160 ° C. Next, after cooling, the solid content (including the nanodiamond aggregate) was washed with water by decantation. When the supernatant liquid was colored at the beginning of washing with water, the solid content was repeatedly washed with water by decantation until the supernatant liquid became transparent visually.
 次に、上述の水洗処理を経て得られたナノダイヤモンド含有液1000mLを、噴霧乾燥装置(商品名「スプレードライヤー B-290」、日本ビュッヒ株式会社製)を使用して噴霧乾燥に付した(乾燥工程)。これにより、50gのナノダイヤモンド粉体を得た。 Next, 1000 mL of the nanodiamond-containing liquid obtained through the above water washing treatment was subjected to spray drying using a spray drying device (trade name "Spray dryer B-290", manufactured by Nippon Büch Co., Ltd.) (drying Process). As a result, 50 g of nanodiamond powder was obtained.
 上記乾燥工程で得られたナノダイヤモンド粒子0.3gを反応容器に量り取り、MIBK13.5g及びシラン化合物としてヘキシルトリメトキシシラン1.2gを添加し10分間撹拌した。 0.3 g of the nanodiamond particles obtained in the above drying step was weighed into a reaction container, 13.5 g of MIBK and 1.2 g of hexyltrimethoxysilane as a silane compound were added, and the mixture was stirred for 10 minutes.
 撹拌後、ジルコニアビーズ(東ソー株式会社製、登録商標「YTZ」、直径30μm)36gを添加した。添加後、氷水中で冷やしながら超音波分散機(型式「UP-400s」、ヒールッシャー社製)を用い、超音波分散機の振動子の先端を反応容器内の溶液に浸けた状態で20時間超音波処理して、ND粒子とシラン化合物を反応させた。最初は灰色であったが、徐々に小粒径化し分散状態もよくなり最後は均一で黒い液体となった。これは、ND粒子凝集体から順次にND粒子が解かれ(解砕)、解離状態にあるND粒子にシラン化合物が作用して結合し、表面修飾されたND粒子がMIBK中で分散安定化しているためであると考えられる。このようにしてND分散液(MIBK分散液)が得られた。 After stirring, 36 g of zirconia beads (registered trademark “YTZ”, manufactured by Tosoh Corporation, diameter 30 μm) was added. After the addition, use an ultrasonic disperser (model "UP-400s", manufactured by Heelscher) while cooling in ice water, and with the tip of the ultrasonic disperser vibrator immersed in the solution in the reaction vessel for more than 20 hours. The ND particles were reacted with the silane compound by sonication. At first, it was gray, but the particle size gradually decreased and the dispersion state improved, and finally it became a uniform, black liquid. This is because the ND particles are sequentially disintegrated (disintegrated) from the ND particle aggregates, the silane compound acts on and bonds to the ND particles in the dissociated state, and the surface-modified ND particles are dispersed and stabilized in MIBK. It is thought that it is because there is. In this way, an ND dispersion liquid (MIBK dispersion liquid) was obtained.
(ND分散組成物の作製)
 上記で得られた表面修飾ND分散液10gに、分散剤0.2gを加えて撹拌した後、ロータリーエバポレーターによりMIBKを留去し、分散媒を加えて総重量を10gとした。このようにして、ND分散組成物を作製した。なお、ND分散組成物のナノダイヤモンド濃度は2質量%であった。ナノダイヤモンド濃度は、350nmにおける吸光度より求めた。実施例1~5で用いた分散剤及び分散媒は下記の通りである。なお、実施例1~5で用いた分散剤はいずれもポリアルキレングリコールモノアルキルエーテル由来の構造を有する。
実施例1
分散剤:質量平均分子量1000、アミン価19、ポリエチレングリコールモノアルキルエーテル由来の構造を有する、分散媒:ヘキサン
実施例2
分散剤:質量平均分子量3600、アミン価48、ポリプロピレングリコールモノアルキルエーテル由来の構造、カーバメート構造、及びポリカプロラクトン由来の構造を有する、分散媒:ヘキサン
実施例3
分散剤:質量平均分子量700、アミン価66、ポリプロピレングリコールモノアルキルエーテル由来の構造を有する、分散媒:ヘキサン
実施例4
分散剤:質量平均分子量1400、アミン価44、ポリエチレングリコールモノアルキルエーテル由来の構造を有する、分散媒:POE
実施例5
分散剤:質量平均分子量3600、アミン価48、ポリプロピレングリコールモノアルキルエーテル由来の構造、カーバメート構造、及びポリカプロラクトン由来の構造を有する、分散媒:POE
(Preparation of ND dispersion composition)
To 10 g of the surface-modified ND dispersion obtained above, 0.2 g of a dispersant was added and stirred, and then MIBK was distilled off by a rotary evaporator, and a dispersion medium was added to make the total weight 10 g. In this way, an ND dispersion composition was prepared. The nanodiamond concentration of the ND dispersion composition was 2% by mass. The nanodiamond concentration was determined from the absorbance at 350 nm. The dispersant and dispersion medium used in Examples 1 to 5 are as follows. The dispersants used in Examples 1 to 5 all have a structure derived from polyalkylene glycol monoalkyl ether.
