JPH05158079A - Optical deflecting element - Google Patents
Optical deflecting elementInfo
- Publication number
- JPH05158079A JPH05158079A JP34880791A JP34880791A JPH05158079A JP H05158079 A JPH05158079 A JP H05158079A JP 34880791 A JP34880791 A JP 34880791A JP 34880791 A JP34880791 A JP 34880791A JP H05158079 A JPH05158079 A JP H05158079A
- Authority
- JP
- Japan
- Prior art keywords
- optical medium
- heating element
- value
- optical
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【産業上の利用分野】本発明は、光ディスクプレーヤ、
光通信用スイッチやレーザープリンタ等に用いられ、入
射する光を偏向する光偏向素子に関する。BACKGROUND OF THE INVENTION The present invention relates to an optical disc player,
The present invention relates to an optical deflector used for an optical communication switch, a laser printer, etc. to deflect incident light.
【従来の技術】図4に光偏向素子の概略構成を示す。同
図は、光偏向素子の概略外観斜視図である。また、図5
は図4に示す光学媒体の材質の特性を示す表である。図
4に示す光偏向素子1は、ソーダガラス、ニオブ酸リチ
ウム、ルチル等からなる板状の光学媒体2と、この図示
上面に形成された単一のヒーター3とを備えたもので、
このヒーター3には直流または交流の電源4が接続され
ている。以上の構成では、ヒーター3への通電による発
熱により光学媒体2の厚み方向で温度勾配を生ずる。こ
の温度勾配に伴って光学媒体2には熱光学効果が生じて
屈折率勾配が生ずる。この屈折率勾配により図示左端面
からの入射光5は偏向されることになる。2. Description of the Related Art FIG. 4 shows a schematic structure of a light deflection element. The figure is a schematic external perspective view of the light deflection element. Also, FIG.
4 is a table showing characteristics of materials of the optical medium shown in FIG. The light deflection element 1 shown in FIG. 4 is provided with a plate-shaped optical medium 2 made of soda glass, lithium niobate, rutile, etc., and a single heater 3 formed on the upper surface of the figure.
A DC or AC power source 4 is connected to the heater 3. In the above configuration, a temperature gradient is generated in the thickness direction of the optical medium 2 due to heat generated by energizing the heater 3. With this temperature gradient, a thermo-optical effect is generated in the optical medium 2 and a refractive index gradient is generated. The incident light 5 from the left end surface in the figure is deflected by this refractive index gradient.
【発明が解決しようとする課題】ところで、前記材質か
らなる光学媒体2の場合、異常光の屈折率neは図5に
示すように2.2乃至2.865の範囲であり、また、
その温度変化に対する屈折率の変化(δn/δT(×1
0- 5))は、ソーダガラスが1乃至1.5、ニオブ酸リ
チウムが5.3、ルチルが−7.2である。ところが、
このような材質を用いた場合における偏向角度はいずれ
も1°程度であり、このような光偏向素子1を光ディス
クプレーヤ、光通信用スイッチやレーザープリンタ等に
応用しようとしても、偏向角度が小さいために実用化を
考えた場合には問題がある。そこで本発明は、異常光の
偏向角度が大きな光偏向素子を提供することを目的とす
る。By the way, in the case of the optical medium 2 made of the above-mentioned material, the refractive index ne of extraordinary light is in the range of 2.2 to 2.865 as shown in FIG.
Change in refractive index with respect to temperature change (δn / δT (× 1
0 - 5)), the soda glass is 1 to 1.5, lithium niobate is 5.3, rutile is -7.2. However,
The deflection angles in the case of using such a material are all about 1 °, and even if such an optical deflection element 1 is applied to an optical disc player, an optical communication switch, a laser printer, etc., the deflection angle is small. There is a problem when considering practical application. Therefore, it is an object of the present invention to provide a light deflection element having a large deflection angle of abnormal light.
【課題を解決するための手段】上記の目的を達成するた
めの請求項1記載の本発明の構成は、通電により発熱す
る発熱体と、この発熱体の発熱により入射光の偏向角度
を変化させる光学媒体を備えた光偏向素子において、前
記光学媒体をSrxBa1 - xNb2O6により形成ししてい
る。同目的を達成するための請求項2記載の本発明の構
成は、請求項1記載のxの値をほぼ0.25≦x≦0.
5の範囲としている。In order to achieve the above-mentioned object, the structure of the present invention according to claim 1 changes the deflection angle of incident light by a heating element that generates heat by energization and the heating of this heating element. in the optical deflecting element including an optical medium, said optical medium Sr x Ba 1 - is formed by x Nb 2 O 6. According to a second aspect of the present invention for achieving the same object, the value of x described in the first aspect is approximately 0.25 ≦ x ≦ 0.
The range is 5.
【作用】上記請求項1によれば、本発明の光偏向素子
は、光学媒体として温度に対する異常光の屈折率の大き
なSrxBa1 - xNb2O6が使用されているので、光の偏
向角度を大きくすることができる。すなわち本発明によ
る光偏向素子によれば、発熱体の発熱によりSrxBa1
- xNb2O6からなる光学媒体の厚み方向に温度勾配が生
じると、この光学媒体には温度勾配に伴って大きな熱光
学効果が生じるので、屈折率勾配が大きくなるため異常
光の偏向角度を大きく設定できる。また請求項2によれ
ば、SrxBa1 - xNb2O6のxの値をほぼ0.25≦x
≦0.5の範囲としたので、通常の使用環境温度では強
誘電体性結晶から常誘電性結晶への変態を生じさせるこ
とがないため、安定した動作を行なわせることができ
る。According to the above claim 1, the light deflector of the present invention, the refractive index of extraordinary light with respect to a temperature larger Sr x Ba 1 as an optical medium - so x Nb 2 O 6 is used, the light The deflection angle can be increased. That is, according to the optical deflector of the present invention, the heat generated by the heating element causes Sr x Ba 1
- x when the temperature gradient in the thickness direction of the optical medium results consisting of Nb 2 O 6, the deflection angle of the so large thermo-optic effect with the temperature gradient in the optical medium occurs, abnormal light for refractive index gradient is increased Can be set large. According to claim 2, Sr x Ba 1 - x Nb 2 O 6 in x approximately 0.25 ≦ x the value of
Since the range of ≦ 0.5 is set, the ferroelectric crystal does not transform into the paraelectric crystal at a normal operating environment temperature, and thus stable operation can be performed.
【実施例】以下、本発明について図面を参照して説明す
る。図1は光偏向素子の一実施例を示す概略斜視図、図
2はSrxBa1 - xNb2O6のxをパラメータとしたとき
の屈折率と温度との関係を示す特性図である。図1に示
す光偏向素子10は、固溶組成領域を持つ強誘電体性結
晶であるSrxBa1 - xNb2O6からなる板状の光学媒体
11と、この図示上面にスパッタリング等により形成さ
れたタンタル,アルミニウム等からなる発熱体12とを
備えたもので、この発熱体12には直流または交流の電
源13が接続されている。このような構成では、発熱体
12の発熱によって光学媒体11の厚み方向で温度勾配
が生じ、この温度勾配により屈折率勾配が生ずる。この
屈折率勾配によって、入射光14の異常光は図示上向き
a軸方向に偏向されて出力される。ところで、本実施例
ではSrxBa1 - xNb2O6からなる光学媒体11のxの
値をほぼ0.25≦x≦0.5の範囲としている。この
ような範囲にxの値を設定するのは、xの値をほぼ0.
25に設定したときのSrxBa1 - xNb2O6のキューリ
ー温度が200℃であり、xの値をほぼ0.5に設定し
た場合のキューリー温度は130℃であるから、通常の
使用環境温度(たとえば発熱体の発熱時の温度)では強
誘電体性結晶から常誘電性結晶への変態を生じさせるこ
とがないからである。また、xの値が0.25未満では
SrxBa1 - xNb2O6の結晶を得がたい。従って、この
ような範囲にxを設定することで、安定した動作を行な
わせることができる。また、SrxBa1 - xNb2O6の異
常光の屈折率neの温度係数δn/δTは、xの値によ
り変化するものの、ほぼ2.5×10- 4なので、このS
rxBa1 - xNb2O6を光学媒体11に用いた光偏向素子
10の偏向角度を3°乃至5°程度の大きな値に設定す
ることができる。従って、本実施例による光偏向素子1
0を光ディスクプレーヤ、光通信用スイッチやレーザー
プリンタ等に容易に適用することができる。図2にSr
xBa1 - xNb2O6のxをパラメータとしたときの屈折率
と温度との関係を示す。図2において横軸は温度(T
℃)、縦軸は屈折率を示し、noはSrxBa1 - xNb2O
6の常光の温度に対する屈折率の変化、neは異常光の温
度に対する屈折率の変化を示している。この図から異常
光は温度に対する屈折率の変化が大きいことがわかる。
次に、図3を参照して光偏向素子の他の一実施例につい
て説明する。図3に示す光偏向素子20は、導波路形デ
バイスとして構成されたもので、ガラス基板21と、こ
のガラス基板21上に光学接着剤で接着された光学媒体
からなる導波路22、すなわち固溶組成領域を持つ強誘
電体性結晶であるSrxBa1 - xNb2O6からなる導波路
22と、この図示上面に形成された酸化チタン、五酸化
タンタル又は五酸化ニオブのいずれかを主成分とした材
質からなるバッファ層23と、このバッファ層23上に
互いに平行に形成された一対の発熱体24,25と、こ
の各発熱体24,25に接続された電源26,27とを
備えたものである。なお、本実施例においてもSrxB
a1 - xNb2O6のxの値は、0.25≦x≦0.5の範
囲としている。図3に示す光偏向素子20は熱容量の大
きな光学媒体を導波路22として用いているので、応答
速度を数ms以下に設定することができる。以上の構成
では、発熱体24と発熱体25とを交互に加熱状態とす
る。たとえば発熱体24が加熱状態のときには、導波路
22には紙面奥側から手前側にかけて生じる温度勾配に
よって屈折率勾配が生ずる。この状態で入射光28が導
波路22に入射されると、この入射光28は紙面奥側
((イ)で示す)に偏向される。また、発熱体25が加
熱状態のときには、導波路22には紙面手前側から奥側
にかけて生じる温度勾配によって屈折率勾配が生じるた
め、入射光28が導波路22に入射するとこの入射光2
8は紙面手前側((ロ)で示す)に偏向される。ところ
で、本実施例では導波路22の図示上面に酸化チタン、
五酸化タンタル又は五酸化ニオブを主成分としたバッフ
ァ層23をスパッタリング法により形成している。この
ような材質からなるバッファ層23は、空気の屈折率よ
りも大きくしかも導波路22の屈折率と近似している。
次に各実施例の具体的な製造方法ならびにその機能につ
いて説明する。まず図1の光偏向素子10の製造の一例
としては、Sr0 . 5Ba0 . 5Nb2O6の結晶をa軸に垂直
な面10aにてカットして14mm×14mm×3mm
のウエハを得て、この両面10aを研磨して平行にし
た。このウエハの上面にTa、またはAlなる発熱体1
2をスパッタ法により形成した。この発熱体の長さは1
0mmである。研磨した面10aに、偏波面の方向がc
軸方向と平行となる直線偏光(光の波長は0.633μ
m)を入射し、発熱体12の温度を室温よりも50℃高
くなるように電源を調節した。その結果、約3度の偏向
角を得ることができた。図3に示す光偏向素子20の製
造例としては、Sr0 . 5Ba0 . 5Nb2O6の結晶をa軸に
垂直な面22aにてカットして14mm×14mm×
0.5mmのウエハを得て、この両面22aを研磨して
平行にした。これを石英ガラスの基板21の上に光学接
着剤を用いて接着した。接着後Sr0 . 5Ba0 . 5Nb2O6
の結晶を厚さが約20μmとなるように光学研磨加工し
た。この結晶の上にバッファ層23としてTa2O5薄膜
をスパッタ法により形成した。その上に発熱体24,2
5としてTaまたはAlよりなる発熱用抵抗電極をスパ
ッタ法により形成した。Sr0 . 5Ba0 . 5Nb2O6の結晶
から成る導波路22の端面22aに偏波面の方向がc軸
方向と平行な直線偏光の光(波長は0.633μm)を
入射させ、発熱体に約0.5Wの電力を投入したとこ
ろ、約2.5℃の偏向角を得ることができた。尚、本発
明は前記図示又は説明した実施例に限定されるものでは
なく、その要旨の範囲内において様々に変形実施が可能
である。例えば、バッファ層の屈折率は酸化チタン、五
酸化タンタルまたは五酸化ニオブと他の成分との組み合
わせやスパッタ条件などにより2.0〜2.5の範囲に
おいて設定できるので、このバッファ層の屈折率と導波
路の屈折率との差を小さくすることにより、特に単一モ
ードの導波を行う光偏向素子において導波路の厚さをよ
り厚く設定でき、したがって製造ならびに組み立てを容
易にすることができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.
It FIG. 1 is a schematic perspective view showing an embodiment of a light deflection element,
2 is SrxBa1 - xNb2O6When x is a parameter
FIG. 3 is a characteristic diagram showing the relationship between the refractive index and the temperature. Shown in Figure 1
The optical deflection element 10 has a ferroelectric composition having a solid solution composition region.
Crystal SrxBa1 - xNb2O6A plate-shaped optical medium composed of
11 is formed on the upper surface of the drawing by sputtering or the like.
Heat generating element 12 made of tantalum, aluminum, etc.
This heating element 12 is equipped with direct current or alternating current.
Source 13 is connected. In such a configuration, the heating element
The temperature gradient in the thickness direction of the optical medium 11 due to the heat generated by
Occurs, and this temperature gradient creates a refractive index gradient. this
Due to the refractive index gradient, the extraordinary light of the incident light 14 is directed upward in the drawing.
It is deflected in the a-axis direction and output. By the way, this embodiment
Then SrxBa1 - xNb2O6X of optical medium 11 consisting of
The value is set in the range of approximately 0.25 ≦ x ≦ 0.5. this
To set the value of x in such a range, the value of x is set to approximately 0.
Sr when set to 25xBa1 - xNb2O6Curi
-Temperature is 200 ° C, and the value of x is set to about 0.5.
If the Curie temperature is 130 ℃,
Strong at the operating environment temperature (for example, the temperature when the heating element generates heat)
Inducing transformation from a dielectric crystal to a paraelectric crystal
Because there is nothing. If the value of x is less than 0.25,
SrxBa1 - xNb2O6Is hard to obtain crystals. Therefore, this
By setting x in such a range, stable operation can be performed.
You can make it. Also, SrxBa1 - xNb2O6The difference
The temperature coefficient δn / δT of the refractive index ne of ordinary light depends on the value of x.
Although it changes, it is about 2.5 × 10- FourSo this S
rxBa1 - xNb2O6Deflection Element Using Optical Medium 11
Set the deflection angle of 10 to a large value of 3 to 5 degrees.
You can Therefore, the light deflection element 1 according to the present embodiment
0 for optical disk player, optical communication switch and laser
It can be easily applied to a printer or the like. Sr in Figure 2
xBa1 - xNb2O6Refractive index with x as a parameter
Shows the relationship between temperature and temperature. In FIG. 2, the horizontal axis represents temperature (T
℃), the vertical axis shows the refractive index, no is SrxBa1 - xNb2O
6Change of the refractive index with respect to the temperature of ordinary light, ne is the temperature of extraordinary light
The change of the refractive index with respect to the degree is shown. Abnormal from this figure
It can be seen that light has a large change in refractive index with temperature.
Next, referring to FIG. 3, another embodiment of the optical deflector will be described.
Explain. The optical deflector 20 shown in FIG. 3 is a waveguide type device.
The glass substrate 21 and
Optical medium adhered on the glass substrate 21 of the above with an optical adhesive
Waveguide 22 composed of a solid solution composition
Sr which is an electric crystallinexBa1 - xNb2O6Waveguide consisting of
22 and titanium oxide and pentoxide formed on the upper surface in the figure
Material containing tantalum or niobium pentoxide as the main component
On the buffer layer 23 of quality and on this buffer layer 23
A pair of heating elements 24, 25 formed in parallel with each other,
Power sources 26 and 27 connected to the heating elements 24 and 25 of
Be prepared. In this embodiment also, SrxB
a1 - xNb2O6The value of x in the range of 0.25 ≦ x ≦ 0.5
It is surrounded. The light deflection element 20 shown in FIG. 3 has a large heat capacity.
Since a fine optical medium is used as the waveguide 22, the response
The speed can be set to a few ms or less. Configuration above
Then, the heating element 24 and the heating element 25 are alternately heated.
It For example, when the heating element 24 is in a heated state, the waveguide
22 shows the temperature gradient generated from the back side to the front side of the paper.
Therefore, a refractive index gradient is generated. In this state, the incident light 28 is guided
When incident on the waveguide 22, the incident light 28 is reflected on the back side of the paper.
(Shown in (a)). In addition, the heating element 25 is added.
When in the heat state, the waveguide 22 has a front side to a back side in the drawing.
The refractive index gradient is generated by the temperature gradient
Therefore, when the incident light 28 enters the waveguide 22, the incident light 2
8 is deflected to the front side of the paper (shown by (b)). By the way
In this embodiment, titanium oxide is provided on the upper surface of the waveguide 22 in the drawing.
Buff containing tantalum pentoxide or niobium pentoxide as the main component
The layer 23 is formed by the sputtering method. this
The buffer layer 23 made of such a material has a refractive index higher than that of air.
It is also larger than the refractive index of the waveguide 22.
Next, the specific manufacturing method of each embodiment and its function will be described.
And explain. First, an example of manufacturing the optical deflection element 10 of FIG.
As Sr0 . FiveBa0 . FiveNb2O6Vertical to the a-axis
14mm × 14mm × 3mm by cutting on the flat surface 10a
Then, the both sides 10a are polished to be parallel.
It was A heating element 1 made of Ta or Al is formed on the upper surface of the wafer.
2 was formed by the sputtering method. The length of this heating element is 1
It is 0 mm. The direction of the plane of polarization is c on the polished surface 10a.
Linearly polarized light parallel to the axial direction (wavelength of light is 0.633μ
m) and the temperature of the heating element 12 is 50 ° C higher than room temperature.
I adjusted the power supply so that As a result, deflection of about 3 degrees
I got the horn. Manufacture of the light deflection element 20 shown in FIG.
As an example, Sr0 . FiveBa0 . FiveNb2O6With the crystal of a
14mm x 14mm x by cutting at the vertical surface 22a
Obtain a 0.5 mm wafer and polish both sides 22a
I made them parallel. Optically contact this with a quartz glass substrate 21.
It adhered using the adhesive. After adhesion Sr0 . FiveBa0 . FiveNb2O6
Optical polishing process of the crystal of
It was A buffer layer 23, Ta, is formed on the crystal.2OFiveThin film
Was formed by the sputtering method. On top of that, heating elements 24, 2
5 is a spade resistance electrode made of Ta or Al.
It was formed by the Tatta method. Sr0 . FiveBa0 . FiveNb2O6Crystal of
The direction of the plane of polarization is c-axis on the end face 22a of the waveguide 22 made of
Linearly polarized light (wavelength 0.633 μm) parallel to the direction
It was incident and about 0.5 W of electric power was applied to the heating element.
A deflection angle of about 2.5 ° C. could be obtained. In addition, this
The description is not limited to the embodiment shown or described above.
No, various modifications can be implemented within the scope of the gist
Is. For example, the refractive index of the buffer layer is titanium oxide,
Combination of tantalum oxide or niobium pentoxide with other ingredients
Within the range of 2.0 to 2.5 depending on the sponge and sputtering conditions
Since it can be set at
By reducing the difference between the refractive index of the
In the optical deflection element that guides the waveguide,
Thicker and therefore easier to manufacture and assemble
It can be easy.
【発明の効果】本発明によれば、異常光の偏向角度を大
きく設定可能である光偏向素子を提供することができ
る。According to the present invention, it is possible to provide a light deflection element capable of setting a large deflection angle of abnormal light.
【図1】光偏向素子の一実施例を示す概略斜視図。FIG. 1 is a schematic perspective view showing an embodiment of a light deflection element.
【図2】SrxBa1 - xNb2O6のxをパラメータとした
ときの屈折率と温度との関係を示す特性図。[Figure 2] Sr x Ba 1 - characteristic diagram showing the relationship of x of x Nb 2 O 6 and the refractive index and the temperature when a parameter.
【図3】光偏向素子の他の一実施例を示す概略斜視図。FIG. 3 is a schematic perspective view showing another embodiment of the light deflection element.
【図4】光偏向素子の概略外観斜視図。FIG. 4 is a schematic external perspective view of a light deflection element.
【図5】図4に示す光偏向素子の光学媒体の材質の特性
を示す表。5 is a table showing the characteristics of the material of the optical medium of the light deflection element shown in FIG.
11,22 光学媒体 12,24,25 発熱体 13 電源 22 導波路 23 バッファ層 11,22 Optical medium 12,24,25 Heating element 13 Power supply 22 Waveguide 23 Buffer layer
Claims (2)
体の発熱により入射光の偏向角度を変化させる光学媒体
を備えた光偏向素子において、前記光学媒体をSrxB
a1 - xNb2O6により形成したことを特徴とする光偏向
素子。1. An optical deflection element comprising a heating element that generates heat when energized and an optical medium that changes the deflection angle of incident light by the heating of the heating element, wherein the optical medium is Sr x B
An optical deflecting element formed of a 1 - x Nb 2 O 6 .
の範囲である請求項1記載の光偏向素子。2. The value of x is approximately 0.25 ≦ x ≦ 0.5.
The light deflection element according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34880791A JPH05158079A (en) | 1991-12-04 | 1991-12-04 | Optical deflecting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34880791A JPH05158079A (en) | 1991-12-04 | 1991-12-04 | Optical deflecting element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05158079A true JPH05158079A (en) | 1993-06-25 |
Family
ID=18399504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34880791A Withdrawn JPH05158079A (en) | 1991-12-04 | 1991-12-04 | Optical deflecting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05158079A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001027689A1 (en) * | 1999-10-15 | 2001-04-19 | Hitachi, Ltd. | Optically functional element and production method and application therefor |
US6844092B2 (en) | 2002-08-22 | 2005-01-18 | Hitachi, Ltd. | Optically functional element and production method and application therefor |
EP2214039A1 (en) * | 2009-02-03 | 2010-08-04 | Nitto Denko Corporation | Method of manufacturing a multi-layer sensor structure |
WO2010090599A1 (en) * | 2009-02-03 | 2010-08-12 | Nitto Denko Corporation | Method of manufacturing a multi -layer sensor structure |
-
1991
- 1991-12-04 JP JP34880791A patent/JPH05158079A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001027689A1 (en) * | 1999-10-15 | 2001-04-19 | Hitachi, Ltd. | Optically functional element and production method and application therefor |
US6790502B1 (en) | 1999-10-15 | 2004-09-14 | Hitachi, Ltd. | Optically functional element and production method and application therefor |
US6844092B2 (en) | 2002-08-22 | 2005-01-18 | Hitachi, Ltd. | Optically functional element and production method and application therefor |
EP2214039A1 (en) * | 2009-02-03 | 2010-08-04 | Nitto Denko Corporation | Method of manufacturing a multi-layer sensor structure |
WO2010090599A1 (en) * | 2009-02-03 | 2010-08-12 | Nitto Denko Corporation | Method of manufacturing a multi -layer sensor structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4201450A (en) | Rigid electro-optic device using a transparent ferroelectric ceramic element | |
Yamada et al. | Electric‐field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals | |
TW200604B (en) | ||
JPH10503602A (en) | Fabrication of patterned polarized dielectric structures and devices | |
KR101688113B1 (en) | Electro-optical single crystal element, method for the preparation thereof, and systems employing the same | |
JP2006201472A (en) | Optical controller unit | |
JPH05158079A (en) | Optical deflecting element | |
WO1984002010A1 (en) | Light valve | |
JP2007101842A (en) | Optical element having photonic crystal structure | |
US3781086A (en) | Domain switching element and method of producing the same | |
US4621903A (en) | Electro-optic light shutter | |
US4071841A (en) | Dielectric matrix device | |
JPS63240533A (en) | Optical deflector | |
JPS59185311A (en) | Light control type optical switch | |
JPH02828A (en) | Liquid crystal display device | |
JPH11101995A (en) | Wavelength conversion laser | |
JP2785144B2 (en) | Chiral smectic liquid crystal device | |
US3817597A (en) | Laser scanner using an intracavity device of a ferroelastic material to form an image | |
JPH06342177A (en) | Preparation of optical waveguide device and optical frequency multiplier | |
JPH05289134A (en) | Manufacture of non-linear optical device | |
JP3086239B2 (en) | Proton exchange optical waveguide, method of manufacturing the same, and optical deflector using this waveguide | |
JP3883613B2 (en) | Electro-optic element | |
JP3327937B2 (en) | Waveguide type polarization control element | |
JP2775494B2 (en) | Ferroelectric liquid crystal device | |
JPS63260088A (en) | Linbo3 single crystal piezoelectric substrate with polarization inverting region and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990311 |