JPH05289134A - Manufacture of non-linear optical device - Google Patents

Manufacture of non-linear optical device

Info

Publication number
JPH05289134A
JPH05289134A JP4091198A JP9119892A JPH05289134A JP H05289134 A JPH05289134 A JP H05289134A JP 4091198 A JP4091198 A JP 4091198A JP 9119892 A JP9119892 A JP 9119892A JP H05289134 A JPH05289134 A JP H05289134A
Authority
JP
Japan
Prior art keywords
light source
optical waveguide
fundamental wave
domain structure
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4091198A
Other languages
Japanese (ja)
Inventor
Kenjiro Watanabe
健次郎 渡辺
Masahiro Yamada
正裕 山田
Naoji Nada
直司 名田
Shuichi Matsumoto
秀一 松本
Yuji Koga
祐二 甲賀
Kouichirou Kijima
公一朗 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4091198A priority Critical patent/JPH05289134A/en
Publication of JPH05289134A publication Critical patent/JPH05289134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a non-linear optical device which has high efficiency and superior output characteristics efficiently in manufacturing and with high yield by forming periodic domain structure in a ferroelectric substance. CONSTITUTION:Periodic domain structure adapted to a wavelength of a fundamental wave light source 5 is formed in a state in which the light source 5 is optically coupled to a ferroelectric substance 1 having a light waveguide path. Therefore, since period domain structure having an optimum period can be formed independently of dispersion of oscillation wavelength of the light source 5 for instance a semiconductor laser, a nonlinear optical device which has high conversion efficiency and superior output characteristics for instance short wavelength light source can be constituted. And after the light waveguide path 2 is formed, periodic domain structure is formed, but the light waveguide path 2 previously formed can be formed so as not to be affected any by adopting a method in which reversal of domain can be performed at a low temperature in forming this periodic domain structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非線形光学装置の製造
方法例えば光第2高調波発生素子(以下SHG素子とい
う)の製造方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a non-linear optical device, for example, a method for manufacturing an optical second harmonic generating element (hereinafter referred to as SHG element).

【0002】[0002]

【従来の技術】SHG素子は、周波数ωの基本波を導入
して2ωの周波数の第2高調波の光を発生するものであ
る。
2. Description of the Related Art An SHG element is one which introduces a fundamental wave having a frequency ω and generates light of a second harmonic having a frequency of 2ω.

【0003】したがって、このSHG素子を例えば半導
体レーザと組合せることによって例えば近赤外光を緑色
光の短波長光源とすることができ、半導体レーザによっ
て得られる単一波長光の実現可能の波長範囲の拡大化を
はかることができ、これに伴ってレーザの利用範囲の拡
大化と各技術分野でのレーザ利用の最適化をはかること
ができる。例えば、レーザ光の短波長化によってレーザ
光を用いた光記録再生、光磁気記録再生等において、そ
の記録密度の向上、解像度の向上をはかることができ
る。
Therefore, by combining this SHG element with a semiconductor laser, for example, near infrared light can be used as a short-wavelength light source of green light, and a feasible wavelength range of single-wavelength light obtained by the semiconductor laser can be obtained. Therefore, the range of use of the laser can be expanded and the use of the laser in each technical field can be optimized. For example, by shortening the wavelength of the laser light, it is possible to improve the recording density and the resolution in optical recording / reproducing and magneto-optical recording / reproducing using the laser light.

【0004】このSHG素子において、光導波路中に光
の閉じ込めを行う光導波路形SHG素子は、バルク型S
HG素子に比して高効率化がはかられる。さらに、SH
G素子例えば光導波路型SHG素子においてその光導波
方向に周期的に分極が反転する分極反転構造いわゆるド
メイン反転構造を設け、位相周期を基本波の波長に対応
して選定することによって高出力化をはかられることが
知られている。
In this SHG element, the optical waveguide type SHG element for confining light in the optical waveguide is a bulk type SHG element.
Higher efficiency can be achieved as compared with the HG element. Furthermore, SH
In a G element, for example, an optical waveguide type SHG element, a domain-inverted structure, in which the polarization is periodically inverted in the optical waveguide direction, is provided, and a high output can be achieved by selecting the phase period corresponding to the wavelength of the fundamental wave. It is known to come off.