Example 1
Dispersant: Mass average molecular weight 1000, amine number 19, having a structure derived from polyethylene glycol monoalkyl ether, dispersion medium: hexane Example 2
Dispersant: Dispersion medium having a mass average molecular weight of 3600, an amine value of 48, a structure derived from polypropylene glycol monoalkyl ether, a carbamate structure, and a structure derived from polycaprolactone: Hexane Example 3
Dispersant: mass average molecular weight 700, amine value 66, having a structure derived from polypropylene glycol monoalkyl ether, dispersion medium: hexane Example 4
Dispersant: Mass average molecular weight 1400, amine value 44, having a structure derived from polyethylene glycol monoalkyl ether, dispersion medium: POE
Example 5
Dispersant: Dispersion medium having a mass average molecular weight of 3600, an amine value of 48, a structure derived from polypropylene glycol monoalkyl ether, a carbamate structure, and a structure derived from polycaprolactone: POE
 比較例1、2
 分散剤を使用せず、分散媒として下記のものを使用したこと以外は実施例と同様にしてND分散組成物を作製した。
比較例1
分散媒:ヘキサン
比較例2
分散媒:POE
Comparative Examples 1 and 2
An ND dispersion composition was prepared in the same manner as in the Example except that the following was used as the dispersion medium without using the dispersant.
Comparative Example 1
Dispersion medium: Hexane Comparative Example 2
Dispersion medium: POE
(評価)
 実施例及び比較例で得られた各ND分散組成物について以下の通り評価した。評価結果は表に記載した。
(Evaluation)
Each ND dispersion composition obtained in the examples and comparative examples was evaluated as follows. The evaluation results are shown in the table.
(1)ヘイズ値
 実施例及び比較例で得られたND分散組成物について、ヘイズ測定装置(商品名「ヘーズメーター 300A」、日本電色工業株式会社製)を使用して測定した。測定に供された各試料液は、超音波洗浄機による10分間の超音波洗浄を経たものである。試料液が充填されて測定に使用された測定用ガラスセルの厚さ(内寸)は1mmであって、測定に係る試料内光路長は1mmである。なお、表中の「-」は、測定を行わなかったことを示す。
(1) Haze value The ND dispersion compositions obtained in Examples and Comparative Examples were measured using a haze measuring device (trade name "Hazemeter 300A", manufactured by Nippon Denshoku Industries Co., Ltd.). Each sample solution used for measurement was subjected to ultrasonic cleaning for 10 minutes by an ultrasonic cleaning machine. The thickness (inner dimension) of the measuring glass cell filled with the sample liquid and used for the measurement is 1 mm, and the optical path length in the sample relating to the measurement is 1 mm. In addition, "-" in the table indicates that the measurement was not performed.
(2)D50
 実施例及び比較例で得られたND分散組成物を、分散媒を加えて0.1質量%に希釈し、ND粒子の粒度分布を、Malvern社製の装置(商品名「ゼータサイザー ナノZS」)を使用して、動的光散乱法(非接触後方散乱法)により測定した。
(2) D50
The ND dispersion compositions obtained in Examples and Comparative Examples were diluted with a dispersion medium to 0.1% by mass, and the particle size distribution of ND particles was measured by a device manufactured by Malvern (trade name "Zetasizer Nano ZS"). ) Was used to measure by a dynamic light scattering method (non-contact backscattering method).
