JPH05158018A - Driving method for ferroelectric liquid crystal panel - Google Patents

Driving method for ferroelectric liquid crystal panel

Info

Publication number
JPH05158018A
JPH05158018A JP34769191A JP34769191A JPH05158018A JP H05158018 A JPH05158018 A JP H05158018A JP 34769191 A JP34769191 A JP 34769191A JP 34769191 A JP34769191 A JP 34769191A JP H05158018 A JPH05158018 A JP H05158018A
Authority
JP
Japan
Prior art keywords
liquid crystal
phase
signal
crystal panel
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34769191A
Other languages
Japanese (ja)
Inventor
Masaya Kondo
近藤  真哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP34769191A priority Critical patent/JPH05158018A/en
Publication of JPH05158018A publication Critical patent/JPH05158018A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a driving method by which display having stable contrast is performed for a long time without changing the oriented state of the liquid crystal molecule of the liquid crystal layer of a ferroelectric liquid crystal panel in comparison with the initial oriented state even when the liquid crystal panel is driven for a long time. CONSTITUTION:In a non-selection period, a signal impressed on a scanning electrode has the equal voltage value of a signal impressed on a signal electrode, and at least two or more pulses of signals having the same polarity are continuously impressed. Thus, a dormant period is set in the non-selection period whatever data is inputted in the signal electrode, so that the ferroelectric liquid crystal panel is stably driven for a long time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強誘電性液晶を液晶層
とし、マトリックス状の画素を有する液晶表示パネルや
液晶光シャッタ−アレイ等の強誘電性液晶パネルの駆動
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of driving a ferroelectric liquid crystal panel such as a liquid crystal display panel having a matrix of pixels and a liquid crystal optical shutter array having ferroelectric liquid crystal as a liquid crystal layer.

【0002】[0002]

【従来の技術】強誘電性液晶を用いた液晶パネルは、ク
ラークらの米国特許第4367924号公報でメモリー
性を有すること、高速応答が可能なこと、マルチプレッ
クス特性が良好なこと等が報告されて以来、精力的に研
究がなされている。
2. Description of the Related Art A liquid crystal panel using a ferroelectric liquid crystal has been reported in U.S. Pat. No. 4,367,924 to Clark, et al. Since then, research has been done vigorously.

【0003】強誘電性液晶のスイッチングは、液晶分子
に、ある閾値以上の電圧が印加されたときにのみ起こ
り、また印加電圧の極性の違いによって、第1の安定状
態(ON状態)か第2の安定状態(OFF状態)かの何
れかが選択される。図4はこの強誘電性液晶を含むマト
リックス形の液晶パネルの電極構成を示したものであ
る。このマトリックス形の液晶パネルの駆動には、走査
電極X1〜X4に順次周期的に選択電圧を印加し、信号
電極Y1〜Y4には所定の情報信号を走査電極信号と同
期させて並列的に印加し、選択された画素の液晶分子を
表示情報に応じてスイッチングさせる時分割駆動が用い
られている。
The switching of the ferroelectric liquid crystal occurs only when a voltage above a certain threshold is applied to the liquid crystal molecules, and the first stable state (ON state) or the second stable state depends on the polarity of the applied voltage. Any of the stable states (OFF state) of is selected. FIG. 4 shows an electrode structure of a matrix type liquid crystal panel including the ferroelectric liquid crystal. In order to drive the matrix type liquid crystal panel, a selection voltage is applied to the scan electrodes X1 to X4 periodically and in sequence, and a predetermined information signal is applied to the signal electrodes Y1 to Y4 in parallel in synchronization with the scan electrode signals. However, time-division driving is used in which liquid crystal molecules of the selected pixel are switched according to display information.