【0005】また、光導波路を有するチェレンコフ放射
型のSHG素子においては、光導波路に基本波を導入す
るとき基板内に第2高調波の放射方向が基板内方向にあ
るため実際の使用において配置的問題などが生じるが、
このチェレンコフ放射型SHGにおいてもその光導波路
に周期的に分極が反転するドメイン反転構造を設けるこ
とによってチェレンコフ放射角を小さくし、さらに出力
ビームスポット形状を整えるようにしたチェレンコフ放
射型SHGの提案もなされている(特開平2−9362
4号参照)。
Further, in a Cherenkov radiation type SHG element having an optical waveguide, when the fundamental wave is introduced into the optical waveguide, the radiation direction of the second harmonic wave is in the substrate direction, so that it is arranged practically. I have problems,
Also in this Cherenkov radiation type SHG, a Cerenkov radiation type SHG is proposed in which the Cherenkov radiation angle is reduced by providing a domain inversion structure in which the polarization is periodically inverted in the optical waveguide, and the output beam spot shape is adjusted. (JP-A-2-9362)
(See No. 4).

【0006】上述したように周期ドメイン構造を有する
光導波路型SHG素子は、その光出力特性の向上がはか
られるものであり、周期ドメイン構造の反転周期の選定
によって、導入する基本波波長の選定の自由度が高めら
れるものの、一旦その分極ドメイン反転周期が設定され
れば基本波の波長に対する余裕度は小さく高々1nmし
か存在しない。
As described above, the optical waveguide type SHG element having the periodic domain structure can improve the optical output characteristics, and the wavelength of the fundamental wave to be introduced is selected by selecting the inversion period of the periodic domain structure. However, once the polarization domain inversion period is set, the margin with respect to the wavelength of the fundamental wave is small and only 1 nm exists at most.

【0007】一方、基本波光源として半導体レーザを用
いる場合、半導体レーザのその発振共振器を形成する活
性層等の厚さのばらつき等によってレーザ毎に発振波長
にばらつきが生じるものであり、通常この発振波長のば
らつきは、数nmである。
On the other hand, when a semiconductor laser is used as the fundamental wave light source, the oscillation wavelength varies from laser to laser due to variations in the thickness of the active layer forming the oscillation resonator of the semiconductor laser. The variation of the oscillation wavelength is several nm.

【0008】したがって、例えば半導体レーザとSHG
素子を組合せてこれらを光学的に結合して一体化して短
波長光源として用いる場合等においては、半導体レーザ
とSHG素子のそれぞれの特性を精度よく測定して、そ
の結果から良好な組合せを選定する必要があり、このよ
うな作用は煩雑であって製造効率が低く、また充分な光
出力が得られる出力特性に優れた短波長光源を歩留りよ
く得ることが難しいという問題点がある。
Therefore, for example, a semiconductor laser and an SHG
In the case where elements are combined and these are optically coupled and integrated to be used as a short wavelength light source, etc., the characteristics of the semiconductor laser and the SHG element are accurately measured, and a good combination is selected from the results. However, there is a problem in that such an operation is complicated, production efficiency is low, and it is difficult to obtain a short-wavelength light source excellent in output characteristics with a sufficient light output with a good yield.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上述した非
線形光学装置、特に例えば図5に示すように、強誘電体
1に光導波路2を有し、これに矢印で交互に示すように
周期ドメイン構造11即ち周期分極反転構造が設けられ
て光導波路2に基本波光源LDを光学的に結合する非線
形光学装置の製造方法において、出力特性に優れたこの
種装置を高い歩留りをもって製造することができるよう
にする。
DISCLOSURE OF THE INVENTION The present invention is directed to the above-mentioned nonlinear optical device, in particular, as shown in FIG. 5, for example, a ferroelectric material 1 is provided with an optical waveguide 2, and a periodic structure is provided as shown by alternate arrows. In a method of manufacturing a non-linear optical device in which the domain structure 11, that is, the periodically poled structure is provided and the fundamental wave light source LD is optically coupled to the optical waveguide 2, it is possible to manufacture such a device having excellent output characteristics with a high yield. It can be so.