(3)分散性
 実施例及び比較例で得られたND分散組成物を、分散媒を加えて0.1質量%に希釈し、下記の評価基準に基づいて目視で分散性の評価を行った。
○:透明であり凝集が見られない。
△:少し濁っているが凝集は確認できなかった。
×:濁っており、明らかな凝集が確認できた。
(3) Dispersibility The ND dispersion compositions obtained in Examples and Comparative Examples were diluted with a dispersion medium to 0.1% by mass, and the dispersibility was visually evaluated based on the following evaluation criteria. ..
◯: Transparent and no aggregation is observed.
Δ: A little cloudy, but no aggregation could be confirmed.
X: It was cloudy and clear aggregation could be confirmed.
(4)粘度
 実施例及び比較例で得られたND分散組成物について、EMS粘度計(商品名「EMS1000」、京都電子工業株式会社製)を使用して測定した。試験管にサンプル500μLとφ2mmアルミボールを入れ、温度25℃、回転数1000rpmとして測定した。
(4) Viscosity The ND dispersion compositions obtained in Examples and Comparative Examples were measured using an EMS viscometer (trade name “EMS1000”, manufactured by Kyoto Electronics Manufacturing Co., Ltd.). 500 μL of sample and φ2 mm aluminum balls were put in a test tube, and the temperature was 25 ° C. and the rotation speed was 1000 rpm, and measurement was performed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記しておく。
[1]有機分散媒と、
 前記有機分散媒中に分散しているナノダイヤモンド粒子と、
 質量平均分子量が500以上であり、且つアミン価が15mgKOH/g以上である分散剤と、
 を含むナノダイヤモンド分散組成物。
[2]前記ナノダイヤモンド粒子の平均分散粒子径が2~240nm(好ましくは4~200nm、より好ましくは10~180nm、さらに好ましくは20~150nm)である[1]に記載のナノダイヤモンド分散組成物。
[3]ヘイズ値が5以下(好ましくは3以下、より好ましくは1以下、さらに好ましくは0.5以下)である[1]又は[2]に記載のナノダイヤモンド分散組成物。
[4]前記有機分散媒のSP値が6.0~12.0(cal/cm)1/2である[1]~[3]のいずれか1つに記載のナノダイヤモンド分散組成物。
[5]25℃における粘度が0.2~120mPa・s(好ましくは10~100mPa・s、より好ましくは20~90mPa・s)である[1]~[4]のいずれか1つに記載のナノダイヤモンド分散組成物。
As a summary of the above, the configuration of the present invention and variations thereof will be additionally described below.
[1] Organic dispersion medium,
Nanodiamond particles dispersed in the organic dispersion medium,
A dispersant having a mass average molecular weight of 500 or more and an amine value of 15 mgKOH / g or more;
A nanodiamond dispersion composition comprising:
[2] The nanodiamond dispersion composition according to [1], wherein the average dispersed particle diameter of the nanodiamond particles is 2 to 240 nm (preferably 4 to 200 nm, more preferably 10 to 180 nm, further preferably 20 to 150 nm). ..
[3] The nanodiamond dispersion composition according to [1] or [2], which has a haze value of 5 or less (preferably 3 or less, more preferably 1 or less, still more preferably 0.5 or less).
[4] The nanodiamond dispersion composition according to any one of [1] to [3], wherein the SP value of the organic dispersion medium is 6.0 to 12.0 (cal / cm) 1/2 .
[5] The viscosity according to any one of [1] to [4], which has a viscosity at 25 ° C. of 0.2 to 120 mPa · s (preferably 10 to 100 mPa · s, more preferably 20 to 90 mPa · s). Nano diamond dispersion composition.
