JPH05158094A - Nonlinear optical material - Google Patents

Nonlinear optical material

Info

Publication number
JPH05158094A
JPH05158094A JP34891791A JP34891791A JPH05158094A JP H05158094 A JPH05158094 A JP H05158094A JP 34891791 A JP34891791 A JP 34891791A JP 34891791 A JP34891791 A JP 34891791A JP H05158094 A JPH05158094 A JP H05158094A
Authority
JP
Japan
Prior art keywords
thin film
barrier layer
diffusion barrier
dispersed
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34891791A
Other languages
Japanese (ja)
Inventor
Tadao Katsuragawa
忠雄 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP34891791A priority Critical patent/JPH05158094A/en
Publication of JPH05158094A publication Critical patent/JPH05158094A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the heat stability of the material by providing a diffusion barrier layer in the superfine grain dispersed thin film. CONSTITUTION:A diffusion barrier layer is provided in the superfine grain dispersed thin film contg. a semiconductor and/or fine metallic grain. This thin film contains the semiconductor and/or metallic grain having the diameter in the quantum size effect range, preferably <=100Angstrom diameter, in its matrix. The barrier layer is formed in the thin film, for example, by forming a diffusion barrier layer on the superfine grain dispersed thin film and further forming a diffusion barrier layer on the barrier layer. Although one or multiple barrier layers can be formed, the thickness of one layer is preferably controlled to several to 50Angstrom so that the nonlinear characteristic is not deteriorated. The metal silicide, TiN, TiW the nitride, carbide, boride, etc., of transition metals, etc., which are chemically stable and have a high barrier effect are used as the material for the barrier layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明の非線形光学材料は、薄膜として光
双安定素子、光ゲート光スイッチ、波長変換素子等の分
野に用いられる。
TECHNICAL FIELD The non-linear optical material of the present invention is used as a thin film in the fields of optical bistable elements, optical gate optical switches, wavelength conversion elements and the like.

【0002】[0002]

【従来技術】非線形光学薄膜の従来技術としては、従来
透明な絶縁物(例えばアモルファスAl23やアモルフ
ァスSiO2)中に100Å以下の半導体超微粒子〔C
dS,CdSe,CuCl,GaAl,ZnSe,In
Sb,InP,CdTe,CdSxSey(y=1−
x)等〕や金属超微粒子(Au,Ag等)が分散された
ものが用いられた。しかし、従来の超微粒子分散薄膜は
加熱すると粒径が大きくなるという基本的欠点を有して
いた。本来粒径は制御されて作製されており、これによ
り非線形光学特性が出現していた。しかし熱による粒径
安定性が悪く、くり返し使用に対して問題があった。す
なわち、従来の超微粒子分散薄膜は、粒子サイズを制御
するのに基板加熱による方法がとられたが、これは膜中
のマトリックス中に分散している粒子が原子の拡散によ
って集合し大きくなることを意味している。従って、こ
れらの膜は作製直後は粒径を制御できるが、長期の熱安
定性が劣ることを意味する。
2. Description of the Related Art As a conventional technique of a nonlinear optical thin film, semiconductor ultrafine particles having a particle size of 100 Å or less in a transparent insulator (eg, amorphous Al 2 O 3 or amorphous SiO 2 ) [C
dS, CdSe, CuCl, GaAl, ZnSe, In
Sb, InP, CdTe, CdSxSey (y = 1−
x) etc.] or metal ultrafine particles (Au, Ag, etc.) dispersed therein were used. However, the conventional ultrafine particle-dispersed thin film has a basic defect that the particle size increases when heated. Originally, the particle size was controlled and produced, and this led to the appearance of nonlinear optical characteristics. However, the particle size stability due to heat was poor, and there was a problem with repeated use. That is, in the conventional ultrafine particle-dispersed thin film, the method of heating the substrate was used to control the particle size. This is because the particles dispersed in the matrix in the film are aggregated by the diffusion of atoms and become large. Means Therefore, the particle size of these films can be controlled immediately after production, but it means that the long-term thermal stability is poor.