【0010】すなわち、本発明においては、先に本出願
人が提案した例えば特開平2−187735号に開示さ
れた方法あるいは同様に本出願人の出願に係わる特願平
3−107392号による分極反転制御方法すなわちド
メイン反転構造の形成方法によれば低温例えば150℃
未満で周期ドメイン構造を形成する方法を提案したこと
に基づき、この方法との組合せ利用によって、基本波光
源を光学的に結合させた状態で、即ち最終構造で、高効
率を有し出力特性に優れた非線形光学装置を製造効率よ
く歩留り高く得ることができるようにする。
That is, in the present invention, the polarization reversal according to the method previously proposed by the present applicant, for example, the method disclosed in Japanese Patent Application Laid-Open No. 2-187735 or the Japanese Patent Application No. 3-107392 related to the present application. According to the control method, that is, the method of forming the domain inversion structure, a low temperature, for example, 150 ° C.
Based on the proposal of a method of forming a periodic domain structure with less than, by combining with this method, the fundamental wave light source is optically coupled, that is, in the final structure, high efficiency and output characteristics (EN) An excellent nonlinear optical device can be obtained with high manufacturing efficiency and high yield.

【0011】[0011]

【課題を解決するための手段】即ち、本発明において
は、単分域化された強誘電体に先ず光導波路を作製し、
この光導波路に基本波光源を光学的に結合させて後に、
強誘電体に周期ドメイン構造を形成する手順を採る。
That is, in the present invention, first, an optical waveguide is formed on a single-domain ferroelectric material,
After optically coupling the fundamental wave light source to this optical waveguide,
A procedure for forming a periodic domain structure in a ferroelectric substance is adopted.

【0012】また、本発明においては、単分域化された
強誘電体に光導波路を作製し、この光導波路に基本波光
源を光学的に結合させ、その後この結合状態で光導波路
の基本波光源の結合部とは反対側の端部から導出される
基本波光源からの光の波長を測定して、これを基に基本
波の波長に対して位相整合する効果を有する周期ドメイ
ン構造を形成する。更に、本発明においては、単分域化
された強誘電体に光導波路を作製し、この光導波路に基
本波光源を光学的に結合させ、その後この結合状態で光
導波路の基本波光源の結合部とは反対側の端部から導出
される上記基本波光源からの光の波長を測定し、その
後、強誘電体を挟んで少なくとも一方が、測定された基
本波波長に対して位相整合する周期ドメイン構造のパタ
ーンに対応するパターンとされた第1及び第2の電極間
に、1kV/mm〜100kV/mmの電極を、300
℃以下望ましくは150℃未満の温度下で印加して上記
強誘電体に周期ドメイン構造を形成する。
Further, according to the present invention, an optical waveguide is formed in a ferroelectric material having a single domain, a fundamental wave light source is optically coupled to this optical waveguide, and then the fundamental wave of the optical waveguide is in this coupled state. The wavelength of the light from the fundamental wave light source, which is derived from the end opposite to the coupling part of the light source, is measured, and based on this, a periodic domain structure is formed that has the effect of performing phase matching with the wavelength of the fundamental wave. To do. Further, in the present invention, an optical waveguide is formed in a ferroelectric material having a domain structure, a fundamental wave light source is optically coupled to this optical waveguide, and then the fundamental wave light source of the optical waveguide is coupled in this coupled state. The wavelength of the light from the fundamental wave light source derived from the end opposite to the section is measured, and then at least one of which sandwiches the ferroelectric substance is a cycle in which the phase is matched to the measured fundamental wave wavelength. An electrode of 1 kV / mm to 100 kV / mm is provided between the first and second electrodes having a pattern corresponding to the pattern of the domain structure,
The periodic domain structure is formed in the ferroelectric by applying at a temperature not higher than C, preferably at a temperature lower than 150C.

【0013】[0013]

【作用】上述したように本発明方法によれば、低温での
周期ドメイン構造が形成可能で、かつ周期ドメインを深
く形成できる方法を用いることによって、この周期ドメ
イン構造の形成前に、光導波路を形成しておくものであ
り、このようにすることによって、光導波路に光源とし
て用いる半導体レーザ等の基本波光源を結合して、その
後、この状態で測定した基本波波長に基くドメイン構造
の周期を決定して位相整合可能な周期構造を有するドメ
イン反転構造を形成するので基本波光源に対して高変換
効率を有するSHG素子等の線形光学装置を歩留りよく
得ることができ、また確実にその目的とする非線形光学
装置が得られ、従前におけるように半導体レーザと例え
ばSHG素子の両者を1つ1つ測定して良好なものを組
合せていく場合に比し格段に製造効率の向上がはかられ
る。
As described above, according to the method of the present invention, by using a method capable of forming a periodic domain structure at a low temperature and deeply forming a periodic domain structure, an optical waveguide is formed before the formation of the periodic domain structure. By doing so, a fundamental wave light source such as a semiconductor laser used as a light source is coupled to the optical waveguide, and then the period of the domain structure based on the fundamental wave wavelength measured in this state is determined. Since the domain inversion structure having the periodic structure that can be determined and the phase matching is formed, the linear optical device such as the SHG element having a high conversion efficiency with respect to the fundamental wave light source can be obtained with a high yield, and the purpose thereof can be ensured. In the case where a non-linear optical device is obtained, and the good ones are measured by measuring both the semiconductor laser and the SHG element one by one as before. Greatly improved production efficiency is tomb.

