JPH05159268A - Magnetic recording medium and its production thereof - Google Patents

Magnetic recording medium and its production thereof

Info

Publication number
JPH05159268A
JPH05159268A JP31896391A JP31896391A JPH05159268A JP H05159268 A JPH05159268 A JP H05159268A JP 31896391 A JP31896391 A JP 31896391A JP 31896391 A JP31896391 A JP 31896391A JP H05159268 A JPH05159268 A JP H05159268A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
layer
normal direction
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31896391A
Other languages
Japanese (ja)
Inventor
Tatsuro Ishida
達朗 石田
Ryuji Sugita
龍二 杉田
Kiyokazu Toma
清和 東間
Yasuhiro Kawawake
康博 川分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31896391A priority Critical patent/JPH05159268A/en
Publication of JPH05159268A publication Critical patent/JPH05159268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To decrease noises and to improve C/N by providing a 1st magnetic layer essentially consisting of Co and Cr or Co, Ni and Cr by inclining an axis of easy magnetization. CONSTITUTION:The 1st magnetic layer 2 essentially consisting of the Co and Cr is provided directly or via a substrate layer on a high-polymer substrate 1. The direction inclined with a normal direction 5 is set as the axis of easy magnetization and the angle formed by the direction 4 where columnar crystal grains are grown and the normal direction 5 is set smaller than the angle formed by the direction 3 of the axis of easy magnetization and the normal direction 5. The behavior of magnetic walls is thereby made adequate and the noises are decreased. C/N is the improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、デジタルVTR等の高
密度記録再生装置に用いられる磁気記録媒体およびその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium used in a high density recording / reproducing apparatus such as a digital VTR and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、磁気記録再生装置は小型化,高密
度化の傾向にあり、それに用いる磁気記録媒体(以下単
に媒体と記す)においては、従来の塗布型媒体の高密度
化の限界を越えるものとして金属薄膜型媒体が注目され
ている。これに関しては、Co−Ni−Oからなる金属
薄膜型媒体がVTR用の磁気テープとして実用化されて
いる。このような磁気記録媒体を生産性良く形成するた
めには、例えば円筒状ローラ系を用いたウェッブコータ
式の連続蒸着装置などにより、長尺の高分子基板を移動
させながらその上に磁性層を連続して蒸着すればよい。
この際、斜法蒸着の手法を用いることにより、磁性層の
膜面に垂直方向の磁化成分の寄与によって従来の塗布型
媒体に比べて高密度記録再生特性を向上させている。
2. Description of the Related Art In recent years, magnetic recording / reproducing devices have tended to become smaller and have higher densities, and in the magnetic recording medium (hereinafter simply referred to as "medium") used therein, there is a limit to the densification of conventional coating type media. A metal thin film type medium has been attracting attention as a material to overcome. In this regard, a metal thin film type medium made of Co-Ni-O has been put to practical use as a magnetic tape for VTR. In order to form such a magnetic recording medium with high productivity, for example, a web coater type continuous vapor deposition apparatus using a cylindrical roller system is used to move a long polymer substrate and form a magnetic layer on it. It may be vapor-deposited continuously.
At this time, the oblique deposition method is used to improve the high density recording / reproducing characteristics as compared with the conventional coating type medium due to the contribution of the magnetization component in the direction perpendicular to the film surface of the magnetic layer.

【0003】しかしながら、家庭用デジタルVTR,ハ
イビジョン用VTRなど次世代VTRに対応する媒体に
は、さらに優れた高密度記録再生特性が要求されてお
り、その候補としてCo−Cr,Co−Ni−Cr,C
o−O,Co−Ni−O等を主成分とする垂直磁気記録
媒体が期待されている。
However, a medium compatible with a next-generation VTR such as a home digital VTR and a high-definition VTR is required to have further excellent high-density recording / reproducing characteristics, and Co-Cr and Co-Ni-Cr are candidates for the medium. , C
A perpendicular magnetic recording medium containing o-O, Co-Ni-O or the like as a main component is expected.

【0004】これら垂直磁気記録媒体には、リング型磁
気ヘッドを用いた記録再生において長波長記録領域での
再生出力が低い、孤立再生波形がダイパルス形状となる
ためデジタル信号処理が困難であるなどの問題点があっ
た。これらの問題点は、斜方蒸着法により磁化容易軸を
基板の法線に対して傾斜させて適度の面内磁化成分の寄
与を取り入れる、あるいは積層構造とする等の手段によ
り、その優れた高密度特性を損なうことなく解決する方
法が提案されている。また、CoおよびCrあるいはC
o,NiおよびCrを主成分とする磁性層を含有する媒
体は、多方面での精力的な研究開発により次世代VTR
対応磁気テープとして総合的には極めて優れた性能が得
られており、今後ますますその性能の向上が図られるも
のと思われる。
In these perpendicular magnetic recording media, the reproduction output in the long wavelength recording region is low in recording and reproduction using a ring type magnetic head, and the isolated reproduction waveform has a dipulse shape, which makes it difficult to perform digital signal processing. There was a problem. These problems are caused by a method such that the easy axis of magnetization is inclined with respect to the normal line of the substrate by the oblique vapor deposition method to take in the contribution of an appropriate in-plane magnetization component, or a laminated structure is adopted. A method has been proposed for solving it without impairing the density characteristics. Also, Co and Cr or C
The medium containing the magnetic layer containing o, Ni and Cr as the main components is a next-generation VTR due to energetic research and development in various fields.
As a compatible magnetic tape, extremely superior performance has been obtained overall, and it is expected that the performance will be further improved in the future.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この総
合的には優れている媒体も、個々の性能に着目すれば従
来の媒体に比べて劣っている点もある。例えばノイズに
関しては、前述のCo−Ni−Oを主成分とする金属薄
膜型媒体に比べると高い傾向があり、現状の出力を維持
したままノイズの低減が図れれば、さらにC/N比を改
善できる余地を残している。
However, there are some points in which this comprehensively excellent medium is inferior to the conventional medium in terms of individual performance. For example, the noise tends to be higher than that of the metal thin film type medium containing Co-Ni-O as the main component, and if the noise can be reduced while maintaining the current output, the C / N ratio can be further increased. There is room for improvement.

【0006】本発明は、ノイズの低減によってC/N比
の改善が図られた磁気記録媒体およびその製造方法を提
供することを目的とする。
It is an object of the present invention to provide a magnetic recording medium having an improved C / N ratio by reducing noise and a method for manufacturing the magnetic recording medium.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明は、非磁性基板と、その非磁性基板上に直接ま
たは下地層を介して形成されたCoおよびCrまたはC
o,NiおよびCrを主成分とする第1の磁性層を含有
する磁性膜とからなり、前記第1の磁性層の磁化容易軸
方向が前記非磁性基板の法線方向に対して傾斜した方向
にあり、前記第1の磁性層を構成する柱状結晶粒の成長
方向と前記法線方向とのなす角が前記磁化容易軸方向と
前記法線方向とのなす角よりも小さい磁気記録媒体とし
たものである。
To achieve this object, the present invention provides a non-magnetic substrate and Co and Cr or C formed on the non-magnetic substrate directly or through an underlayer.
a magnetic film containing a first magnetic layer containing o, Ni and Cr as main components, and a direction in which an easy axis of magnetization of the first magnetic layer is inclined with respect to a normal direction of the non-magnetic substrate. In the magnetic recording medium, the angle formed by the growth direction of the columnar crystal grains forming the first magnetic layer and the normal direction is smaller than the angle formed by the easy axis of magnetization and the normal direction. It is a thing.