[6]前記分散剤がポリアルキレングリコールモノアルキルエーテル由来(好ましくはポリエチレングリコールモノアルキルエーテル由来、又は、ポリプロピレングリコールものアルキルエーテル由来)の構造を有する化合物を含む[1]~[5]のいずれか1つに記載のナノダイヤモンド分散組成物。
[7]前記分散剤がカーバメート構造を有する化合物を含む[1]~[6]のいずれか1つに記載のナノダイヤモンド分散組成物。
[8]前記分散剤がポリカプロラクトン由来の構造を有する化合物を含む[1]~[7]のいずれか1つに記載のナノダイヤモンド分散組成物。
[9]前記分散剤が、ポリアルキレングリコールモノアルキルエーテル由来(好ましくはポリエチレングリコールモノアルキルエーテル由来、又は、ポリプロピレングリコールものアルキルエーテル由来)の構造、カーバメート構造、及びポリカプロラクトン由来の構造を有する[1]~[5]のいずれか1つに記載のナノダイヤモンド分散組成物。
[10]前記分散剤の質量平均分子量が650以上(好ましくは950以上)である[1]~[9]のいずれか1つに記載のナノダイヤモンド分散組成物。
[11]前記分散剤の質量平均分子量が20000以下(好ましくは10000以下)である[1]~[10]のいずれか1つに記載のナノダイヤモンド分散組成物。
[12]前記分散剤のアミン価が18mgKOH/g以上(好ましくは20mgKOH/g以上、より好ましくは30mgKOH/g以上)である[1]~[11]のいずれか1つに記載のナノダイヤモンド分散組成物。
[13]前記分散剤のアミン価が100mgKOH/g以下(好ましくは90mgKOH/g以下、より好ましくは60mgKOH/g以下)である[1]~[12]のいずれか1つに記載のナノダイヤモンド分散組成物。
[6] Any of [1] to [5], wherein the dispersant contains a compound having a structure derived from polyalkylene glycol monoalkyl ether (preferably derived from polyethylene glycol monoalkyl ether or polypropylene glycol alkyl ether). The nanodiamond dispersion composition as described in 1.
[7] The nanodiamond dispersion composition according to any one of [1] to [6], wherein the dispersant contains a compound having a carbamate structure.
[8] The nanodiamond dispersion composition according to any one of [1] to [7], wherein the dispersant contains a compound having a structure derived from polycaprolactone.
[9] The dispersant has a structure derived from polyalkylene glycol monoalkyl ether (preferably derived from polyethylene glycol monoalkyl ether or derived from polypropylene glycol alkyl ether), a carbamate structure, and a structure derived from polycaprolactone [1 ] The nano diamond dispersion composition as described in any one of [5].
[10] The nanodiamond dispersion composition according to any one of [1] to [9], wherein the dispersant has a mass average molecular weight of 650 or more (preferably 950 or more).
[11] The nanodiamond dispersion composition according to any one of [1] to [10], wherein the dispersant has a mass average molecular weight of 20,000 or less (preferably 10,000 or less).
[12] The nanodiamond dispersion according to any one of [1] to [11], wherein the dispersant has an amine value of 18 mgKOH / g or more (preferably 20 mgKOH / g or more, more preferably 30 mgKOH / g or more). Composition.
[13] The nanodiamond dispersion according to any one of [1] to [12], wherein the amine value of the dispersant is 100 mgKOH / g or less (preferably 90 mgKOH / g or less, more preferably 60 mgKOH / g or less). Composition.
[14]前記有機分散媒のSP値が6.0~8.2(cal/cm)1/2(好ましくは6.5~8.0(cal/cm)1/2)である[1]~[13]のいずれか1つに記載のナノダイヤモンド分散組成物。
[15]前記有機分散媒のSP値が9.0~12.0(cal/cm)1/2(好ましくは9.2~12.0(cal/cm)1/2)である[1]~[13]のいずれか1つに記載のナノダイヤモンド分散組成物。
[16]前記分散剤の含有割合が、前記ナノダイヤモンド分散組成物中の分散剤の総量に対して、90質量%以上(95質量%以上、より好ましくは99質量%以上)である[1]~[15]のいずれか1つに記載のナノダイヤモンド分散組成物。
[17]前記ナノダイヤモンド分散組成物中の前記分散剤の含有量が、前記ナノダイヤモンド分散組成物中のナノダイヤモンド粒子の総量100質量部に対して、10~10000質量部(好ましくは50~1000質量部、より好ましくは70~300質量部)である、[1]~[16]のいずれか1つに記載のナノダイヤモンド分散組成物。
[18]ナノダイヤモンド粒子の含有割合が0.01~5.0質量%(好ましくは0.1~4.0質量%、より好ましくは0.25~3.0質量%、さらに好ましくは0.5~2.0質量%)である[1]~[17]のいずれか1つに記載のナノダイヤモンド分散組成物。
[19]前記ナノダイヤモンド分散組成物中のナノダイヤモンド粒子の含有割合が0.1~2000質量ppmであり、前記分散剤の含有量が、前記ナノダイヤモンド粒子の総量100質量部に対して、1000~1000000質量部(好ましくは2000~100000質量部、より好ましくは3000~50000質量部)である、[1]~[16]のいずれか1つに記載のナノダイヤモンド分散組成物。
[20]前記ナノダイヤモンド粒子、前記分散剤、及び前記有機分散媒の合計の含有割合が、前記ナノダイヤモンド分散組成物総量に対して、70質量%以上(好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、特に好ましくは99質量%以上)である[1]~[19]のいずれか1つに記載のナノダイヤモンド分散組成物。
[14] The SP value of the organic dispersion medium is 6.0 to 8.2 (cal / cm) 1/2 (preferably 6.5 to 8.0 (cal / cm) 1/2 ) [1] ~ The nanodiamond dispersion composition according to any one of [13].