【0014】そして、上述の分極反転(ドメイン反転)
制御方法によれば、分極反転領域の形状を制御性よくま
た結晶劣化を生じることなく形成することができた。
Then, the above-mentioned polarization inversion (domain inversion)
According to the control method, the shape of the domain inversion region could be formed with good controllability and without causing crystal deterioration.

【0015】これは次に述べる理由に因るものと思われ
る。即ち一般的にはLN(LiNbO3 )単結晶のよう
な、高電圧を印加すると結晶が破壊される強誘電体材料
においては、結晶破壊が生じない程度の電圧を印加して
も分極反転が生じないとされており、従来は結晶破壊を
生じさせない程度の比較的低い電圧の印加によって分極
反転を生じさせるために、即ち抗電界を下げるために、
高温下において比較的低い電圧、即ち例えば数V/mm
〜数百V/mm程度の電圧を印加して分極反転を形成し
ていた。
This is probably because of the following reasons. That is, in general, in a ferroelectric material such as LN (LiNbO 3 ) single crystal whose crystal is destroyed when a high voltage is applied, polarization reversal occurs even if a voltage that does not cause crystal destruction is applied. It is said that in the past, in order to cause polarization reversal by applying a relatively low voltage that does not cause crystal breakdown, that is, in order to lower the coercive electric field,
Relatively low voltage at high temperature, eg several V / mm
A polarization inversion was formed by applying a voltage of about several hundreds V / mm.

【0016】しかしながら、結晶破壊は、実際は電圧印
加を行う電極の形状、その電極幅等に依存することが究
明された。即ち、このような結晶破壊は圧電効果による
もので、対称とする強誘電体材料に応じて電極幅等を適
切に選定することによって、電極付近に発生する応力を
分散させることができ、試料の力学的破壊即ち結晶破壊
を生じさせることなく強誘電体材料の分極反転を行うこ
とができる。
However, it was found that the crystal breakdown actually depends on the shape of the electrode to which a voltage is applied, the electrode width, and the like. That is, such crystal destruction is due to the piezoelectric effect, and the stress generated near the electrodes can be dispersed by properly selecting the electrode width and the like according to the symmetric ferroelectric material. The polarization inversion of the ferroelectric material can be performed without causing mechanical breakdown, that is, crystal breakdown.

【0017】また本発明方法では単分域化された強誘電
体1に、その分極方向に対向電極を配置し、両電極間に
電圧を印加するものであるが、このとき、強誘電体の自
発分極の向きに対して垂直な方向に生じる電界成分を小
として、圧電効果によって生じる応力の発生を小とする
ことによって、結晶歪みや結晶破壊を抑制することがで
きるのである。
Further, in the method of the present invention, the counter electrode is arranged in the polarization direction of the single-domain ferroelectric substance 1 and a voltage is applied between the both electrodes. By reducing the electric field component generated in the direction perpendicular to the direction of spontaneous polarization and reducing the stress generated by the piezoelectric effect, it is possible to suppress crystal strain and crystal breakage.

【0018】[0018]

【実施例】本発明による非線形光学装置の製造方法の実
施例について詳細に説明する。例えば図1にその略線的
断面図を示すように、まず単分域化された強誘電体1に
光導波路2を形成する。
Embodiments of the method of manufacturing a nonlinear optical device according to the present invention will be described in detail. For example, as shown in the schematic cross-sectional view of FIG. 1, first, an optical waveguide 2 is formed in a ferroelectric material 1 having a single domain.

【0019】この強誘電体1は精度よい平面に光学的に
研磨された例えば厚さ100μmの強誘電体1例えばK
TiOPO4 (KTP)、LiNbO3 (LN)、Li
TaO3 等の非線形光学材料の単結晶により成る。
This ferroelectric substance 1 is, for example, a 100 μm thick ferroelectric substance 1 which is optically polished to a precise plane, for example K.
TiOPO 4 (KTP), LiNbO 3 (LN), Li
It is made of a single crystal of a nonlinear optical material such as TaO 3 .