【0003】[0003]

【目的】本発明は前記のような従来技術の欠点をなく
し、熱安定性にすぐれた超微粒子分散薄膜よりなる非線
形光学材料の提供を目的とする。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a non-linear optical material comprising an ultrafine particle dispersed thin film having excellent thermal stability.

【0004】[0004]

【構成】本発明は三次元の閉込め効果によって電子や励
起子が0次元的挙動を示す、いわゆる量子サイズ効果を
示す非線形光学材料に関するものである。
The present invention relates to a non-linear optical material exhibiting a so-called quantum size effect in which electrons and excitons exhibit zero-dimensional behavior due to a three-dimensional confinement effect.

【0005】ここで非線形光学効果とは、物質に光を照
射すると、その物質の吸収係数や屈折率等の光学特性が
光の強度に応じて変化する現象であり、これを利用する
ことによって光の制御が可能になり、入出力に光のみを
使用する全光型の論理素子を実現できる。
Here, the non-linear optical effect is a phenomenon in which, when a substance is irradiated with light, the optical characteristics such as the absorption coefficient and the refractive index of the substance change according to the intensity of the light. Can be controlled, and an all-optical logic element that uses only light for input and output can be realized.

【0006】また、量子サイズ効果とは、可視光領域で
透明なガラス中に埋め込まれた半導体粒子の電子と正孔
は、ガラスの作る深いポテンシャルによって三次元的に
閉じ込められるが、電子を波動のように考えるならば、
小さい箱の中では波動様式は特定のものに制限されてし
まうので、電子状態は離散的になり振動子強度や非線形
感受率が増大する。
The quantum size effect means that the electrons and holes of semiconductor particles embedded in transparent glass in the visible light region are three-dimensionally confined by the deep potential created by the glass. If you think
In a small box, the wave pattern is limited to a specific one, so the electronic states become discrete and the oscillator strength and nonlinear susceptibility increase.

【0007】この微粒子分散ガラスの量子サイズ効果は
最近(7〜8年前)になって見出され、注目されるよう
になったものであり、絶縁物例えばガラス中に100Å
以下の半導体微粒子を分散させたものである。
The quantum size effect of this fine particle-dispersed glass has recently been discovered (7 to 8 years ago) and has come to the forefront, and 100 Å in an insulating material such as glass.
The following semiconductor fine particles are dispersed.

【0008】これらの技術的事項は、たとえば〔JAP
ANESE JOURNAL OFAPPLIED P
HYSICS,28巻,10号,1928−1933
頁〕および「光学、第19巻、第1号(1990年1
月)10−16頁」に具体的に説明されている。
These technical matters are described in, for example, [JAP
ANESE JOURNAL OFAPPLIED P
HYSICS, Volume 28, No. 10, 1928-1933.
P.] And "Optics, Vol. 19, No. 1 (1990, 1
Mon) 10-16 ”.