[15] The SP value of the organic dispersion medium is 9.0 to 12.0 (cal / cm) 1/2 (preferably 9.2 to 12.0 (cal / cm) 1/2 ) [1] ~ The nanodiamond dispersion composition according to any one of [13].
[16] The content ratio of the dispersant is 90 mass% or more (95 mass% or more, more preferably 99 mass% or more) with respect to the total amount of the dispersant in the nanodiamond dispersion composition [1]. The nanodiamond dispersion composition according to any one of to [15].
[17] The content of the dispersant in the nanodiamond dispersion composition is 10 to 10000 parts by mass (preferably 50 to 1000 parts by mass) based on 100 parts by mass of the total amount of the nanodiamond particles in the nanodiamond dispersion composition. The nanodiamond dispersion composition according to any one of [1] to [16], which is a mass part, more preferably 70 to 300 mass parts.
[18] The content ratio of the nanodiamond particles is 0.01 to 5.0% by mass (preferably 0.1 to 4.0% by mass, more preferably 0.25 to 3.0% by mass, still more preferably 0.1. The nanodiamond dispersion composition according to any one of [1] to [17], which is 5 to 2.0% by mass).
[19] The content ratio of the nanodiamond particles in the nanodiamond dispersion composition is 0.1 to 2000 mass ppm, and the content of the dispersant is 1000 with respect to 100 parts by mass of the total amount of the nanodiamond particles. The nanodiamond dispersion composition according to any one of [1] to [16], which is ˜1,000,000 parts by mass (preferably 2,000 to 100,000 parts by mass, more preferably 3,000 to 50,000 parts by mass).
[20] The total content ratio of the nanodiamond particles, the dispersant, and the organic dispersion medium is 70% by mass or more (preferably 80% by mass or more, and more preferably, based on the total amount of the nanodiamond dispersion composition. 90% by mass or more, more preferably 95% by mass or more, and particularly preferably 99% by mass or more), the nanodiamond dispersion composition according to any one of [1] to [19].
[21]前記ナノダイヤモンド粒子が、シラン化合物が表面に結合した表面修飾ナノダイヤモンドである[1]~[20]のいずれか1つに記載のナノダイヤモンド分散組成物。
[22]前記シラン化合物が下記式(1-1)で表される化合物を含有する[21]に記載のナノダイヤモンド分散組成物。
Figure JPOXMLDOC01-appb-C000006
[前記式(1-1)中、R1、R2、R3は、同一又は異なって、炭素数1~3の脂肪族炭化水素基を示す。R4は炭素数1以上の脂肪族炭化水素基を示す。]
[23]前記R4は炭素数4以上の脂肪族炭化水素基(好ましくは炭素数6以上の脂肪族炭化水素基)である[22]に記載のナノダイヤモンド分散組成物。
[24]前記R4は炭素数25以下の脂肪族炭化水素基(好ましくは炭素数20以下の脂肪族炭化水素基、より好ましくは炭素数12以下の脂肪族炭化水素基)である[22]又は[23]に記載のナノダイヤモンド分散組成物。
[25]前記R4における脂肪族炭化水素基は直鎖状又は分岐鎖状のアルキル基若しくはアルケニル基(好ましくは直鎖状又は分岐鎖状アルキル基)である[22]~[24]のいずれか1つに記載のナノダイヤモンド分散組成物。
[21] The nanodiamond dispersion composition according to any one of [1] to [20], wherein the nanodiamond particles are surface-modified nanodiamonds having a silane compound bonded to the surface.