【0004】時分割駆動の方法として、種々の方法が提
案されている。図5は特開昭62−150334号に示
されている駆動法で、(A)はON状態を、(B)はO
FF状態をセットする時の電圧波形と画素の透過率の変
化を示している。走査電極に印加される信号は図5
(A)、(B)の(イ)に示すように4位相からなり、
第1位相と第2位相,第3位相と第4位相はそれぞれ正
負のパルス対を形成しており、二つのパルス対の極性は
互いに逆である。また、信号電極に印加される信号も4
位相からなっており、1走査期間に印加される走査側電
圧の4つのパルスと、これと同期した信号側電圧との組
合せによってON、またはOFFの何れかの状態を選択
することが出来る。例えば、図5(A)の(ロ)のよう
な信号電圧を印加した場合には、画素に印加される合成
電圧波形は図5(A)の(ハ)のようになり、前半の2
パルスが閾値電圧を越え、後半の2パルスが閾値電圧以
下のために、第2位相目のパルスによってON状態がセ
ットされ保持される。また、信号電圧の組合せ方の違い
によって、図5(B)の(ロ)のような信号電圧波形を
印加した場合には、画素に印加される合成電圧波形は図
5(B)の(ハ)のようになり、選択期間の前半の2パ
ルスは閾値電圧以下で、後半の2パルスが閾値電圧値を
越え、このため選択期間の4位相目のパルスによって、
OFF状態がセットされる。
Various methods have been proposed as time-division driving methods. FIG. 5 shows a driving method disclosed in JP-A-62-150334, in which (A) shows an ON state and (B) shows O.
7 shows changes in voltage waveform and pixel transmittance when setting the FF state. The signals applied to the scan electrodes are shown in FIG.
As shown in (a) of (A) and (B), it consists of four phases,
The first phase and the second phase and the third phase and the fourth phase respectively form a positive and negative pulse pair, and the polarities of the two pulse pairs are opposite to each other. The signal applied to the signal electrode is also 4
It is composed of phases, and it is possible to select either the ON state or the OFF state by combining four pulses of the scanning side voltage applied in one scanning period and the signal side voltage synchronized with the four pulses. For example, when a signal voltage as shown in (b) of FIG. 5A is applied, the composite voltage waveform applied to the pixel becomes as shown in (c) of FIG.
Since the pulse exceeds the threshold voltage and the latter two pulses are below the threshold voltage, the ON state is set and held by the pulse of the second phase. Further, when a signal voltage waveform as shown in (b) of FIG. 5B is applied due to the difference in the combination of the signal voltages, the combined voltage waveform applied to the pixel is as shown in (C) of FIG. ), The two pulses in the first half of the selection period are below the threshold voltage, and the two pulses in the latter half exceed the threshold voltage value. Therefore, by the pulse in the fourth phase of the selection period,
The OFF state is set.

【0005】[0005]

【発明の解決しようとする課題】しかしながら、この駆
動法によって液晶パネルを長時間駆動させると、液晶パ
ネルの液晶層の液晶分子の配向状態が、駆動初期の配向
状態とは違った配向状態に変化してしまい、その結果表
示コントラストが悪くなるといった問題がある。そこで
本発明は、このような問題点を解決し、長時間の駆動を
行っても液晶パネルの液晶層の液晶分子の配向状態が変
化することなく、強誘電性液晶パネルが安定して駆動さ
れる駆動法を提供することを目的とする。
However, when the liquid crystal panel is driven for a long time by this driving method, the alignment state of the liquid crystal molecules in the liquid crystal layer of the liquid crystal panel changes to an alignment state different from the initial alignment state. As a result, there is a problem that the display contrast deteriorates. Therefore, the present invention solves such a problem, and the ferroelectric liquid crystal panel can be stably driven without changing the alignment state of the liquid crystal molecules of the liquid crystal layer of the liquid crystal panel even if it is driven for a long time. The purpose is to provide a driving method.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、対向面にそれぞれ走査電極と信号電極を有
する一対の基板間に強誘電性液晶を挟持し、マトリック
ス状に画素が形成された強誘電性液晶パネルを、時分割
駆動する強誘電性液晶パネルの駆動方法に於て、各画素
の非選択期間に該画素にかかる電圧がゼロの期間を設け
たことを特徴としている。
In order to achieve the above-mentioned object, according to the present invention, a ferroelectric liquid crystal is sandwiched between a pair of substrates each having a scanning electrode and a signal electrode on opposite surfaces to form pixels in a matrix. In the method for driving a ferroelectric liquid crystal panel in which the above-mentioned ferroelectric liquid crystal panel is time-divisionally driven, a period in which the voltage applied to the pixel is zero is provided in the non-selection period of each pixel.

【0007】[0007]

【作用】画素に印加される電圧が0Vの場合は、強誘電
性液晶分子が持つ自発分極による電界方向は、ガラス基
板法線方向と平行であり垂直方向に対しては現われない
が、ある値の電圧が画素に印加され液晶分子が動き出す
と、自発分極による電界がガラス基板の法線方向に対し
て垂直に現れる。この電界が長時間セル内に存在する
と、液晶分子の配向状態を変化させてしまう原因とな
り、表示コントラストも落としてしまう。そこで、非選
択期間に電圧が0Vとなる休止期間を設けることによ
り、基板の法線方向の垂直方向の電界が連続的に加わる
ことを防ぐようにすれば、上記の現象が緩和される。
When the voltage applied to the pixel is 0 V, the electric field direction due to the spontaneous polarization of the ferroelectric liquid crystal molecules is parallel to the normal direction of the glass substrate and does not appear in the vertical direction, but has a certain value. When the voltage is applied to the pixels and the liquid crystal molecules start moving, an electric field due to spontaneous polarization appears perpendicular to the normal direction of the glass substrate. If this electric field exists in the cell for a long time, it causes a change in the alignment state of the liquid crystal molecules, and the display contrast also drops. Therefore, by providing a rest period in which the voltage is 0 V in the non-selection period so as to prevent continuous application of an electric field in the direction perpendicular to the substrate normal direction, the above phenomenon is mitigated.

【0008】[0008]

【実施例1】以下本発明の実施例を図面に基づいて詳細
に説明する。本実施例で用いた液晶パネルは約2μの厚
さの強誘電性液晶層を持つ一対のガラス基板から構成さ
れている。ガラス基板の対向面には図4に示す電極が形
成されており、その上に高分子配向膜が塗布され、ラビ
ング処理がなされている。さらに1方のガラス基板の外
側に偏光板の偏光軸がラビング軸と22.5゜になるよ
うに第一の偏光板が設置されており、他方のガラス基板
の外側には第1の偏光板の偏光軸と90゜異なるように
して第2の偏光板が設置されている。
Embodiment 1 An embodiment of the present invention will be described in detail below with reference to the drawings. The liquid crystal panel used in this example is composed of a pair of glass substrates having a ferroelectric liquid crystal layer having a thickness of about 2 μm. The electrodes shown in FIG. 4 are formed on the facing surface of the glass substrate, and a polymer alignment film is applied on the electrodes and subjected to rubbing treatment. Further, a first polarizing plate is installed on the outside of one glass substrate such that the polarizing axis of the polarizing plate is 22.5 ° with the rubbing axis, and the first polarizing plate is on the outside of the other glass substrate. The second polarizing plate is installed so as to be different from the polarization axis by 90 °.

【0009】図1は本発明の第1の実施例の駆動電圧波
形を示したものである。(イ)は走査側電圧波形、
(ロ)は信号側電圧波形、(ハ)は選択された画素に印
加される合成電圧波形、X1,X2,Y1は図4に示し
たマトリックス電極の走査側電極と信号側電極に対応し
ており、a,bは図4における画素a,bに対応してい
る。本発明に於ける駆動波形は1選択期間は4つのパル
スで構成される。また、非選択期間の走査側電圧波形
は、第1位相と第4位相は同極性であり、第2位相と第
3位相は同極性であるとともに前期第1位相と第4位相
とは逆極性である。また、選択期間の直後の非選択期間
の第1ブロックの4パルスと第2ブロックの4パルスは
互いに逆極性になっており、その後順に奇数番目のブロ
ックの4パルスと偶数番目のブロックの4パルスは互い
に逆極性になっている。図1に於て選択期間の走査側電
圧波形の第1位相と第4位相の電圧は+12V、第2位
相と第3位相の電圧はー12Vであり、また非選択期間
の走査側電圧波形の第1ブロックの第1位相と第4位相
はー4V、第2位相と第3位相は4Vであり、第2ブロ
ックの第1位相と第4位相は4V、第2位相と第3位相
はー4Vである。ON状態を選択する場合の信号側電圧
波形は、第1位相と第3位相が4V、第2位相と、第4
位相がー4Vである。またOFF状態を選択する場合の
信号電極波形は、ON状態を選択する信号電極電圧波形
と全て逆極性となっている。また全ての位相のパルス幅
は100μsとした。
FIG. 1 shows a drive voltage waveform according to the first embodiment of the present invention. (A) is the scanning side voltage waveform,
(B) is a signal side voltage waveform, (C) is a composite voltage waveform applied to the selected pixel, and X1, X2 and Y1 correspond to the scanning side electrodes and the signal side electrodes of the matrix electrode shown in FIG. , A and b correspond to the pixels a and b in FIG. The drive waveform in the present invention is composed of four pulses in one selection period. The scanning-side voltage waveform in the non-selection period has the same polarity in the first phase and the fourth phase, the same polarity in the second phase and the third phase, and the opposite polarity to the first phase and the fourth phase in the previous period. Is. In the non-selection period immediately after the selection period, the 4 pulses of the first block and the 4 pulses of the second block have opposite polarities to each other, and then 4 pulses of the odd-numbered block and 4 pulses of the even-numbered block in that order. Have opposite polarities. In FIG. 1, the voltage of the first phase and the fourth phase of the scanning side voltage waveform in the selection period is + 12V, the voltage of the second phase and the third phase is -12V, and the scanning side voltage waveform of the non-selection period is The first and fourth phases of the first block are −4V, the second and third phases are 4V, the first and fourth phases of the second block are 4V, and the second and third phases are −4V. It is 4V. The voltage waveform on the signal side when the ON state is selected is 4 V for the first phase and the third phase, and the fourth phase for the second phase.
The phase is -4V. In addition, the signal electrode waveform when selecting the OFF state has the opposite polarity to the signal electrode voltage waveform when selecting the ON state. The pulse width of all phases was 100 μs.

【0010】図1(ハ)のaは、選択期間に信号電極に
ON状態の電圧を印加した場合、bは選択期間に信号電
極にOFF状態の電圧を印加した場合で、非選択期間に
はa,b共に信号電極にON、またはOFF状態の信号
電圧を印加した場合の画素にかかる合成電圧波形を示し
ている。非選択期間に、信号電極ON、またはOFFの
何れの信号が印加されても、非選択期間には必ず電圧値
が0となる休止期間が出来る。この液晶パネルを24時
間連続駆動を行ったが、液晶パネルの液晶層の液晶分子
の配向状態が駆動初期の配向状態に比べて変化すること
がなく、これより表1のように長時間の駆動を行っても
従来の駆動法に比べて表示コントラストを下げることな
く良好な表示を行うことが出来た。
In FIG. 1C, a indicates a case where an ON-state voltage is applied to the signal electrode during the selection period, and b indicates a case where an OFF-state voltage is applied to the signal electrode during the selection period. Both a and b show a composite voltage waveform applied to a pixel when a signal voltage in the ON or OFF state is applied to the signal electrode. Regardless of whether the signal electrode ON or OFF is applied during the non-selection period, a pause period in which the voltage value is always 0 is formed during the non-selection period. When this liquid crystal panel was continuously driven for 24 hours, the alignment state of the liquid crystal molecules in the liquid crystal layer of the liquid crystal panel did not change compared to the alignment state at the beginning of driving, and as a result, as shown in Table 1, long-term driving was performed. Even if the above was performed, good display could be performed without lowering the display contrast as compared with the conventional driving method.

【0011】 [0011]

【0012】[0012]

【実施例2】図2は本発明の第2の実施例の駆動電圧波
形を示したものである。(イ)は走査側電圧波形、
(ロ)は信号側電圧波形、(ハ)は選択された画素に印
加される合成電圧波形を示したものである。X1,X
2,Y1は図4に示したマトリックス電極の走査側電極
と信号側電極に対応しており、a,bは図4における画
素a,bに対応している。本発明に於ける駆動波形は1
選択期間は4つのパルスで構成される。また、非選択期
間の走査側電圧波形は、第1位相と第2位相は同極性で
あり、第3位相と第4位相は同極性であるとともに第1
位相と第3位相とは逆極性である。また、非選択期間の
4パルスから成る各ブロックは互いに同一極性になって
いる。図2に於て選択期間の走査側電圧波形の第1位相
と第4位相の電圧は+12V、第2位相と第3位相の電
圧はー12Vである。また非選択期間の走査側電圧波形
の各ブロックの第1位相と第2位相はー4V、第3位相
と第4位相は+4Vである。ON状態を選択する場合の
信号側電圧波形は、第1位相と第3位相が4V、第2位
相と、第4位相がー4Vである。またOFF状態を選択
する場合の信号電極波形は、ON状態を選択する信号電
極電圧波形と全て逆極性となっている。また全ての位相
のパルス幅は100μsとした。
Second Embodiment FIG. 2 shows a drive voltage waveform according to the second embodiment of the present invention. (A) is the scanning side voltage waveform,
(B) shows a signal-side voltage waveform, and (C) shows a composite voltage waveform applied to the selected pixel. X1, X
2, Y1 correspond to the scanning side electrodes and the signal side electrodes of the matrix electrode shown in FIG. 4, and a and b correspond to the pixels a and b in FIG. The drive waveform in the present invention is 1
The selection period is composed of four pulses. The scanning-side voltage waveforms in the non-selection period have the same polarity in the first phase and the second phase, the same polarity in the third phase and the fourth phase, and the first phase.
The phase and the third phase have opposite polarities. Further, each block composed of 4 pulses in the non-selected period has the same polarity. In FIG. 2, the voltage of the first phase and the fourth phase of the scanning side voltage waveform in the selected period is + 12V, and the voltage of the second phase and the third phase is -12V. Further, the first phase and the second phase of each block of the voltage waveform on the scanning side in the non-selection period are -4V, and the third phase and the fourth phase are + 4V. The voltage waveforms on the signal side when the ON state is selected are 4V for the first phase and the third phase, and -4V for the second phase and the fourth phase. In addition, the signal electrode waveform when selecting the OFF state has the opposite polarity to the signal electrode voltage waveform when selecting the ON state. The pulse width of all phases was 100 μs.

【0013】図2(ハ)のaは選択期間に信号電極にO
N状態の電圧を印加した場合、bは選択期間に信号電極
にOFF状態の電圧を印加した場合で、非選択期間には
a,b共に信号電極にON、またはOFF状態の信号電
圧を印加した場合の画素にかかる合成電圧波形を示して
いる。非選択期間に、信号電極にONまたはOFFの何
れの信号が印加されても、非選択期間には必ず電圧値が
0となる休止期間が出来る。この液晶パネルを24時間
連続駆動を行ったが、液晶パネルの液晶層の液晶分子の
配向状態が駆動初期の配向状態に比べて変化することが
なく、実施例1と同じく表1のような長時間安定な表示
コントラストを得ることが出来た。
In FIG. 2C, "a" indicates that the signal electrode is O during the selection period.
When an N-state voltage is applied, b is when an OFF-state voltage is applied to the signal electrode during the selection period, and both a and b are applied with an ON-state or OFF-state signal voltage during the non-selection period. The combined voltage waveform applied to the pixel in the case is shown. Regardless of whether an ON signal or an OFF signal is applied to the signal electrode during the non-selection period, a non-selection period has a pause period in which the voltage value is always 0. When this liquid crystal panel was continuously driven for 24 hours, the alignment state of the liquid crystal molecules in the liquid crystal layer of the liquid crystal panel did not change as compared with the alignment state at the initial stage of driving, and the length as shown in Table 1 was the same as in Example 1. We were able to obtain stable display contrast over time.

【0014】[0014]

【実施例3】図3は本発明の別の実施例の駆動電圧波形
を示したものである。(イ)は走査側電圧波形、(ロ)
は信号側電圧波形、(ハ)は選択された画素に印加され
る合成電圧波形を示したものである。X1,X2,Y1
は図4に示したマトリックス電極の走査側電極と信号側
電極に対応しており、a,bは図4における画素a,b
に対応している。本発明に於ける駆動波形は2フレーム
からなり、各フレームのはじめの2つのパルスによって
ON、またはOFFが選択される。また、非選択期間の
走査側電圧波形は、1フレーム目の選択期間直後の第1
ブロックの第1位相と第2位相は同極性であり、第2ブ
ロックの第1位相と第2位相は同極性である。また選択
期間直後の非選択期間の第1ブロックと第2ブロックの
2パルスは互いに逆極性になっており、その後順に偶数
番目のブロックの2パルスと、奇数番目のブロックの2
パルスは互いに逆極性になっている。また2フレーム目
の選択期間直後の第1ブロックの第1位相と第2位相は
同極性であり、第2ブロックの第1位相と第2位相は同
極性である。また選択期間直後の非選択期間の第1ブロ
ックと第2ブロックの2パルスは互いに逆極性になって
おり、その後順に偶数番目のブロックの2パルスと、奇
数番目のブロックの2パルスは互いに逆極性になってい
る。図1に於て選択期間の走査側電圧波形の第1位相の
電圧は+12V、第2位相の電圧はー12Vであり、ま
た非選択期間の走査側電圧波形の第1ブロックの第1位
相と第2位相は4V、第2ブロックの第1位相と第2位
相はー4Vである。ON状態を選択する場合の信号側電
圧波形は、第1位相が4V、第2位相がー4Vである。
またOFF状態を選択する場合の信号電極波形は、ON
状態を選択する信号電極電圧波形と全て逆極性となって
いる。また全ての位相のパルス幅は100μsとした。
[Embodiment 3] FIG. 3 shows a drive voltage waveform according to another embodiment of the present invention. (A) is the voltage waveform on the scanning side, (b)
Shows a signal-side voltage waveform, and (c) shows a composite voltage waveform applied to the selected pixel. X1, X2, Y1
Corresponds to the scanning side electrode and the signal side electrode of the matrix electrode shown in FIG. 4, and a and b are the pixels a and b in FIG.
It corresponds to. The drive waveform in the present invention consists of two frames, and ON or OFF is selected by the first two pulses of each frame. The scanning-side voltage waveform in the non-selection period is the first voltage immediately after the selection period in the first frame.
The first phase and the second phase of the block have the same polarity, and the first phase and the second phase of the second block have the same polarity. Further, the two pulses of the first block and the second block of the non-selection period immediately after the selection period have mutually opposite polarities, and thereafter, the two pulses of the even-numbered block and the two pulses of the odd-numbered block are sequentially arranged.
The pulses have opposite polarities. Immediately after the selection period of the second frame, the first phase and the second phase of the first block have the same polarity, and the first phase and the second phase of the second block have the same polarity. In the non-selection period immediately after the selection period, the two pulses of the first block and the second block have opposite polarities, and the two pulses of the even-numbered block and the two pulses of the odd-numbered block have opposite polarities in that order. It has become. In FIG. 1, the voltage of the first phase of the scanning side voltage waveform in the selected period is + 12V, the voltage of the second phase is -12V, and the first phase of the first block of the scanning side voltage waveform in the non-selected period is The second phase is 4V, and the first and second phases of the second block are -4V. In the signal side voltage waveform when the ON state is selected, the first phase is 4V and the second phase is -4V.
The signal electrode waveform when selecting the OFF state is ON
All have opposite polarities to the signal electrode voltage waveform that selects the state. The pulse width of all phases was 100 μs.

【0015】図3(ハ)のaは、選択期間に信号電極に
ON状態の電圧を印加した場合、bは選択期間に信号電
極にOFF状態の電圧を印加した場合で、非選択期間に
はa,b共に信号電極にON、またはOFF状態の信号
電圧を印加した場合の画素にかかる合成電圧波形を示し
ている。非選択期間に、信号電極ON、またはOFFの
何れの信号が印加されても、非選択期間には必ず電圧値
が0となる休止期間が出来る。この液晶パネルを24時
間連続駆動を行ったが、液晶パネルの液晶層の液晶分子
の配向状態が駆動初期の配向状態に比べて変化すること
がなく、実施例1と同じく表1のような長時間安定な表
示コントラストを得ることが出来た。
In FIG. 3C, a indicates a case where an ON-state voltage is applied to the signal electrode during the selection period, and b indicates a case where an OFF-state voltage is applied to the signal electrode during the selection period. Both a and b show a composite voltage waveform applied to a pixel when a signal voltage in the ON or OFF state is applied to the signal electrode. Regardless of whether the signal electrode ON or OFF is applied during the non-selection period, a pause period in which the voltage value is always 0 is formed during the non-selection period. When this liquid crystal panel was continuously driven for 24 hours, the alignment state of the liquid crystal molecules in the liquid crystal layer of the liquid crystal panel did not change as compared with the alignment state at the initial stage of driving, and the length as shown in Table 1 was the same as in Example 1. We were able to obtain stable display contrast over time.

【0016】[0016]

【発明の効果】以上の実施例で述べたように、本発明の
駆動方法によれば、非選択期間に、ONまたはOFFの
何れの信号電圧が印加されても、画素に加わる信号電圧
には必ず電圧値0Vの休止期間が設けられるので、長時
間の駆動を行っても液晶パネルの液晶層の液晶分子の配
向状態が駆動初期の配向状態に比べて変化してしまうこ
とがなく、安定したコントラストで表示ができる。
As described in the above embodiments, according to the driving method of the present invention, no matter whether the ON or OFF signal voltage is applied during the non-selection period, the signal voltage applied to the pixel is Since the rest period with the voltage value of 0 V is always provided, the alignment state of the liquid crystal molecules in the liquid crystal layer of the liquid crystal panel does not change from the alignment state at the initial stage of driving, and is stable even when driving for a long time. It can be displayed in contrast.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例における駆動信号波形を示した図
である。
FIG. 1 is a diagram showing drive signal waveforms in a first embodiment.

【図2】第2の実施例における駆動信号波形を示した図
である。
FIG. 2 is a diagram showing drive signal waveforms in a second embodiment.

【図3】第3の実施例における駆動信号波形を示した図
である。
FIG. 3 is a diagram showing drive signal waveforms in a third embodiment.

【図4】液晶表示のパネル電極配置図である。FIG. 4 is a panel electrode layout diagram of a liquid crystal display.

【図5】従来の駆動方法における駆動信号波形を示した
図である。
FIG. 5 is a diagram showing drive signal waveforms in a conventional drive method.

【符号の説明】[Explanation of symbols]

X1〜X4 走査電極 Y1〜Y4 信号電極 a,b 表示画素 X1 to X4 scanning electrodes Y1 to Y4 signal electrodes a, b display pixels

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 対向面にそれぞれ走査電極と信号電極を
有する一対の基板間に強誘電性液晶を挟持し、マトリッ
クス状に画素が形成された強誘電性液晶パネルを、時分
割駆動する強誘電性液晶パネルの駆動方法に於て、各画
素の非選択期間に該画素にかかる電圧がセロの期間を設
けたことを特徴とする強誘電性液晶パネルの駆動方法。
1. A ferroelectric liquid crystal in which ferroelectric liquid crystal is sandwiched between a pair of substrates each having a scanning electrode and a signal electrode on opposite surfaces, and pixels are formed in a matrix form in a time-divisional drive. A method of driving a liquid crystal liquid crystal panel, wherein a period in which a voltage applied to each pixel is zero is provided in a non-selection period of each pixel.
【請求項2】 前記信号電極に印加する信号と同期させ
て、電圧値が該信号の電圧値に等しい同極性のパルスを
2パルス以上連続して走差電極に印加して、各画素の非
選択期間に該画素にかかる電圧がゼロの期間を設けるこ
とを特徴とする請求項1記載の強誘電性液晶パネルの駆
動方法。
2. Synchronizing with the signal applied to the signal electrode, two or more consecutive pulses of the same polarity whose voltage value is equal to the voltage value of the signal are continuously applied to the scanning electrode, and the The method for driving a ferroelectric liquid crystal panel according to claim 1, wherein a period in which the voltage applied to the pixel is zero is provided in the selection period.
JP34769191A 1991-12-04 1991-12-04 Driving method for ferroelectric liquid crystal panel Pending JPH05158018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34769191A JPH05158018A (en) 1991-12-04 1991-12-04 Driving method for ferroelectric liquid crystal panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34769191A JPH05158018A (en) 1991-12-04 1991-12-04 Driving method for ferroelectric liquid crystal panel

Publications (1)

Publication Number Publication Date
JPH05158018A true JPH05158018A (en) 1993-06-25

Family

ID=18391922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34769191A Pending JPH05158018A (en) 1991-12-04 1991-12-04 Driving method for ferroelectric liquid crystal panel

Country Status (1)

Country Link
JP (1) JPH05158018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980024333A (en) * 1996-09-06 1998-07-06 이데이 노부유키 Driving Method of Liquid Crystal Element
EP0997766A1 (en) * 1998-03-10 2000-05-03 Tanita Corporation Lcd display with function of adjusting display density

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980024333A (en) * 1996-09-06 1998-07-06 이데이 노부유키 Driving Method of Liquid Crystal Element
EP0997766A1 (en) * 1998-03-10 2000-05-03 Tanita Corporation Lcd display with function of adjusting display density
EP0997766A4 (en) * 1998-03-10 2002-10-09 Tanita Seisakusho Kk Lcd display with function of adjusting display density

Similar Documents

Publication Publication Date Title
JP3183537B2 (en) Driving method of liquid crystal electro-optical element
US5796380A (en) Liquid crystal apparatus and method of driving same
JP4219991B2 (en) Active matrix liquid crystal display
TW512299B (en) Liquid crystal display device and its driving method
US6008787A (en) Antiferrolectric liquid crystal panel and method for driving same
JPH0535848B2 (en)
JP3302752B2 (en) Driving method of antiferroelectric liquid crystal panel
JP3171713B2 (en) Antiferroelectric liquid crystal display
JPH05158018A (en) Driving method for ferroelectric liquid crystal panel
JP3258110B2 (en) Driving method of antiferroelectric liquid crystal panel
JP2637517B2 (en) Liquid crystal device
JPH0695624A (en) Method for driving anti-ferroelectric liquid crystal panel
JP3171833B2 (en) Antiferroelectric liquid crystal panel
JP2584767B2 (en) Driving method of liquid crystal device
JP2575196B2 (en) Driving method of display device
JP3441143B2 (en) Driving method of antiferroelectric liquid crystal display
JP3247518B2 (en) Antiferroelectric liquid crystal panel
JP3352079B2 (en) Liquid crystal panel using liquid crystal showing smectic layer
JPH0545621A (en) Method for driving ferroelectric liquid crystal panel
JPS63259516A (en) Method for driving matrix type liquid crystal display body
JPH1164822A (en) Ferroelectric liquid crystal display drive method
JPS63253333A (en) Matrix-type liquid crystal display driving method
JPH0588646A (en) Matrix driving method for plane type display device
JP3557488B2 (en) Driving method of liquid crystal display element
JPH0643428A (en) Driving method for ferroelectric liquid crystal panel