【0008】[0008]

【作用】この構成により、成長方向と磁化容易軸方向と
が異なり、かつ成長方向が法線方向に近いために磁壁の
振舞いに変化が生じてノイズが低減され、C/N比が向
上する。
With this structure, the growth direction is different from the easy magnetization axis direction, and the growth direction is close to the normal direction, so that the behavior of the domain wall changes, noise is reduced, and the C / N ratio is improved.

【0009】[0009]

【実施例】以下、本発明の一実施例について図面を用い
て説明する。図1は本発明の一実施例における媒体の模
式断面図である。図1において、1は高分子基板、2は
その高分子基板1上に形成されたCoおよびCrを主成
分とする第1の磁性層、3は第1の磁性層2の磁化容易
軸方向、4は第1の磁性層2を構成する柱状結晶粒の成
長方向、5は高分子基板1の法線方向である。また、θ
1は成長方向4と法線方向5とのなす角、θ2は磁化容易
軸方向3と法線方向5とのなす角を表わす。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view of a medium according to an embodiment of the present invention. In FIG. 1, 1 is a polymer substrate, 2 is a first magnetic layer mainly composed of Co and Cr formed on the polymer substrate 1, 3 is an easy magnetization axis direction of the first magnetic layer 2, Reference numeral 4 is the growth direction of the columnar crystal grains forming the first magnetic layer 2, and 5 is the normal direction of the polymer substrate 1. Also, θ
1 represents an angle formed by the growth direction 4 and the normal direction 5, and θ 2 represents an angle formed by the easy magnetization axis direction 3 and the normal direction 5.

【0010】高分子基板1上にCoおよびCrを主成分
とする第1の磁性層2が形成された磁気記録媒体におい
て、その磁化容易軸方向3を法線方向5に対して傾斜さ
せるために斜方蒸着法などの手法を用いると、一般的に
は柱状結晶粒が法線方向5に対して傾斜した方向に成長
する。
In the magnetic recording medium in which the first magnetic layer 2 containing Co and Cr as the main components is formed on the polymer substrate 1, in order to tilt the easy magnetization axis direction 3 with respect to the normal direction 5, When a method such as an oblique vapor deposition method is used, columnar crystal grains generally grow in a direction inclined with respect to the normal direction 5.

【0011】従来の媒体の一例を挙げれば、Coおよび
CrあるいはCo,NiおよびCrを主成分とする磁性
層の柱状結晶粒の成長方向と非磁性基板の法線方向との
なす角は、磁化容易軸方向と法線方向とのなす角と同等
以上となっていた。ただし先述のような円筒状ローラ系
を用いたウェッブコータ式の連続蒸着装置などにより磁
性層を形成した場合には、柱状結晶粒は直線的に成長す
るのではなく若干湾曲しているので、ここでは磁性層の
膜厚方向の中心点における湾曲線の接線方向を柱状結晶
粒の成長方向と定義することとする。
As an example of a conventional medium, the angle formed between the growth direction of columnar crystal grains of the magnetic layer containing Co and Cr or Co, Ni and Cr as the main components and the normal direction of the non-magnetic substrate is the magnetization. The angle was equal to or greater than the angle formed by the easy axis direction and the normal direction. However, when the magnetic layer is formed by a web coater-type continuous vapor deposition device using a cylindrical roller system as described above, the columnar crystal grains are not linearly grown but are slightly curved. Then, the tangential direction of the curved line at the center point in the film thickness direction of the magnetic layer is defined as the growth direction of the columnar crystal grains.

【0012】しかしながら、CoおよびCrあるいはC
o,NiおよびCrを主成分とする磁性層において、磁
気異方性におもに寄与するのはCoの六方最密構造(h
cp)による結晶磁気異方性であり、柱状結晶粒の成長
方向による形状異方性の寄与は極めて少ないものと考え
られる。したがって、Coのc軸が法線方向に対して適
切な方向に傾斜していれば柱状結晶粒が法線方向に対し
てどの方向に傾斜していても、リング型磁気ヘッドでの
記録再生に適した方向に傾斜した磁化容易軸方向を有す
る磁性層が得られるものと考えられる。
However, Co and Cr or C
In the magnetic layer containing o, Ni and Cr as the main components, it is the hexagonal close-packed structure (h) of Co that mainly contributes to the magnetic anisotropy.
cp), and it is considered that the contribution of shape anisotropy due to the growth direction of columnar crystal grains is extremely small. Therefore, if the c-axis of Co is tilted in an appropriate direction with respect to the normal direction, no matter what direction the columnar crystal grains are tilted with respect to the normal direction, the ring-type magnetic head can be used for recording and reproduction. It is believed that a magnetic layer having an easy axis of magnetization inclined in a suitable direction can be obtained.

【0013】このような観点から、CoおよびCrを主
成分とする第1の磁性層2において柱状結晶粒の成長方
向4が法線方向5となす角θ1と磁化容易軸方向3が法
線方向5となす角θ2の相対関係について検討したとこ
ろ、図1に示すようにθ1がθ 2よりも十分に小さい構成
を有する媒体において、再生出力を低下させることなく
ノイズの低減が図られること見いだした。なお、図1
は、詳しくは記録再生時の磁気ヘッドと媒体との相対移
動方向に平行な面から見た媒体の断面図である。すなわ
ち図1の媒体においては、Coのc軸がほぼ磁化容易軸
方向3に成長しているが、柱状結晶粒は磁化容易軸方向
3よりも法線方向5にむしろ近い方向に成長している。
From this point of view, Co and Cr are mainly used.
Method of growing columnar crystal grains in the first magnetic layer 2 as a component
Angle θ between direction 4 and normal 51And easy magnetization axis direction 3
Angle θ with line direction 52Where we examined the relationship between
R, as shown in FIG.1Is θ 2Configuration much smaller than
In a medium having
We have found that noise can be reduced. Note that FIG.
Is the relative movement between the magnetic head and the medium during recording and reproduction.
FIG. 3 is a cross-sectional view of the medium viewed from a plane parallel to the moving direction. Sanawa
In the medium of FIG. 1, the c axis of Co is almost the easy axis of magnetization.
Although growing in the direction 3, the columnar crystal grains are in the easy magnetization axis direction.
It grows in a direction rather close to the normal direction 5 than 3.

【0014】このような媒体において、ノイズの低減が
図られるメカニズムについてはまだ十分な検討結果は得
られていないが、個々の柱状結晶粒はCrの偏析により
磁気的に分離されているため、その法線方向5に対する
成長方向4を変化させれば磁壁の振舞いに変化が生じる
ものと思われる。これにより、柱状結晶粒を法線方向5
に近い方向に成長させた方がヘッドオンドメインが発生
しにくい等の機構が生じるものと考えている。
In such a medium, a sufficient study result has not yet been obtained on the mechanism for reducing noise, but since the individual columnar crystal grains are magnetically separated by the segregation of Cr, the It is considered that the behavior of the domain wall changes if the growth direction 4 is changed with respect to the normal direction 5. As a result, the columnar crystal grains are moved in the normal direction 5
It is thought that a mechanism such that the head-on domain is less likely to occur is caused when the growth is performed in the direction close to

【0015】上記の構成を有するCoおよびCrを主成
分とする第1の磁性層2は真空蒸着法によれば、蒸発原
子の高分子基板1への入射角を法線方向5に対して50
°以上として下層2aを形成した後、その上に蒸発原子
の高分子基板1への入射角を法線方向5に対して45°
以下として上層2bを形成し、かつ前記下層2aの層厚
を全第1の磁性層2の層厚の20%以下とすることによ
って得られる。
According to the vacuum evaporation method, the first magnetic layer 2 having Co and Cr as the main components, which has the above-mentioned structure, has an incident angle of vaporized atoms to the polymer substrate 1 of 50 with respect to the normal direction 5.
After forming the lower layer 2a at an angle of at least 50 °, the incident angle of the vaporized atoms on the polymer substrate 1 is 45 ° with respect to the normal direction 5 on the lower layer
The following is obtained by forming the upper layer 2b and making the layer thickness of the lower layer 2a 20% or less of the layer thickness of the entire first magnetic layer 2.

【0016】このメカニズムは以下のように考えられ
る。下層2aの形成によりCoのc軸の成長方向が決定
される。すなわちこの上に形成される上層2bのc軸
は、下層2aのc軸の成長方向を引き継ぎ、蒸発原子の
高分子基板1への入射方向よりも法線方向5に対して傾
斜した方向に成長する。一方で柱状結晶粒は蒸発原子の
高分子基板1への入射角に応じた方向、すなわちc軸の
成長方向よりも法線方向5に近い方向に成長する。この
ようにして、柱状結晶粒の成長方向4と法線方向5との
なす角θ1が磁化容易軸方向3と法線方向5とのなす角
θ2よりも十分に小さい構成を有する第1の磁性層2が
得られる。
This mechanism is considered as follows. The formation of the lower layer 2a determines the growth direction of the c-axis of Co. That is, the c-axis of the upper layer 2b formed on this layer inherits the growth direction of the c-axis of the lower layer 2a and grows in a direction inclined with respect to the normal direction 5 with respect to the incident direction of the vaporized atoms to the polymer substrate 1. To do. On the other hand, the columnar crystal grains grow in a direction closer to the normal direction 5 than the growth direction of the c-axis, that is, the direction according to the incident angle of the vaporized atoms to the polymer substrate 1. In this way, the angle θ 1 formed by the columnar crystal grain growth direction 4 and the normal direction 5 is sufficiently smaller than the angle θ 2 formed by the easy magnetization axis direction 3 and the normal direction 5. Magnetic layer 2 is obtained.

【0017】上記の作成方法において、下層2aの役割
はc軸の成長方向すなわち磁化容易軸方向3を決定する
ことであるからその層厚は上層2bに比べて十分小さく
できる。逆に下層2aの層厚が必要以上に大きいと、下
層2aからのノイズへの寄与が大きくなる、あるいは上
層2bの柱状結晶粒の成長方向にも影響してθ1の値が
θ2に近づく等の弊害も生じる。この観点からの検討に
よれば、下層2aの層厚は全磁性層厚の20%以下であ
ることが好ましい。また、下層2a形成時の蒸発原子の
高分子基板1への入射角を法線方向5に対して50°よ
り小さい場合、c軸の成長方向を決定する機能が低減さ
れ、上層2bのc軸は柱状結晶粒の成長方向に近い方向
に成長する場合があるので好ましくない。またθ1をθ2
よりも小さくしてノイズ低減の効果を十分に得るために
は、上層2b形成時の蒸発原子の高分子基板1への入射
角を法線方向5に対して45°以下とすることが好まし
い。
In the above manufacturing method, the role of the lower layer 2a is to determine the growth direction of the c-axis, that is, the direction 3 of the easy axis of magnetization. Therefore, the layer thickness can be made sufficiently smaller than that of the upper layer 2b. On the contrary, if the layer thickness of the lower layer 2a is larger than necessary, the contribution from the lower layer 2a to noise becomes large, or the growth direction of the columnar crystal grains of the upper layer 2b is affected, and the value of θ 1 approaches θ 2 . There are also adverse effects such as. From this point of view, the thickness of the lower layer 2a is preferably 20% or less of the total magnetic layer thickness. Further, when the incident angle of the vaporized atoms to the polymer substrate 1 when forming the lower layer 2a is smaller than 50 ° with respect to the normal direction 5, the function of determining the growth direction of the c-axis is reduced, and the c-axis of the upper layer 2b is reduced. Is not preferable because it may grow in a direction close to the growth direction of columnar crystal grains. In addition, θ 1 becomes θ 2
In order to obtain a sufficient noise reduction effect by making the size smaller than that, it is preferable that the incident angle of the vaporized atoms on the polymer substrate 1 when forming the upper layer 2b is 45 ° or less with respect to the normal direction 5.

【0018】なお、図1には第1の磁性層2をCoおよ
びCrを主成分とした例について示しているが、Co,
NiおよびCrを主成分としたもの、あるいはこれらに
不純物を添加したものでもよい。また図1にはVTR用
磁気テープ等への応用を想定して高分子基板1を用いた
例を示しているが、他の非磁性基板1を用いても上記の
ノイズ低減の効果が得られることはもちろんである。
FIG. 1 shows an example in which the first magnetic layer 2 contains Co and Cr as main components.
Those containing Ni and Cr as main components, or those containing impurities added thereto may be used. Further, FIG. 1 shows an example in which the polymer substrate 1 is used for the purpose of application to a magnetic tape for VTR and the like, but the above noise reduction effect can be obtained even if another non-magnetic substrate 1 is used. Of course.

【0019】また第1の磁性層2と非磁性基板1との間
に下地層を介する場合、あるいは例えばCo−O膜やC
o−Ni−O膜などの他の第2の磁性層との積層構造を
有する媒体など、CoおよびCrあるいはCo,Niお
よびCrを主成分とする第1の磁性層2以外の構成要素
を含有する場合においてもその効果を得ることができ
る。
Further, when an underlayer is interposed between the first magnetic layer 2 and the non-magnetic substrate 1, or, for example, a Co--O film or C
Containing components other than the first magnetic layer 2 containing Co and Cr or Co, Ni and Cr as a main component, such as a medium having a laminated structure with another second magnetic layer such as an o-Ni-O film. Even in the case of doing so, the effect can be obtained.

【0020】次に本発明の一実施例における媒体の製造
方法について説明する。図2は、本発明の磁気記録媒体
の製造装置の一例として円筒状ローラ系を用いたウェッ
ブコータ式の連続蒸着装置を示したものである。この図
において1は長尺の高分子基板であり、7,8はそれぞ
れ高分子基板1の供給ロールおよび巻き取りロールであ
る。高分子基板1には円筒状ローラ9の周面上を矢印A
の方向に走行する間に蒸発原子が体積される。この際蒸
発源10と円筒状ローラ9の間にシールド11を設けて
蒸発原子の高分子基板1への入射角を適度に制御するこ
とにより、磁化容易軸が高分子基板1の法線方向に対し
て傾斜した媒体が形成される。
Next, a method of manufacturing the medium in one embodiment of the present invention will be described. FIG. 2 shows a web coater type continuous vapor deposition apparatus using a cylindrical roller system as an example of a magnetic recording medium manufacturing apparatus of the present invention. In this figure, 1 is a long polymer substrate, and 7 and 8 are a supply roll and a winding roll of the polymer substrate 1, respectively. The polymer substrate 1 has an arrow A on the circumferential surface of the cylindrical roller 9.
The vaporized atoms are accumulated while traveling in the direction of. At this time, a shield 11 is provided between the evaporation source 10 and the cylindrical roller 9 to appropriately control the incident angle of the vaporized atoms to the polymer substrate 1, so that the easy axis of magnetization is in the normal direction of the polymer substrate 1. A tilted medium is formed.

【0021】図1に示す媒体においては、シールド11
により、前述の下層,上層が、同一の真空容器内で連続
して形成される構成としたが、下層,上層の形成過程を
2回に別けて別々に行っても良い。図2において、蒸発
源10はCoおよびCrあるいはCo,NiおよびCr
の合金とし、下層および上層それぞれの形成を担う蒸発
源10を別個に2個設けているが、先述した下層,上層
の層厚比、成膜速度等の点で問題がなければ1個の蒸発
源10で両層を形成する構成としても差し支えない。ま
た、第1の磁性層の構成要素であるCo,Ni,Crの
蒸発源10を別個に設けて、多元蒸着を行なってもよ
い。図2において、下層は、蒸発原子の高分子基板1へ
の入射角が初期入射角φ1から終期入射角φ2の間で、上
層は、初期入射角φ3から終期入射角φ4の間で形成され
ることを示している。したがって、本発明の製造方法に
よれば、φ1>φ2≧50°,45°≧φ3>φ4という条
件を満たすようシールド11を設定すればよい。
In the medium shown in FIG. 1, the shield 11
Thus, although the lower layer and the upper layer are continuously formed in the same vacuum container, the forming process of the lower layer and the upper layer may be separately performed twice. In FIG. 2, the evaporation source 10 is Co and Cr or Co, Ni and Cr.
Although two separate evaporation sources 10 for forming the lower layer and the upper layer are provided as the alloy of No. 1, but if there is no problem in terms of the layer thickness ratio of the lower layer and the upper layer, the film forming rate, etc., one evaporation source is used. The source 10 may form both layers. Further, the vapor deposition sources 10 for Co, Ni, and Cr, which are the constituent elements of the first magnetic layer, may be separately provided to perform multi-source vapor deposition. In FIG. 2, in the lower layer, the incident angle of vaporized atoms to the polymer substrate 1 is between the initial incident angle φ 1 and the final incident angle φ 2 , and in the upper layer, between the initial incident angle φ 3 and the final incident angle φ 4 . It is formed by. Therefore, according to the manufacturing method of the present invention, the shield 11 may be set so as to satisfy the conditions of φ 1 > φ 2 ≧ 50 ° and 45 ° ≧ φ 3 > φ 4 .

【0022】以下に図2に示した連続蒸着装置を用いて
作製した本発明の媒体の好ましい実施例および比較例を
示しながら具体的に説明する。
Hereinafter, the medium of the present invention manufactured by using the continuous vapor deposition apparatus shown in FIG. 2 will be specifically described with reference to preferred examples and comparative examples.

【0023】(実施例1)蒸発源10をCoとCrとの
合金とし、耐熱性の高分子基板1上にCo−Cr膜を形
成した。蒸発原子の入射角は法線方向に対して、φ1
65°,φ2=50°,φ3=30°,φ4=10°、ま
た磁化容易軸方向の決定を担う下層の層厚は30nm、
上層の層厚は220nm、したがって全第1の磁性層厚
は250nmとした。上記条件により作製した媒体の磁
化容易軸方向と法線方向とのなす角θ 2は、トルク測定
によれば45°であった。また、透過型電子顕微鏡(T
EM)によって高分子基板1の搬送方向の媒体断面を観
察したところ、柱状結晶粒の成長方向と法線方向とのな
す角θ1は15°であることが確認された。なお、θ1
先の定義に従い、全第1の磁性層厚250nmの層厚方
向の中心点における柱状結晶粒の湾曲線の接線方向が法
線方向となす角である。
(Embodiment 1) The evaporation source 10 is composed of Co and Cr.
As a alloy, form a Co-Cr film on the heat-resistant polymer substrate 1.
I made it. The incident angle of vaporized atoms is φ with respect to the normal direction.1=
65 °, φ2= 50 °, φ3= 30 °, φFour= 10 °
The thickness of the lower layer, which is responsible for determining the direction of the easy axis of magnetization, is 30 nm,
The thickness of the upper layer is 220 nm, so the total thickness of the first magnetic layer is
Was 250 nm. The magnetism of the medium produced under the above conditions
Angle θ formed by the axial direction and the normal direction 2Is the torque measurement
According to the report, it was 45 °. In addition, a transmission electron microscope (T
The cross section of the medium in the transport direction of the polymer substrate 1 is viewed by EM).
As a result, it was confirmed that the growth direction of the columnar crystal grains and the normal direction were not
Angle θ1Was confirmed to be 15 °. Note that θ1Is
According to the above definition, the total thickness of the first magnetic layer is 250 nm.
The tangential direction of the curved line of the columnar grain at the center point
It is an angle with the line direction.

【0024】(比較例1)実施例1の媒体作製に用いた
連続蒸着装置のシールド11を変更し、蒸発原子の高分
子基板1への入射角が初期入射角60°から終期入射角
25°の間でCo−Cr膜を作製した。第1の磁性層厚
は実施例1の全第1の磁性層厚と同じ250nmとし
た。なお、成膜速度,容器内真空度,第1の磁性層の飽
和磁化等、上記以外の諸条件はすべて実施例1と同じで
ある。上記条件により作製した媒体のθ2は45°、θ1
は50°であった。すなわち、実施例1において磁化容
易軸方向の決定を担う下層の形成を行なわずに単層のC
o−Cr膜を形成したために、柱状結晶粒の成長方向が
磁化容易軸方向とほぼ一致しており、本発明の媒体構成
とはなっていない。
(Comparative Example 1) The shield 11 of the continuous vapor deposition apparatus used for preparing the medium of Example 1 was changed, and the incident angle of vaporized atoms to the polymer substrate 1 was changed from the initial incident angle of 60 ° to the final incident angle of 25 °. A Co-Cr film was formed between the two. The thickness of the first magnetic layer was 250 nm, which is the same as the total thickness of the first magnetic layers of Example 1. The film forming speed, the degree of vacuum in the container, the saturation magnetization of the first magnetic layer, and other conditions were all the same as in Example 1. Θ 2 of the medium manufactured under the above conditions is 45 °, θ 1
Was 50 °. That is, in Example 1, the C of a single layer was formed without forming the lower layer responsible for determining the direction of the easy axis of magnetization.
Since the o-Cr film is formed, the growth direction of the columnar crystal grains substantially coincides with the easy axis of magnetization, and the medium structure of the present invention is not provided.

【0025】実施例1および比較例1において得られた
媒体をスリットして磁気テープ媒体とし、VTRデッキ
を用いた単一周波数の記録再生を行った。この際の磁気
テープと磁気ヘッド間の相対移動速度は3.8m/sと
した。得られたノイズスペクトルを図3に示す。実施例
1および比較例1の両磁気テープ媒体の再生能力は、測
定した記録周波数領域でほぼ同等であり、図3に示すノ
イズ比較はそのままC/N比の比較に対応できる。実施
例1では全測定波長領域で顕著なノイズの低減が図られ
ており、本発明の効果が明かとなった。なおCo−Cr
膜に若干の不純物を添加した場合、およびCo−Ni−
Cr膜あるいはこれに若干の不純物を添加した膜につい
ても検討したところ、上記と同様の結果が得られた。
The medium obtained in Example 1 and Comparative Example 1 was slit into a magnetic tape medium, and a single frequency recording / reproduction was performed using a VTR deck. The relative moving speed between the magnetic tape and the magnetic head at this time was set to 3.8 m / s. The obtained noise spectrum is shown in FIG. The reproducing capacities of the magnetic tape media of Example 1 and Comparative Example 1 are almost the same in the measured recording frequency region, and the noise comparison shown in FIG. 3 can directly correspond to the C / N ratio comparison. In Example 1, remarkable noise reduction was achieved in all measurement wavelength regions, and the effect of the present invention was clarified. Co-Cr
When some impurities are added to the film, and when Co--Ni--
When a Cr film or a film obtained by adding a slight amount of impurities to the Cr film was also examined, the same results as above were obtained.

【0026】(実施例2)次に、CoおよびCrあるい
はCo,NiおよびCrを主成分とする第1の磁性層の
上にCoおよびOあるいはCo,NiおよびOを主成分
とする第2の磁性層が形成された媒体における本発明の
効果について述べる。図4は、図1と同様の高分子基板
1上のCo−Crの第1の磁性層2上にCo−Oの第2
の磁性層12が順次形成されて磁性膜13とした本発明
の媒体の構成例であり、記録再生時の磁気ヘッドと媒体
の相対移動方向における媒体の断面図を示すものであ
る。図2に示す連続蒸着装置を用いて耐熱性の高分子基
板1上に第1の磁性層2を形成した後、連続蒸着法によ
って第2の磁性層12を形成し、図4に示す媒体を作製
した。
(Embodiment 2) Next, on the first magnetic layer containing Co and Cr or Co, Ni and Cr as the main components, Co and O or the second component containing Co, Ni and O as the main components. The effects of the present invention in a medium having a magnetic layer formed thereon will be described. FIG. 4 shows the same Co—Cr second magnetic layer 2 on the polymer substrate 1 as in FIG.
3 is a structural example of the medium of the present invention in which the magnetic layer 12 is sequentially formed to form the magnetic film 13, and is a cross-sectional view of the medium in the relative movement direction of the magnetic head and the medium during recording and reproduction. After forming the first magnetic layer 2 on the heat-resistant polymer substrate 1 by using the continuous vapor deposition apparatus shown in FIG. 2, the second magnetic layer 12 is formed by the continuous vapor deposition method, and the medium shown in FIG. It was made.

【0027】まず第1の磁性層2の形成時の蒸発原子の
高分子基板1への入射角は法線方向に対して、φ1=8
0°,φ2=60°,φ3=35°,φ4=10°、また
磁化容易軸方向3の決定を担う下層の層厚は15nm、
上層の層厚は85nm、したがって第1の磁性層2の全
厚は100nmとした。上記条件により作製した第1の
磁性層2の磁化容易軸3が法線方向5となす角θ2は6
0°であった。また、柱状結晶粒の成長方向4が法線方
向5となす角θ1は20°であることが確認された。次
に、Co−Oからなる第2の磁性層12の作製は、第1
の磁性層2の作製に用いた連続蒸着装置のシールド11
を変更して蒸発原子の高分子基板1への入射角を初期入
射角60°から終期入射角20°の間に設定し、Coを
充填した蒸発源近傍に酸素を導入して反応蒸着により行
なった。第2の磁性層12の層厚は150nm、したが
って第1の磁性層2を含む全磁性層厚は250nmとし
た。第2の磁性層12の磁化容易軸方向14が法線方向
5となす角θ3は50°であった。この値は、第1の磁
性層2を介せずに直接高分子基板1上に形成した第2の
磁性層12のトルク測定による。
First, when the first magnetic layer 2 is formed, the incident angle of vaporized atoms to the polymer substrate 1 is φ 1 = 8 with respect to the normal direction.
0 °, φ 2 = 60 °, φ 3 = 35 °, φ 4 = 10 °, and the thickness of the lower layer responsible for determining the easy axis direction 3 is 15 nm,
The thickness of the upper layer was 85 nm, and thus the total thickness of the first magnetic layer 2 was 100 nm. The angle θ 2 formed by the easy magnetization axis 3 of the first magnetic layer 2 formed under the above conditions and the normal direction 5 is 6
It was 0 °. It was also confirmed that the angle θ 1 formed by the growth direction 4 of the columnar crystal grains and the normal direction 5 was 20 °. Next, the production of the second magnetic layer 12 made of Co—O
Of the continuous vapor deposition apparatus used for producing the magnetic layer 2 of
Is changed to set the incident angle of the vaporized atoms to the polymer substrate 1 between the initial incident angle of 60 ° and the final incident angle of 20 °, and oxygen is introduced into the vicinity of the Co-filled evaporation source to perform reactive vapor deposition. It was The layer thickness of the second magnetic layer 12 was 150 nm, and thus the total magnetic layer thickness including the first magnetic layer 2 was 250 nm. The angle θ 3 formed by the easy-axis direction 14 of the second magnetic layer 12 and the normal direction 5 was 50 °. This value is obtained by measuring the torque of the second magnetic layer 12 directly formed on the polymer substrate 1 without the first magnetic layer 2.

【0028】上記の第1の磁性層2上に法線方向5に対
して傾斜した方向に磁化容易軸方向14を有する第2の
磁性層12が形成された磁性膜13からなる媒体は、現
在注目されているCo−Cr,Co−Ni−Cr,Co
−O,Co−Ni−O等を主成分とする金属薄膜型媒体
の中でも、低密度記録領域から高密度記録領域まで特に
優れた記録再生特性を有する。実施例2の媒体において
は、第1の磁性層2で特に優れた記録再生特性を有す
る。実施例2の媒体おいては、第1の磁性層2のθ2
大きくして面内磁化成分の寄与を大きくすることによ
り、低記録密度領域での高再生出力が確保されるととも
に、高い記録再生効率の得られる帰属磁化モードが実現
されることによるものと考えられる。
A medium comprising a magnetic film 13 in which a second magnetic layer 12 having a direction 14 of easy axis of magnetization in a direction inclined with respect to the normal direction 5 is formed on the first magnetic layer 2 is currently used. Co-Cr, Co-Ni-Cr, and Co that have received attention
Among the metal thin film type media containing —O, Co—Ni—O, etc. as the main components, it has particularly excellent recording / reproducing characteristics from the low density recording area to the high density recording area. In the medium of Example 2, the first magnetic layer 2 has particularly excellent recording / reproducing characteristics. In the medium of Example 2, by increasing θ 2 of the first magnetic layer 2 to increase the contribution of the in-plane magnetization component, a high reproduction output in a low recording density region can be secured and a high reproduction output can be obtained. It is considered that this is due to the realization of the attribution magnetization mode in which the recording / reproducing efficiency is obtained.

【0029】この観点からθ2の値は、第2の磁性層1
2の磁化容易軸方向14が法線方向5となす角θ3より
も大きくする必要がある。また上記のような高い記録再
生効率の得られる記録磁化モードを実現するためには、
図5の磁気記録方法の説明図に示すように、媒体に対す
る磁気ヘッドの相対移動の向き15をリーディングエッ
ジ16近傍のヘッド磁界17方向が第2の磁性層12の
磁化容易軸方向14とほぼ一致する方向に設定すること
が好ましい。なお、図5において、18はヘッドギャッ
プ、19はトレイリングエッジである。
From this viewpoint, the value of θ 2 is determined by the second magnetic layer 1
It is necessary to make it larger than the angle θ 3 formed by the direction 14 of the easy axis of magnetization 2 and the normal direction 5. Further, in order to realize the recording magnetization mode in which high recording and reproducing efficiency as described above is obtained,
As shown in the explanatory view of the magnetic recording method of FIG. 5, the direction 15 of the relative movement of the magnetic head with respect to the medium is such that the direction of the head magnetic field 17 near the leading edge 16 is substantially the same as the direction 14 of the easy magnetization axis of the second magnetic layer 12. It is preferable to set in the direction. In FIG. 5, 18 is a head gap and 19 is a trailing edge.

【0030】(実施例2)実施例2の媒体作製に用いた
連続蒸着装置のシールド11を変更し、蒸発原子の高分
子基板への入射角が初期入射角80°から終期入射角3
0°の間でCo−Crからなる第1の磁性層を形成した
後、連続蒸着法によってCo−Oからなる第2の磁性層
を形成し作製した。第1の磁性層の層厚は実施例2の第
1の磁性層の全厚と同じ100nmとした。なお、第1
の磁性層作製時の成膜速度,容器内真空度,第1の磁性
層の飽和磁化等、上記以外の諸条件はすべて実施例2と
同じである。上記条件により作製した第1の磁性層のθ
2は60°,θ1は60°であった。すなわち、比較例1
と同様に、柱状結晶粒の成長方向が磁化容易軸方向とほ
ぼ一致しており、本発明の媒体構成とはなっていない。
第2の磁性層の作製は、実施例2と同じ条件で行なっ
た。
(Embodiment 2) The shield 11 of the continuous vapor deposition apparatus used for manufacturing the medium of Embodiment 2 is changed so that the incident angle of vaporized atoms to the polymer substrate is from the initial incident angle of 80 ° to the final incident angle of 3.
A first magnetic layer made of Co—Cr was formed between 0 °, and then a second magnetic layer made of Co—O was formed by a continuous vapor deposition method. The layer thickness of the first magnetic layer was 100 nm, which is the same as the total thickness of the first magnetic layer of Example 2. The first
The conditions other than the above, such as the film forming rate at the time of manufacturing the magnetic layer, the degree of vacuum in the container, the saturation magnetization of the first magnetic layer, etc., are all the same as in Example 2. Θ of the first magnetic layer produced under the above conditions
2 was 60 ° and θ 1 was 60 °. That is, Comparative Example 1
Similarly to the above, the growth direction of the columnar crystal grains substantially coincides with the easy axis of magnetization, and the medium structure of the present invention is not provided.
The second magnetic layer was manufactured under the same conditions as in Example 2.

【0031】(実施例3)実施例2の媒体作製に用いた
連続蒸着装置のシールド11を変更し、蒸発原子の高分
子基板への入射角が初期入射角35°から終期入射角1
0°の間でCo−Crからなる第1の磁性層を形成した
後、連続蒸着法によってCo−Oからなる第2の磁性層
を形成し作製した。第1の磁性層厚は実施例2の第1の
磁性層の全厚と同じ100nmとした。なお、第1の磁
性層作製時の成膜速度,容器内真空度,第1の磁性層の
飽和磁化等、上記以外の諸条件はすべて実施例2と同じ
である。上記条件により作製した第1の磁性層のθ2
10°、θ1は15°であった。第2の磁性層の作製
は、実施例2と同じ条件で行なった。すなわち比較例3
の第2の磁性層においては柱状結晶粒の成長方向が磁化
容易軸方向とほぼ一致しているほか、θ2が第2の磁性
層のθ3よりも顕著に小さくなっており、本発明の媒体
構成とはなっていない。
(Embodiment 3) The shield 11 of the continuous vapor deposition apparatus used for producing the medium of Embodiment 2 was changed so that the incident angle of vaporized atoms to the polymer substrate was from the initial incident angle of 35 ° to the final incident angle of 1.
A first magnetic layer made of Co—Cr was formed between 0 °, and then a second magnetic layer made of Co—O was formed by a continuous vapor deposition method. The thickness of the first magnetic layer was 100 nm, which is the same as the total thickness of the first magnetic layer of Example 2. The conditions other than the above, such as the film forming rate during the production of the first magnetic layer, the degree of vacuum in the container, and the saturation magnetization of the first magnetic layer, are the same as those in the second embodiment. The first magnetic layer produced under the above conditions had a θ 2 of 10 ° and a θ 1 of 15 °. The second magnetic layer was manufactured under the same conditions as in Example 2. That is, Comparative Example 3
In the second magnetic layer, the growth direction of the columnar crystal grains substantially coincides with the easy axis of magnetization, and θ 2 is significantly smaller than θ 3 of the second magnetic layer. It is not a medium structure.

【0032】(比較例4)耐熱性の高分子基板上にCo
−Oの単層の磁性層を形成した媒体を作製した。Co−
O単層の作製は、実施例2のCo−Crからなる第1の
磁性層の作製に用いた連続蒸着装置のシールド11を変
更して蒸発原子の基板への入射角を初期入射角60°か
ら終期入射角20°の間に設定し、Coを充填した蒸発
源近傍に酸素を導入して反応蒸着により行なった。Co
−O単層の層厚は実施例2の全磁性層厚と同じ250n
mとした。なお、Co−O単層作製時の成膜速度,容器
内真空度,磁性層の飽和磁化等、上記以外の諸条件はす
べて実施例2の第2の磁性層作製時と同じである。作製
したCo−O単層の磁化容易軸方向と法線方向とのなす
角θ3は50°であった。
(Comparative Example 4) Co on a heat-resistant polymer substrate
A medium having a single magnetic layer of —O was prepared. Co-
The O single layer was manufactured by changing the shield 11 of the continuous vapor deposition apparatus used for manufacturing the first magnetic layer made of Co—Cr in Example 2 to change the incident angle of vaporized atoms to the substrate to an initial incident angle of 60 °. The final incident angle was set to 20 °, and oxygen was introduced into the vicinity of the Co-filled evaporation source to carry out reactive vapor deposition. Co
The layer thickness of the -O single layer is 250 n, which is the same as the total magnetic layer thickness of Example 2.
m. The conditions other than the above, such as the film forming rate at the time of producing the Co—O single layer, the degree of vacuum in the container, and the saturation magnetization of the magnetic layer, are the same as those at the time of producing the second magnetic layer of the second embodiment. The angle θ 3 formed between the easy axis of magnetization and the normal direction of the manufactured Co—O single layer was 50 °.

【0033】実施例2および比較例2から4において得
られた媒体をスリットして磁気テープ媒体とし、VTR
デッキを用いた単一周波数の記録再生を行った。この際
の磁気テープと磁気ヘッド間の相対移動速度は3.8m
/sとした。得られた再生出力およびノイズの記録密度
特性を図(a),(b)に示す。
The media obtained in Example 2 and Comparative Examples 2 to 4 were slit into magnetic tape media, and VTR
Single-frequency recording / playback was performed using the deck. At this time, the relative moving speed between the magnetic tape and the magnetic head is 3.8 m.
/ S. The recording density characteristics of the obtained reproduction output and noise are shown in FIGS.

【0034】実施例2においては、測定した全記録周波
数領域において高出力特性かつ低ノイズ特性が実現され
ている。比較例2においては、実施例2と同等の高出力
を有するものの、第1の磁性層の1がθ1がθ2と同等程
度に大きく、本発明の構成を有していないために実施例
2に比べて顕著にノイズが高い。
In the second embodiment, high output characteristics and low noise characteristics are realized in all measured recording frequency regions. Comparative Example 2 has the same high output as that of Example 2, but the first magnetic layer 1 has θ 1 as large as θ 2 and does not have the constitution of the present invention. The noise is significantly higher than that of 2.

【0035】比較例3は、第1の磁性層のθ1が実施例
2と同等以上に小さいため、ノイズは実施例2同様に低
い値が実現されている。しかしながらθ2の値もθ1と同
等程度に小さくなっているため、第1の磁性層における
面内磁化成分の寄与が小さく、特に低記録密度領域で顕
著に再生出力が低くなっている。比較例3の構成の媒体
において、低記録密度領域における再生出力について
は、第1の磁性層の膜厚あるいは飽和磁化を大きくする
ことによって、ある程度補うことができる。最もこの場
合には、膜厚あるいは飽和磁化の増加に伴ってノイズも
増加するので、C/N比としては結局実施例2よりも悪
くなってしまう。また、磁性層厚を300nm程度以上
まで大きくすることは、VTRデッキでの走行性や磁気
ヘッドとの摺動におけるトライボロジー的な観点などか
ら実用的ではない。
[0035] Comparative Example 3, since the theta 1 of the first magnetic layer is less than equal to Example 2, the noise is similarly low values Example 2 is realized. However, since the value of θ 2 is as small as θ 1 , the contribution of the in-plane magnetization component in the first magnetic layer is small, and the reproduction output is remarkably low especially in the low recording density region. In the medium having the structure of Comparative Example 3, the reproduction output in the low recording density region can be compensated to some extent by increasing the film thickness or the saturation magnetization of the first magnetic layer. In this case, noise increases as the film thickness or the saturation magnetization increases, so that the C / N ratio eventually becomes worse than that in the second embodiment. Further, increasing the thickness of the magnetic layer to about 300 nm or more is not practical from the viewpoint of running property in the VTR deck and tribology in sliding with the magnetic head.

【0036】比較例4においては、図6に示した4つの
媒体の内で最も低いノイズが実現されているが、Co−
Crからなる第1の磁性層の面内磁化成分の寄与がない
ために、再生出力は比較例3にもまして低くなってい
る。
In Comparative Example 4, the lowest noise among the four media shown in FIG. 6 was realized.
Since there is no contribution of the in-plane magnetization component of the first magnetic layer made of Cr, the reproduction output is lower than in Comparative Example 3.

【0037】なお、第1の磁性層としてCo−Crに若
干の不純物を添加した場合、およびCo−Crの代わり
にCo−Ni−Crあるいはこれに若干の不純物を添加
した膜を用いた場合についても検討したところ、上記と
同様の結果が得られた。また、第2の磁性層としてCo
−Oに若干の不純物を添加した場合、およびCo−Oの
代わりにCo−Ni−Oあるいはこれに若干の不純物を
添加した場合についても検討したところ、やはり上記と
同様の結果が得られた。すなわち、CoおよびCrある
いはCo,NiおよびCrを主成分とする第1の磁性層
の上にCoおよびあるいはCo,NiおよびOを主成分
とする第2の磁性層が形成された媒体において、本発明
の効果が認められた。
The case where a slight amount of impurities was added to Co--Cr as the first magnetic layer, and the case where Co--Ni--Cr or a film obtained by adding a small amount of impurities thereto was used instead of Co--Cr was used. As a result of studying also, the same result as above was obtained. Further, as the second magnetic layer, Co
When the case of adding a small amount of impurities to —O and the case of adding Co—Ni—O or a small amount of impurities in place of Co—O were also examined, the same results as above were also obtained. That is, in a medium in which a second magnetic layer containing Co and / or Co, Ni and O as main components is formed on a first magnetic layer containing Co and Cr or Co, Ni and Cr as main components, The effect of the invention was recognized.

【0038】[0038]

【発明の効果】以上の説明から明らかなように本発明の
磁気記録媒体は、磁化容易軸が傾斜しCoおよびCrあ
るいはCo,NiおよびCrを主成分とする第1の磁性
層を含有する構成とすることによりノイズの低減による
C/N比の改善を実現したものである。
As is apparent from the above description, the magnetic recording medium of the present invention has a structure in which the easy axis of magnetization is inclined and contains the first magnetic layer containing Co and Cr or Co, Ni and Cr as the main components. As a result, the C / N ratio is improved by reducing the noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における磁気記録媒体の模式
断面図
FIG. 1 is a schematic cross-sectional view of a magnetic recording medium according to an embodiment of the present invention.

【図2】本発明の一実施例における磁気記録媒体の製造
装置の概略図
FIG. 2 is a schematic diagram of a magnetic recording medium manufacturing apparatus according to an embodiment of the present invention.

【図3】ノイズの記録密度特性の一例を示す図FIG. 3 is a diagram showing an example of noise recording density characteristics.

【図4】本発明の第2の実施例における磁気記録媒体の
模式断面図
FIG. 4 is a schematic sectional view of a magnetic recording medium according to a second embodiment of the invention.

【図5】同磁気記録媒体への記録方法を説明する図FIG. 5 is a diagram illustrating a recording method on the magnetic recording medium.

【図6】(a)は再生出力の記録密度特性の一例を示す
図 (b)はノイズの記録密度特性の他の例を示す図
FIG. 6A is a diagram showing an example of a recording density characteristic of reproduction output, and FIG. 6B is a diagram showing another example of a recording density characteristic of noise.

【符号の説明】[Explanation of symbols]

1 高分子基板(非磁性基板) 2 第1の磁性層 2a 下層 2b 上層 3,14 磁化容易軸方向 4 成長方向 5 法線方向 9 円筒状ローラ 10 蒸発源 12 第2の磁性層 13 磁性膜 1 Polymer Substrate (Non-Magnetic Substrate) 2 First Magnetic Layer 2a Lower Layer 2b Upper Layer 3,14 Easy Magnetization Axis Direction 4 Growth Direction 5 Normal Direction 9 Cylindrical Roller 10 Evaporation Source 12 Second Magnetic Layer 13 Magnetic Film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川分 康博 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Kawabun 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板とその非磁性基板上に直接ま
たは下地層を介して形成されたCoおよびCrまたはC
o,NiおよびCrを主成分とする第1の磁性層を含有
する磁性膜とからなり、前記第1の磁性層の磁化容易軸
方向が前記非磁性基板の法線方向に対して傾斜した方向
にあり、前記第1の磁性層を構成する柱状結晶粒の成長
方向と前記法線方向とのなす角が前記磁化容易軸方向と
前記法線方向とのなす角よりも小さいことを特徴とする
磁気記録媒体。
1. A non-magnetic substrate and Co and Cr or C formed on the non-magnetic substrate directly or via an underlayer.
a magnetic film containing a first magnetic layer containing o, Ni and Cr as main components, and a direction in which an easy axis of magnetization of the first magnetic layer is inclined with respect to a normal direction of the non-magnetic substrate. And the angle formed by the growth direction of the columnar crystal grains forming the first magnetic layer and the normal direction is smaller than the angle formed by the easy magnetization axis direction and the normal direction. Magnetic recording medium.
【請求項2】 第1の磁性層の上にCoおよびOまたは
Co,NiおよびOを主成分とする第2の磁性層が形成
され、その第2の磁性層の磁化容易軸方向が非磁性基板
の法線方向に対して傾斜した方向にあることを特徴とす
る請求項1記載の磁気記録媒体。
2. A second magnetic layer containing Co and O or Co, Ni and O as a main component is formed on the first magnetic layer, and the easy magnetization axis direction of the second magnetic layer is nonmagnetic. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is in a direction inclined with respect to a normal line direction of the substrate.
【請求項3】 第2の磁性層の磁化容易軸方向と非磁性
基板の法線方向とのなす角が第1の磁性層の磁化容易軸
方向と前記法線方向とのなす角よりも小さいことを特徴
とする請求項2記載の磁気記録媒体。
3. The angle between the easy axis of magnetization of the second magnetic layer and the normal direction of the non-magnetic substrate is smaller than the angle between the easy axis of magnetization of the first magnetic layer and the normal direction. The magnetic recording medium according to claim 2, wherein:
【請求項4】円筒状キャンの円周面上に沿って走行する
長尺の高分子基板上に直接または下地層を介してCoと
CrまたはCoとNiとCrを主成分とする第1の磁性
層を真空蒸着法により形成する際、前記第1の磁性層を
構成する蒸発原子前記高分子基板の法線方向に対して5
0°以上の角度をなす方向に入射して下層を形成した後
その上に前記蒸発原子を前記法線方向に対して45°以
下の角度をなす方向に入射して上層を形成し、かつ前記
下層の層厚を前記第1の磁性層の層厚の20%以下とす
ることを特徴とする磁気記録媒体の製造方法。
4. A first polymer containing Co and Cr or Co, Ni and Cr as main components on a long polymer substrate which runs along the circumferential surface of a cylindrical can, either directly or through an underlayer. When the magnetic layer is formed by the vacuum deposition method, the evaporation atom forming the first magnetic layer is 5 with respect to the normal direction of the polymer substrate.
The lower layer is formed by being incident in a direction making an angle of 0 ° or more, and then the vaporized atoms are made incident on the lower layer in a direction making an angle of 45 ° or less with respect to the normal direction to form an upper layer, and A method of manufacturing a magnetic recording medium, wherein the lower layer has a thickness of 20% or less of the layer thickness of the first magnetic layer.
JP31896391A 1991-12-03 1991-12-03 Magnetic recording medium and its production thereof Pending JPH05159268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31896391A JPH05159268A (en) 1991-12-03 1991-12-03 Magnetic recording medium and its production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31896391A JPH05159268A (en) 1991-12-03 1991-12-03 Magnetic recording medium and its production thereof

Publications (1)

Publication Number Publication Date
JPH05159268A true JPH05159268A (en) 1993-06-25

Family

ID=18104951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31896391A Pending JPH05159268A (en) 1991-12-03 1991-12-03 Magnetic recording medium and its production thereof

Country Status (1)

Country Link
JP (1) JPH05159268A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100458924C (en) * 2005-07-26 2009-02-04 株式会社东芝 Perpendicular magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording apparatus comprising magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100458924C (en) * 2005-07-26 2009-02-04 株式会社东芝 Perpendicular magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording apparatus comprising magnetic recording medium

Similar Documents

Publication Publication Date Title
JP2524514B2 (en) Magnetic recording media
JPH11250437A (en) Magnetic recording medium and magnetic recording and reproducing system
JPH05159268A (en) Magnetic recording medium and its production thereof
JPH11328645A (en) Method for reproducing magnetic recording medium
JP2988188B2 (en) Magnetic recording medium and method of manufacturing the same
JPH0612649A (en) Magnetic recording medium
JPH08129736A (en) Magnetic recording medium
JP3248700B2 (en) Magnetic recording media
JPH0581967B2 (en)
JPH03178028A (en) Magnetic recording medium
JP2515756B2 (en) Method of manufacturing magnetic recording medium
JPH05159269A (en) Magnetic recording medium and its production
JPH1041134A (en) Magnetic recording medium and its manufacturing method
JP2004326888A (en) Magnetic recording medium
JPH0512647A (en) Magnetic recording medium
JP4174998B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPH0562146A (en) Magnetic recording medium and its manufacture and magnetic recording method to magnetic recording medium
JPH07122931B2 (en) Perpendicular magnetic recording medium
JPH05342551A (en) Magnetic recording medium and its production
JPH01173312A (en) Magnetic recording medium
JPH0823929B2 (en) Perpendicular magnetic recording media
JPH04269814A (en) Perpendicular magnetic recording medium
Ohta et al. Recording and reproducing properties of magnetic tape by high incidence angle nucleation method
JPH04258809A (en) Magnetic recording medium and manufacture thereof and magnetic recording method thereto
JPH06111272A (en) Magnetic recording medium and its manufacture