[22] The nanodiamond dispersion composition according to [21], wherein the silane compound contains a compound represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000006
[In the formula (1-1), R 1 , R 2 and R 3 are the same or different and each represents an aliphatic hydrocarbon group having 1 to 3 carbon atoms. R 4 represents an aliphatic hydrocarbon group having 1 or more carbon atoms. ]
[23] The nanodiamond dispersion composition according to [22], wherein R 4 is an aliphatic hydrocarbon group having 4 or more carbon atoms (preferably an aliphatic hydrocarbon group having 6 or more carbon atoms).
[24] The R 4 is an aliphatic hydrocarbon group having 25 or less carbon atoms (preferably an aliphatic hydrocarbon group having 20 or less carbon atoms, more preferably an aliphatic hydrocarbon group having 12 or less carbon atoms) [22] Alternatively, the nanodiamond dispersion composition according to [23].
[25] Any of [22] to [24], wherein the aliphatic hydrocarbon group for R 4 is a linear or branched alkyl group or an alkenyl group (preferably a linear or branched alkyl group). The nanodiamond dispersion composition as described in 1 above.

Claims (10)

  1.  有機分散媒と、
     前記有機分散媒中に分散しているナノダイヤモンド粒子と、
     質量平均分子量が500以上であり、且つアミン価が15mgKOH/g以上である分散剤と、
     を含むナノダイヤモンド分散組成物。
    An organic dispersion medium,
    Nanodiamond particles dispersed in the organic dispersion medium,
    A dispersant having a mass average molecular weight of 500 or more and an amine value of 15 mgKOH / g or more;
    A nanodiamond dispersion composition comprising:
  2.  前記ナノダイヤモンド粒子の平均分散粒子径が20~150nmである請求項1に記載のナノダイヤモンド分散組成物。 The nanodiamond dispersion composition according to claim 1, wherein the average dispersed particle diameter of the nanodiamond particles is 20 to 150 nm.
  3.  ヘイズ値が5以下である請求項1又は2に記載のナノダイヤモンド分散組成物。 The nanodiamond dispersion composition according to claim 1 or 2, which has a haze value of 5 or less.
  4.  前記有機分散媒のSP値が6.0~12.0(cal/cm)1/2である請求項1~3のいずれか1項に記載のナノダイヤモンド分散組成物。 4. The nanodiamond dispersion composition according to claim 1, wherein the SP value of the organic dispersion medium is 6.0 to 12.0 (cal / cm) 1/2 .
  5.  25℃における粘度が20~90mPa・sである請求項1~4のいずれか1項に記載のナノダイヤモンド分散組成物。 The nanodiamond dispersion composition according to any one of claims 1 to 4, which has a viscosity at 25 ° C of 20 to 90 mPa · s.
  6.  前記分散剤がポリアルキレングリコールモノアルキルエーテル由来の構造を有する化合物を含む請求項1~5のいずれか1項に記載のナノダイヤモンド分散組成物。 The nanodiamond dispersion composition according to any one of claims 1 to 5, wherein the dispersant contains a compound having a structure derived from polyalkylene glycol monoalkyl ether.
  7.  前記分散剤がカーバメート構造を有する化合物を含む請求項1~6のいずれか1項に記載のナノダイヤモンド分散組成物。 The nanodiamond dispersion composition according to any one of claims 1 to 6, wherein the dispersant contains a compound having a carbamate structure.
  8.  前記分散剤がポリカプロラクトン由来の構造を有する化合物を含む請求項1~7のいずれか1項に記載のナノダイヤモンド分散組成物。 The nanodiamond dispersion composition according to any one of claims 1 to 7, wherein the dispersant contains a compound having a structure derived from polycaprolactone.
  9.  ナノダイヤモンド粒子の含有割合が0.01~5.0質量%である請求項1~8のいずれか1項に記載のナノダイヤモンド分散組成物。 The nanodiamond dispersion composition according to any one of claims 1 to 8, wherein the content ratio of the nanodiamond particles is 0.01 to 5.0% by mass.
  10.  前記ナノダイヤモンド粒子が、シラン化合物が表面に結合した表面修飾ナノダイヤモンドである請求項1~9のいずれか1項に記載のナノダイヤモンド分散組成物。 The nanodiamond dispersion composition according to any one of claims 1 to 9, wherein the nanodiamond particles are surface-modified nanodiamonds having a silane compound bonded to the surface.