【0020】そして、この強誘電体1を、その例えば厚
さ方向に単分域化する。
Then, the ferroelectric body 1 is divided into, for example, a single domain in the thickness direction.

【0021】この単分域化は、例えばそのキュリー温度
直下の例えば1200℃程度まで昇温して一定の方向、
具体的には例えばLNにおいてc軸方向に外部直流電圧
を全面的に印加することによって、全面的にc軸方向に
単分域化することができる。
This division into single domains is performed, for example, by raising the temperature directly below the Curie temperature to, for example, about 1200.degree.
Specifically, for example, by applying an external DC voltage over the entire surface of the LN in the c-axis direction, the entire area can be divided into single domains in the c-axis direction.

【0022】また、この強誘電体1には、光導波路2が
形成される。
An optical waveguide 2 is formed on the ferroelectric body 1.

【0023】例えば厚さ100μmのLN単結晶体基板
による強誘電体1において、その自発分極の正側の面に
光導波路2を作製する。
For example, an optical waveguide 2 is formed on the surface on the positive side of the spontaneous polarization of the ferroelectric 1 made of an LN single crystal substrate having a thickness of 100 μm.

【0024】この光導波路2は、例えば強誘電体1の一
主面1S側に周知のイオン交換、即ちプロトン交換法等
を用いて形成し得る。この場合、光導波路2の両端面2
a及び2bはそれぞれ精度よく平面に光学的研磨されて
いるものである。
The optical waveguide 2 can be formed, for example, on the one main surface 1S side of the ferroelectric body 1 by using the well-known ion exchange, that is, the proton exchange method or the like. In this case, both end surfaces 2 of the optical waveguide 2
Each of a and 2b is optically polished into a flat surface with high precision.

【0025】また強誘電体1の自発分極の負側の主面1
bには直接的に、蒸着、スパッタ等によって例えば厚さ
400nmのAl電極3が被着されている。
The principal surface 1 on the negative side of the spontaneous polarization of the ferroelectric substance 1
An Al electrode 3 having a thickness of 400 nm, for example, is directly applied to b by vapor deposition, sputtering or the like.

【0026】そして、この光導波路2を有する強誘電体
1とその基本波光源としての例えば半導体レーザとを機
械的かつ光学的に結合する。すなわち、半導体レーザの
出射端を光導波路2の入射端例えば一方の端面2aに近
接対向させた状態で半導体レーザと強誘電体1とを機械
的に一体化する。
Then, the ferroelectric body 1 having the optical waveguide 2 and the fundamental wave light source such as a semiconductor laser are mechanically and optically coupled. That is, the semiconductor laser and the ferroelectric body 1 are mechanically integrated in a state where the emission end of the semiconductor laser is closely opposed to the incident end of the optical waveguide 2, for example, one end face 2a.

【0027】この一体化は、例えば図2に示すように、
強誘電体1をL字治具4により半導体レーザチップ5が
取付けられた例えばCu等より成るヒートシンク6上
に、半導体レーザの光の出射端を光導波路2の入射端面
2aと近接対向させて例えばポリカーボネート等の透明
の接着剤7によって機械的及び光学的に接合する。
This integration is carried out, for example, as shown in FIG.
On the heat sink 6 made of, for example, Cu, to which the semiconductor laser chip 5 is attached by the L-shaped jig 4, the ferroelectric 1 is arranged so that the emitting end of the light of the semiconductor laser closely faces the incident end face 2a of the optical waveguide 2. It is mechanically and optically bonded by a transparent adhesive 7 such as polycarbonate.

【0028】このようにすると半導体レーザが強誘電体
1の光導波路2に効率よく光学的に結合される。
In this way, the semiconductor laser is efficiently optically coupled to the optical waveguide 2 of the ferroelectric substance 1.

【0029】尚、強誘電体1の光導波路2上には、必要
に応じて窒化シリコン、酸化シリコン、アルミナ、酸化
タンタル等のクラッド層が設けられる。
A clad layer of silicon nitride, silicon oxide, alumina, tantalum oxide or the like is provided on the optical waveguide 2 of the ferroelectric substance 1 as needed.

【0030】この状態で強誘電体1上の光導波路2の他
端面2bから出射される基本波の波長を測定する。そし
て、この測定した波長に応じて光導波路の周期ドメイン
構造の周期を決定する。
In this state, the wavelength of the fundamental wave emitted from the other end surface 2b of the optical waveguide 2 on the ferroelectric 1 is measured. Then, the period of the periodic domain structure of the optical waveguide is determined according to the measured wavelength.

【0031】次に、この決定された周期をもって図5で
示した周期ドメイン構造11を強誘電体1に形成する。
Next, the periodic domain structure 11 shown in FIG. 5 is formed in the ferroelectric 1 with the determined period.

【0032】この場合、最終的に得るすなわち測定され
た基本波光源の波長に対応して決められた周期を有する
周期ドメイン構造に一致する電極パターンを有する電極
基板12を用意する。この電極基板12は図4に示すよ
うに例えば精度よく平面に光学的に研磨された石英基板
等の絶縁基板13上に全面的にAl等の電極層を例えば
厚さ200nmに蒸着スパッタ等によって被着し、これ
をリソグラフィ技術で前述した測定された基本波の位相
整合が可能な所要の周期構造を有する例えば櫛形状、格
子状等の平行パターンにパターニングしたパターン電極
14を形成する。
In this case, an electrode substrate 12 having an electrode pattern corresponding to a periodic domain structure having a period determined corresponding to the wavelength of the fundamental wave light source finally obtained, that is, measured, is prepared. As shown in FIG. 4, the electrode substrate 12 is covered with an electrode layer such as Al having a thickness of 200 nm by vapor deposition sputtering or the like on an insulating substrate 13 such as a quartz substrate which is optically polished into a flat surface with high precision. Then, the patterned electrode 14 having a predetermined periodic structure capable of phase matching of the measured fundamental wave described above is patterned by a lithography technique into a parallel pattern of, for example, a comb shape or a lattice shape.

【0033】そして、この電極基板12を、図3に示す
ように、そのパターン電極14が強誘電体1の主面1S
側に密着するように重ね合わせ、この状態で電極3及び
14間に直流電源15の例えばパルス電圧を印加する。
Then, as shown in FIG. 3, the pattern electrode 14 of the electrode substrate 12 is used as the main surface 1S of the ferroelectric substance 1.
They are superposed so as to be in close contact with the side, and in this state, for example, a pulse voltage of the DC power supply 15 is applied between the electrodes 3 and 14.

【0034】この場合、300℃以下望ましくは150
℃未満の温度下において、強誘電体1の自発分極の負側
の面に被着された電極3側を負電位とし、自発分極の正
側の面の電極14が正電位となるように1kV/mm〜
100kV/mmの直流電圧または1個または複数の例
えば1μsec〜数分のパルス幅例えば100μsec
のパルス幅を有するパルスを10〜100パルス印加し
て図5で示した周期ドメイン構造11、すなわち分極反
転構造を形成する。
In this case, 300 ° C. or lower, preferably 150
At a temperature of less than ℃, the electrode 3 side deposited on the surface of the ferroelectric body 1 on the negative side of the spontaneous polarization has a negative potential, and the electrode 14 on the surface of the positive side of the spontaneous polarization has a positive potential of 1 kV. / Mm ~
DC voltage of 100 kV / mm or pulse width of one or more, for example, 1 μsec to several minutes, for example, 100 μsec
By applying 10 to 100 pulses having a pulse width of, the periodic domain structure 11 shown in FIG. 5, that is, the domain inversion structure is formed.

【0035】このようにして強誘電体1に光導波路2と
周期ドメイン構造11が形成された非線形光学素子例え
ばSHGが形成され、その光導波路2の端面2aに基本
波光源としての半導体レーザが一体化された目的とする
非線形光学装置が得られる。尚、図中dは自発分極方向
を示す。
In this way, a nonlinear optical element such as SHG in which the optical waveguide 2 and the periodic domain structure 11 are formed is formed on the ferroelectric body 1, and a semiconductor laser as a fundamental wave light source is integrated on the end face 2a of the optical waveguide 2. Thus, the objective non-linear optical device can be obtained. In the figure, d indicates the spontaneous polarization direction.

【0036】[0036]

【発明の効果】上述したように本発明方法によれば、光
導波路を有する強誘電体1に基本波光源をを光学的に結
合した状態で、この光源の波長に適合した周期ドメイン
構造を形成するので、光源の例えば半導体レーザの発振
波長のばらつきに係わりなく、最も適した周期の周期ド
メイン構造11を形成できることから、変換効率が高い
出力特性にすぐれた非線形光学装置、例えば短波長光源
等を構成できる。
As described above, according to the method of the present invention, in the state where the fundamental wave light source is optically coupled to the ferroelectric substance 1 having the optical waveguide, the periodic domain structure adapted to the wavelength of this light source is formed. Therefore, since the periodic domain structure 11 having the most suitable period can be formed regardless of the variation in the oscillation wavelength of the light source, for example, the semiconductor laser, a nonlinear optical device having a high conversion efficiency and excellent output characteristics, such as a short wavelength light source, is provided. Can be configured.

【0037】そして、光導波路2を形成してから周期ド
メイン構造を形成するものであるが、この周期ドメイン
構造の形成を上述した低温でのドメイン反転が可能な方
法を採ったことによって先に形成した光導波路2はその
特性に何ら影響が生じないようにすることができる。
The optical waveguide 2 is formed and then the periodic domain structure is formed. The periodic domain structure is first formed by adopting the above-mentioned method capable of domain inversion at low temperature. The optical waveguide 2 can be made to have no influence on its characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による非線形光学装置の一例に用いる光
導波路を有する強誘電体の一例の斜視図である。
FIG. 1 is a perspective view of an example of a ferroelectric having an optical waveguide used in an example of a nonlinear optical device according to the present invention.

【図2】本発明による非線形光学装置の製造方法の一例
の説明図である。
FIG. 2 is an explanatory diagram of an example of a method for manufacturing a nonlinear optical device according to the present invention.

【図3】本発明製造方法の一例の説明図である。FIG. 3 is an explanatory diagram of an example of the manufacturing method of the present invention.

【図4】本発明方法で用いる電極基板の一例の斜視図で
ある。
FIG. 4 is a perspective view of an example of an electrode substrate used in the method of the present invention.

【図5】周期ドメイン構造の模式的断面図である。FIG. 5 is a schematic cross-sectional view of a periodic domain structure.

【符号の説明】[Explanation of symbols]

1 強誘電体 2 光導波路 3 電極 5 半導体レーザチップ 12 電極基板 14 パターン電極 1 Ferroelectric 2 Optical Waveguide 3 Electrode 5 Semiconductor Laser Chip 12 Electrode Substrate 14 Patterned Electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 秀一 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 甲賀 祐二 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 木島 公一朗 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shuichi Matsumoto 6-735 Kita-Shinagawa, Shinagawa-ku, Tokyo Sony Corporation (72) Inventor Yuji Koga 6-35 Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation (72) Inventor Koichiro Kijima 6-735 Kitashinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 単分域化された強誘電体に光導波路を作
製し、 該光導波路に基本波光源を光学的に結合させ、 その後上記強誘電体に周期ドメイン構造を形成すること
を特徴とする非線形光学装置の製造方法。
1. A method of producing an optical waveguide in a single-domain ferroelectric material, optically coupling a fundamental wave light source to the optical waveguide, and then forming a periodic domain structure in the ferroelectric material. And a method for manufacturing a nonlinear optical device.
【請求項2】 単分域化された強誘電体に光導波路を作
製し、 該光導波路に基本波光源を光学的に結合させ、 その後この結合状態で、上記光導波路の基本波光源の結
合部とは反対側の端部から導出させる上記基本波光源か
らの光の波長を測定して、この基本波の波長に対して位
相整合する周期ドメイン構造を形成することを特徴とす
る非線形光学装置の製造方法。
2. An optical waveguide is produced in a single-domain ferroelectric material, a fundamental wave light source is optically coupled to the optical waveguide, and then, in this coupled state, the fundamental wave light source of the optical waveguide is coupled. A non-linear optical device characterized in that it measures the wavelength of light from the fundamental wave light source to be led out from the end opposite to the section, and forms a periodic domain structure that is phase-matched to the wavelength of this fundamental wave. Manufacturing method.
【請求項3】 単分域化された強誘電体に光導波路を作
製し、 該光導波路に基本波光源を光学的に結合させ、 その後この結合状態で、上記光導波路の基本波光源の結
合部とは反対側の端部から導出される上記基本波光源か
らの光の波長を測定し、 その後、上記強誘電体を挟んで少なくとも一方が、上記
測定された基本波波長に対して位相整合する周期ドメイ
ン構造のパターンに対応するパターンとされた第1及び
第2の電極間に、1kV/mm〜100kV/mmの電
界を、300℃以下の温度下で印加して、上記強誘電体
に周期ドメイン構造を形成することを特徴とする非線形
光学構造の製造方法。
3. An optical waveguide is formed in a single-domain ferroelectric material, a fundamental wave light source is optically coupled to the optical waveguide, and then, in this coupled state, coupling of the fundamental wave light source of the optical waveguide is performed. The wavelength of the light from the fundamental wave light source that is derived from the end opposite to the section is measured, and then at least one of which sandwiches the ferroelectric substance is phase-matched to the measured fundamental wave wavelength. An electric field of 1 kV / mm to 100 kV / mm is applied between the first and second electrodes, which have a pattern corresponding to the pattern of the periodic domain structure, at a temperature of 300 ° C. or lower to the ferroelectric substance. A method for manufacturing a non-linear optical structure, which comprises forming a periodic domain structure.
JP4091198A 1992-04-10 1992-04-10 Manufacture of non-linear optical device Pending JPH05289134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4091198A JPH05289134A (en) 1992-04-10 1992-04-10 Manufacture of non-linear optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4091198A JPH05289134A (en) 1992-04-10 1992-04-10 Manufacture of non-linear optical device

Publications (1)

Publication Number Publication Date
JPH05289134A true JPH05289134A (en) 1993-11-05

Family

ID=14019748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4091198A Pending JPH05289134A (en) 1992-04-10 1992-04-10 Manufacture of non-linear optical device

Country Status (1)

Country Link
JP (1) JPH05289134A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002099009A (en) * 1994-08-31 2002-04-05 Matsushita Electric Ind Co Ltd Manufacturing method of polarization inversion region and optical wavelength conversion element using the same
JP2003295242A (en) * 1994-08-31 2003-10-15 Matsushita Electric Ind Co Ltd Optical wavelength conversion element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002099009A (en) * 1994-08-31 2002-04-05 Matsushita Electric Ind Co Ltd Manufacturing method of polarization inversion region and optical wavelength conversion element using the same
JP2003295242A (en) * 1994-08-31 2003-10-15 Matsushita Electric Ind Co Ltd Optical wavelength conversion element

Similar Documents

Publication Publication Date Title
US5193023A (en) Method of controlling the domain of a nonlinear ferroelectric optics substrate
US5652674A (en) Method for manufacturing domain-inverted region, optical wavelength conversion device utilizing such domain-inverted region and method for fabricating such device
Mizuuchi et al. Harmonic blue light generation in bulk periodically poled LiTaO3
EP0532969B1 (en) Process for fabricating an optical device for generating a second harmonic optical beam
JPH10503602A (en) Fabrication of patterned polarized dielectric structures and devices
US5522973A (en) Fabrication of ferroelectric domain reversals
JP3059080B2 (en) Method for manufacturing domain-inverted region, optical wavelength conversion element and short wavelength light source using the same
US5521750A (en) Process for forming proton exchange layer and wavelength converting element
JPH0419719A (en) Domain control method for nonlinear ferrodielectric optical material
JP3332363B2 (en) Method of manufacturing domain-inverted region, optical wavelength conversion element using the same, and method of manufacturing the same
JPH06242479A (en) Optical wavelength conversion element and its formation
JP3303346B2 (en) Method for controlling polarization of lithium niobate and lithium tantalate, method for manufacturing optical waveguide device using the same, and optical waveguide device
JPH05289134A (en) Manufacture of non-linear optical device
JP3318770B2 (en) Manufacturing method of optical waveguide type wavelength converter
RU2371746C1 (en) Method of forming domain structure in single-crystal wafer of non-linear optical ferroelectric material
JPH04335620A (en) Polarization inversion control method
JP2003295242A (en) Optical wavelength conversion element
JPH05289132A (en) Optical waveguide device integrated with semiconductor laser source and manufacture thereof
JP3946092B2 (en) Method for forming periodically poled structure
JPH07244307A (en) Short-wavelength light generator
JPH06281982A (en) Laser beam generation device
JP3398144B2 (en) Method for manufacturing domain-inverted region
JP3883613B2 (en) Electro-optic element
JP3429502B2 (en) Method for manufacturing domain-inverted region
JP3038955B2 (en) Method of forming domain-inverted structure of ferroelectric