【0009】本発明は、従来の熱に対する超微粒子の粒
径の不安定性は微粒子の原子がマトリックス中を拡散し
て集合するため、あるいはマトリックス中に分散してい
た原子によるものと思われる。たとえば、SiO2中を
Al原子が拡散することは、良く知られている現象であ
る。本発明は、超微粒子の原因となると思われる原子の
拡散防止のため、拡散バリア層を超微粒子分散薄膜中に
設けて上記欠点を解決したことを特徴とする。該バリア
層は、前記原子の拡散機能を有するものであれば任意の
方向に設けることができ、例えば縦方向に設けたもので
あってもよい。本発明で拡散バリア層が設けられる超微
粒子分散薄膜としては、量子サイズ効果の範囲の粒径、
好ましくは100Å以下の粒径を有する半導体および/
または金属微粒子をマトリックス中に含有するものであ
る。拡散バリア層を超微粒子分散薄膜中に形成させる方
法としては、たとえば超微粒子分散薄膜上に拡散バリア
層を形成し、該バリア層上にさらに超微粒子分散薄膜を
形成する方法が挙げられるが、該バリア層は1層のみで
なく何層設けてもよいが、一層の厚みは非線形特性を劣
化させないように数Å〜50Åが好ましい。また、バリ
ア層を形成する材料としては、化学的に安定でバリア効
果の高い、金属シリサイド(例えばTi,V,Cr,Z
r,Nb,Mo,Hf,Ta,W等、IVA,VA,VIA
族元素のシリサイド)やTiN,TiW,その他遷移金
属の窒化物、炭化物、ホウ化物等を用いるのが好まし
い。本発明において、超微粒子分散薄膜とバリア層の製
膜法としても特に制限はなく、PVDおよびCVDの両
方が使用し得るが、超微粒子分散薄膜の形成法として
は、結晶化が良好なイオンビームスパッタ法が好まし
い。また、その膜厚も特に限定されないが、100Å〜
1μmが適当である。超微粒子分散薄膜とバリア層の合
計した厚さは、透明性等を考慮して任意に決めることが
できるが、例えば1μm程度が好ましい。
In the present invention, it is considered that the conventional instability of the particle diameter of the ultrafine particles due to heat is due to the atoms of the fine particles diffusing and assembling in the matrix, or due to the atoms dispersed in the matrix. For example, the diffusion of Al atoms in SiO 2 is a well known phenomenon. The present invention is characterized in that a diffusion barrier layer is provided in an ultrafine particle-dispersed thin film in order to prevent the diffusion of atoms, which are considered to be the cause of ultrafine particles, to solve the above-mentioned drawbacks. The barrier layer may be provided in any direction as long as it has a function of diffusing the atoms, and may be provided in the vertical direction, for example. The ultrafine particle-dispersed thin film provided with the diffusion barrier layer in the present invention has a particle size in the range of the quantum size effect,
Preferably a semiconductor having a particle size of 100Å or less and /
Alternatively, the metal fine particles are contained in the matrix. Examples of the method of forming the diffusion barrier layer in the ultrafine particle dispersed thin film include a method of forming a diffusion barrier layer on the ultrafine particle dispersed thin film and further forming an ultrafine particle dispersed thin film on the barrier layer. The barrier layer may be provided not only in one layer but in any number of layers, but the thickness of one layer is preferably several Å to 50Å so as not to deteriorate the nonlinear characteristics. As a material for forming the barrier layer, a metal silicide (for example, Ti, V, Cr, Z) that is chemically stable and has a high barrier effect is used.
r, Nb, Mo, Hf, Ta, W, etc., IVA, VA, VIA
It is preferable to use silicide of group elements), TiN, TiW, nitrides of other transition metals, carbides, borides, or the like. In the present invention, the method for forming the ultrafine particle-dispersed thin film and the barrier layer is not particularly limited, and both PVD and CVD can be used. However, as a method for forming the ultrafine particle-dispersed thin film, an ion beam with good crystallization is used. The sputtering method is preferred. The film thickness is also not particularly limited, but 100 Å ~
1 μm is suitable. The total thickness of the ultrafine particle dispersed thin film and the barrier layer can be arbitrarily determined in consideration of transparency and the like, but is preferably about 1 μm, for example.

【0010】超微粒子分散薄膜およびバリア層が形成さ
れる基板としては、可視光に透明であればその材質に特
に制限はなく、ガラス、石英あるいはポリカーボネー
ト、ポリエステル等のプラスチックがあげられる。
The substrate on which the ultrafine-particle-dispersed thin film and the barrier layer are formed is not particularly limited as long as it is transparent to visible light, and glass, quartz, or plastic such as polycarbonate or polyester can be used.

【0011】[0011]

【実施例】 実施例1 RFスパッタ法を用いて石英基板上に約200Å厚の透
明薄膜を作製した。 ターゲット SiO2の上にAuのチップ
を置いた 導入ガス Ar(99.999%) 導入ガス圧力 5×10-3 Torr 石英基板温度 150〜300℃ ベースプレッシャー 8×10-7 Torr ターゲット−基板間距離 50mm 高周波電力 200〜300W 上記に示したように、石英基板温度と高周波電力を変化
させて3種類の膜とした。これらの膜の上につづいて次
の条件でTiNの層を作製した。厚みは約20Åとし
た。 ターゲット Ti(99.99%) 導入ガス Ar+N2(1:1) 導入ガス圧力 3×10-4 Torr 石英基板温度 300℃ ベースプレッシャー 5×10-7 Torr ターゲット−基板間距離 50mm 高周波電力 200W ついで上記2つの透明薄膜とTiNの膜を同様にして6
層づつ積層し、約1300Åの薄膜を得た。X線回折法
で調べたところ、AuとTiNの微小回折ピークが観察
された。断面TEM法で調べたところ、Auの微粒子径
は18Å、26%、39%であった。これら3種類の薄
膜を、常温で分光光度計を用いて調べた光学吸収端の測
定結果から高エネルギーシフト(ブルーシフト)が認め
られ、その大きさは、微粒子の平均粒径の2乗に比例
し、量子サイズ効果を示した。膜を450℃の炉の中に
30分入れた後でも粒子径や量子サイズ効果に変化はな
かった。 比較例1 RFスパッタ法を用いて実施例1と全く同様にして約1
500Å厚の透明薄膜を作製した。この場合、TiN層
は設けなかった。各試料の平均粒径は、20Å、26
Å、37Åで実施例とほぼ同じであった。X線回折とT
EM法から薄膜は実施例と同様にSiOxのアモルファ
ス膜であった。光学吸収端の測定結果から実施例1と同
様のブルーシフトが認められた。しかし、450℃の炉
の中に30分入れた後では粒子径が約10Åづつ増大
し、吸収端のエネルギーが移動しブルーシフトは減少し
た。
Example 1 A transparent thin film having a thickness of about 200 Å was formed on a quartz substrate by using the RF sputtering method. Introduced gas Ar (99.999%) with introduced Au chip on target SiO 2 Introduced gas pressure 5 × 10 −3 Torr Quartz substrate temperature 150 to 300 ° C. Base pressure 8 × 10 −7 Torr Target-substrate distance 50 mm high frequency power 200 to 300 W As described above, the quartz substrate temperature and the high frequency power were changed to form three types of films. Then, a TiN layer was formed on these films under the following conditions. The thickness was about 20Å. Target Ti (99.99%) Introduced gas Ar + N 2 (1: 1) Introduced gas pressure 3 × 10 −4 Torr Quartz substrate temperature 300 ° C. Base pressure 5 × 10 −7 Torr Target-substrate distance 50 mm High frequency power 200 W 2 transparent thin films and TiN film
Layer by layer, about 1300Å thin film was obtained. When examined by an X-ray diffraction method, minute diffraction peaks of Au and TiN were observed. When examined by a cross-sectional TEM method, the fine particle diameter of Au was 18Å, 26% and 39%. A high energy shift (blue shift) was observed from the measurement results of the optical absorption edge of these three types of thin films examined at room temperature using a spectrophotometer, and the size is proportional to the square of the average particle size of the fine particles. And showed the quantum size effect. There was no change in particle size or quantum size effect after the film was placed in a 450 ° C. oven for 30 minutes. Comparative Example 1 The RF sputtering method was performed in the same manner as in Example 1 to obtain about 1
A 500 Å thick transparent thin film was prepared. In this case, no TiN layer was provided. The average particle size of each sample is 20Å, 26
Å and 37Å were almost the same as in the example. X-ray diffraction and T
From the EM method, the thin film was an amorphous film of SiOx as in the example. From the measurement result of the optical absorption edge, the same blue shift as in Example 1 was recognized. However, after being placed in a furnace at 450 ° C for 30 minutes, the particle size increased by about 10Å, the energy at the absorption edge moved, and the blue shift decreased.

【0012】[0012]

【効果】本発明は、超微粒子の原子の拡散防止のための
バリア層を超微粒子分散非線形光学薄膜中に設けたの
で、超微粒子が熱吸収等により粒径が大きくなることを
防止でき、非線形光学材料として安定した性能を維持で
きる。
[Effects] According to the present invention, since the barrier layer for preventing the diffusion of the atoms of the ultrafine particles is provided in the ultrafine particle-dispersed nonlinear optical thin film, it is possible to prevent the ultrafine particles from increasing in particle size due to heat absorption and the like. Stable performance can be maintained as an optical material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体及び/または金属の超微粒子がマ
トリックス中に含有される超微粒子分散薄膜において、
該超微粒子分散薄膜中に超微粒子の粒径の変動の原因と
なる原子の拡散を防止する拡散バリア層が設けられてい
ることを特徴とする超微粒子分散薄膜からなる非線形光
学材料。
1. An ultrafine particle dispersed thin film in which ultrafine particles of a semiconductor and / or a metal are contained in a matrix,
A nonlinear optical material comprising an ultrafine particle-dispersed thin film, wherein a diffusion barrier layer for preventing the diffusion of atoms, which causes variation in the particle size of the ultrafine particles, is provided in the ultrafine particle-dispersed thin film.
【請求項2】 拡散バリア層が複数層設けられているこ
とを特徴とする請求項1記載の非線形光学材料。
2. The nonlinear optical material according to claim 1, wherein a plurality of diffusion barrier layers are provided.
JP34891791A 1991-12-05 1991-12-05 Nonlinear optical material Pending JPH05158094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34891791A JPH05158094A (en) 1991-12-05 1991-12-05 Nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34891791A JPH05158094A (en) 1991-12-05 1991-12-05 Nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH05158094A true JPH05158094A (en) 1993-06-25

Family

ID=18400258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34891791A Pending JPH05158094A (en) 1991-12-05 1991-12-05 Nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH05158094A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599609A (en) * 1993-06-01 1997-02-04 Matsushita Electric Industrial Co., Ltd. Nonlinear optical material and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599609A (en) * 1993-06-01 1997-02-04 Matsushita Electric Industrial Co., Ltd. Nonlinear optical material and method of producing the same

Similar Documents

Publication Publication Date Title
Magruder III et al. Non-linear optical properties of nanometer dimension Ag Cu particles in silica formed by sequential ion implantation
Kaiser Review of the fundamentals of thin-film growth
Chiu et al. Fabrication and nonlinear optical properties of nanoparticle silver oxide films
Khan et al. Thermal annealing effect of on optical constants of vacuum evaporated Se75S25− xCdx chalcogenide thin films
JPH11322413A (en) Light-transmissive film, high resistivity transparent electroconductive film, sputtering target for forming light-transmissive film and production of the electroconductive film
Halenkovič et al. Amorphous Ge‐Sb‐Se thin films fabricated by co‐sputtering: Properties and photosensitivity
US5113473A (en) Nonlinear, optical thin-films and manufacturing method thereof
Zhou et al. Linear and ultrafast nonlinear optical response of Ag: Bi 2 O 3 composite films
EP3356869B1 (en) Nano bi-material electromagnetic spectrum shifter
Sahoo et al. Influence of top layer on the linear and nonlinear optical parameters of Ag (Te)/As 50 Se 50 bilayer thin films
Amin et al. The radiation effect on optical and morphological properties of Ag–As–Te thin films
TWI263687B (en) Sputtering target, optical information recording medium and process for producing the same
JPH05158094A (en) Nonlinear optical material
Chung et al. Effect of low energy oxygen ion beam on optical and electrical characteristics of dual ion beam sputtered SnO2 thin films
JP2002075864A (en) Method for forming polycrystalline silicon
JPH04281433A (en) Superfine particle dispersion thin film
Pawlewicz et al. Reactively sputtered optical coatings for use at 1064 nm
JP2764539B2 (en) Method for producing thermochromic material
JPH05224262A (en) Nonlinear optical material
JPH07114048A (en) Nonlinear optical material
JP2011021237A (en) Transparent conductive film and method for forming the same
JP4126372B2 (en) Solar panel and manufacturing method thereof
JP2945258B2 (en) Manufacturing method of nonlinear optical material
JPH07270837A (en) Superfine particle dispersed thin film and its production
JPH04338733A (en) Nonlinear optical material containing superfine particle of quasi-crystal