PCT/JP2019/038911 2018-11-05 2019-10-02 Nanodiamond-dispersed composition WO2020095581A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-208309 2018-11-05
JP2018208309 2018-11-05

Publications (1)

Publication Number Publication Date
WO2020095581A1 true WO2020095581A1 (en) 2020-05-14

Family

ID=70611961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038911 WO2020095581A1 (en) 2018-11-05 2019-10-02 Nanodiamond-dispersed composition

Country Status (1)

Country Link
WO (1) WO2020095581A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3747830A4 (en) * 2018-01-29 2021-10-27 Daicel Corporation Nanodiamond particle dispersion
WO2022244665A1 (en) * 2021-05-17 2022-11-24 株式会社ダイセル Composition for freezer, and composition kit for freezer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274486A (en) * 2005-03-29 2006-10-12 Teijin Ltd Aromatic polyamide composite fiber and method for producing the same
JP2008179738A (en) * 2007-01-26 2008-08-07 Nissan Motor Co Ltd Lubricant composition
WO2009128258A1 (en) * 2008-04-14 2009-10-22 有限会社アプライドダイヤモンド Oil-in-water type emulsion composition
WO2010090343A1 (en) * 2009-02-05 2010-08-12 帝人株式会社 Fluid dispersion of graphitized carbon fragments and method of manufacturing the same
JP2014208818A (en) * 2013-03-28 2014-11-06 三菱化学株式会社 Interlaminar filler composition for stacked-type semiconductor device, stacked-type semiconductor device, and method for producing stacked-type semiconductor device
US20160060563A1 (en) * 2013-04-30 2016-03-03 Hyun Tae Kim Engine oil additive composition comprising nanodiamond and method for preparing same
JP2016044092A (en) * 2014-08-21 2016-04-04 株式会社ダイセル Water-repellent coating film, article having water-repellent coating film and dispersion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274486A (en) * 2005-03-29 2006-10-12 Teijin Ltd Aromatic polyamide composite fiber and method for producing the same
JP2008179738A (en) * 2007-01-26 2008-08-07 Nissan Motor Co Ltd Lubricant composition
WO2009128258A1 (en) * 2008-04-14 2009-10-22 有限会社アプライドダイヤモンド Oil-in-water type emulsion composition
WO2010090343A1 (en) * 2009-02-05 2010-08-12 帝人株式会社 Fluid dispersion of graphitized carbon fragments and method of manufacturing the same
JP2014208818A (en) * 2013-03-28 2014-11-06 三菱化学株式会社 Interlaminar filler composition for stacked-type semiconductor device, stacked-type semiconductor device, and method for producing stacked-type semiconductor device
US20160060563A1 (en) * 2013-04-30 2016-03-03 Hyun Tae Kim Engine oil additive composition comprising nanodiamond and method for preparing same
JP2016044092A (en) * 2014-08-21 2016-04-04 株式会社ダイセル Water-repellent coating film, article having water-repellent coating film and dispersion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3747830A4 (en) * 2018-01-29 2021-10-27 Daicel Corporation Nanodiamond particle dispersion
US11939222B2 (en) 2018-01-29 2024-03-26 Daicel Corporation Nanodiamond particle dispersion
WO2022244665A1 (en) * 2021-05-17 2022-11-24 株式会社ダイセル Composition for freezer, and composition kit for freezer

Similar Documents

Publication Publication Date Title
JP7094283B2 (en) Surface-modified nanodiamonds, dispersions containing surface-modified nanodiamonds, and resin dispersions
WO2018186382A1 (en) Surface-modified nanodiamond, surface-modified nanodiamond dispersion liquid, and resin dispersion
WO2020095581A1 (en) Nanodiamond-dispersed composition
EP3981740A1 (en) Surface-modified nanodiamond and method for producing surface-modified nanodiamond
WO2020179370A1 (en) Surface-modified nanodiamond, nanodiamond dispersion composition, and surface-modified nanodiamond production method
WO2020241404A1 (en) Nanodiamond dispersion composition
JP6749433B2 (en) Lubricant composition for initial familiarization
US11939222B2 (en) Nanodiamond particle dispersion
JP2020132447A (en) Nanodiamond dispersion composition
JP7451412B2 (en) lubricant composition
WO2022091725A1 (en) Nanodiamond-dispersed composition
RU2780325C1 (en) Surface-modified nanodiamond, a dispersed composition of nanodiamonds and a method for the production of surface-modified nanodiamond
TW202321145A (en) Nano-diamond aqueous dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP