JPH05157836A - Pulse compression device and its application device - Google Patents

Pulse compression device and its application device

Info

Publication number
JPH05157836A
JPH05157836A JP3349024A JP34902491A JPH05157836A JP H05157836 A JPH05157836 A JP H05157836A JP 3349024 A JP3349024 A JP 3349024A JP 34902491 A JP34902491 A JP 34902491A JP H05157836 A JPH05157836 A JP H05157836A
Authority
JP
Japan
Prior art keywords
signal
pulse
compressed
optical
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3349024A
Other languages
Japanese (ja)
Other versions
JP3143179B2 (en
Inventor
Ikuo Arai
郁男 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP03349024A priority Critical patent/JP3143179B2/en
Publication of JPH05157836A publication Critical patent/JPH05157836A/en
Application granted granted Critical
Publication of JP3143179B2 publication Critical patent/JP3143179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To generate a compressed pulse signal in a small constitution by implementing the electrical/photo conversion of the received signal, and implementing the photo-electric conversion of the guided optical signal through the optical fiber bundle having the respective length corresponding to the pitch point of each cycle of the signal. CONSTITUTION:The received signal 10A is supplied to an electric/photo conversion circuit 111 to make the optical signal 111A. In a guided optical circuit 112, the length of the respective fibers is set to the length corresponding to the pitch point of each cycle of the non-equivalence cycle where the transmitted signal is converted in the inversed wave pattern, a fo respective fibers, the optical signal 111A is supplied to an input terminal 112a, and the guided optical signal 112A is emitted from an output terminal 112b. The guided optical signal 112A is received by a photo/electric conversion circuit 113, and the signal whose voltage has the value corresponding to three kinds of intensities of the respective optical signals in the guided optical signal 112A is obtained as the compressed signal 11A. Thus, the device is capable of downsized constitution and stable delay synthesis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、パルス圧縮装置なら
びにパルス圧縮装置を利用して物標を探知するパルス圧
縮レーダ装置などの利用装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse compression device and a utilization device such as a pulse compression radar device for detecting a target using the pulse compression device.

【0002】[0002]

【従来の技術】この種の装置は、反射型探知装置または
透過型探知装置などにおいて探知能力を増大するため
に、送信周波数成分を不等化サイクルまたは符号化サイ
クルにしたパルス幅の広い送信パルスを用いて探知し、
反射波または透過波として得られる受信パルスの各サイ
クル成分を送信時における不等化サイクルまたは符号化
サイクルに対応させて復調することにより、狭いパルス
幅に圧縮するとともに振幅値の大きい探知信号が得られ
るようにしたものであり、送信側の電力ピーク値が小さ
いものでも、探知距離を増大し得るという効果を得るこ
とができる。
2. Description of the Related Art A device of this type is a transmission pulse having a wide pulse width in which transmission frequency components are unequalized or coded in order to increase detection capability in a reflection type detection device or a transmission type detection device. To detect,
By demodulating each cycle component of the received pulse obtained as a reflected wave or a transmitted wave according to the unequalization cycle or coding cycle at the time of transmission, it is possible to compress to a narrow pulse width and obtain a detection signal with a large amplitude value. Even if the power peak value on the transmitting side is small, it is possible to obtain the effect of increasing the detection distance.

【0003】反射型探知装置としては、反射波により陸
地状況・船舶航行状況などを探知する船舶用レーダや地
表面下の埋設物状況・地層変化状況などを探知する地中
探査用レーダなどがあり、また、通過型探知装置とし
て、所要地点間の地中経路における埋設物状況・地層変
化状況などを通過波により探知するボアーホールレーダ
などがある。
As the reflection type detection device, there are a radar for a ship which detects a land condition, a navigation condition of a ship and the like by a reflected wave, and a radar for an underground survey which detects a condition of a buried object under the ground surface, a condition of a stratum change and the like. Further, as a passage type detection device, there is a borehole radar or the like that detects the state of buried objects and the state of formation change in an underground route between required points by means of passing waves.

【0004】こうしたパルス圧縮方法のうち、不等化サ
イクルによるものには、階段状周波数変調形式・直線状
周波数変調形式などがあり、符号化サイクルによるもの
には、符号位相変調形式・符号搬送波変調形式などがあ
る。
Among such pulse compression methods, there are stepwise frequency modulation format, linear frequency modulation format, etc. by the inequality cycle, and code phase modulation format, code carrier modulation by the coding cycle. There are formats, etc.

【0005】階段状周波数変調形式のものを図11によ
って説明すると、(A)のように、小さい単位時間Ta
を不等化サイクルの各サイクルのピッチ点として、順次
に、周波数を高い方に、周波数f1・f2・f3・f4
・f5のように変化させた広い時間幅Tの信号を、
(B)のように、一連の周波数変調をもち、パルス幅T
に亙って低い振幅値をもつ信号を送信パルスとして送信
し、探知波として得れる受信パルスには送信時と同様の
周波数変調をもつ信号が得られるので、(D)のよう
に、送信時の変調における各周波数f1〜f5に対する
フイルタF1・F2・F3・F4・F5を設けて各単位
時間Taに対する信号を検出した後、(C)のように、
各周波数f1〜f5に対応する信号ごとに単位時間幅T
aの時間を逆順にして順次に増加した遅延時間を与える
ための遅延線路D1・D2・D3・D4・D5を通して
合成回路Mに与えて合成することにより、(E)のよう
に、パルス幅Tの2倍の時間幅2Tの中央部分に振幅値
が集中した高い振幅値をもち、かつ、パルス幅が狭くな
った圧縮パルスPを得るものである。
The stepwise frequency modulation type will be described with reference to FIG. 11. As shown in FIG.
Is set as the pitch point of each cycle of the inequality cycle, and the frequency is sequentially increased to the higher frequencies f1, f2, f3, and f4.
・ A signal with a wide time width T changed like f5
As in (B), it has a series of frequency modulations and a pulse width T
A signal having a low amplitude value is transmitted as a transmission pulse, and the received pulse obtained as a detection wave has a frequency modulation similar to that at the time of transmission. Therefore, as shown in (D), After the filters F1, F2, F3, F4, and F5 for the respective frequencies f1 to f5 in the modulation of 1 are provided and the signal for each unit time Ta is detected, as shown in (C),
Unit time width T for each signal corresponding to each frequency f1 to f5
The pulse width T is given to the combining circuit M through the delay lines D1, D2, D3, D4, and D5 for providing the delay time which is increased by sequentially reversing the time of a, as shown in (E). A compressed pulse P having a high amplitude value in which the amplitude values are concentrated in the central portion of the time width 2T that is twice as long as the pulse width and the pulse width is narrowed.

【0006】直線状周波数変調形式のものは、チャープ
変調とも呼ばれており、図12によって説明すると、
(a)のように、広いパルス幅Tに亙って時間/周波数
関係が直線状に△fだけ変化し、各サイクルの間隔を不
等化した周波数変調信号を、(b)のように、低い振幅
値で送信パルスとして送信し、探知波として得れる受信
パルスには送信時と同様の周波数変調をもつ信号が得ら
れるので、(c)のように、送信時の変調における時間
/周波数関係とは逆の周波数/時間関係をもつ受信特性
をもつ回路網に与えることによって、(d)のように、
パルス幅Tの2倍の時間幅2Tの中央部分に振幅値が集
中した高い振幅値をもち、かつ、パルス幅が狭くなった
圧縮パルスPを得るものである。この形式の場合、各サ
イクルの波形頂部または波形底部に対応する点を不等化
サイクルの各サイクルのピッチ点とみることができる。
The linear frequency modulation type is also called chirp modulation, and will be described with reference to FIG.
As in (a), a time-frequency relationship changes linearly by Δf over a wide pulse width T, and a frequency-modulated signal in which the intervals of each cycle are unequal is Since a signal having the same frequency modulation as that at the time of transmission is obtained for the reception pulse obtained as a detection wave by transmitting as a transmission pulse with a low amplitude value, as shown in (c), the time / frequency relationship in the modulation at the time of transmission is shown. By giving to a network having a reception characteristic having a frequency / time relationship opposite to,
The compressed pulse P has a high amplitude value in which the amplitude value is concentrated in the central portion of the time width 2T which is twice the pulse width T, and the pulse width is narrowed. In this form, the points corresponding to the top or bottom of the waveform of each cycle can be viewed as the pitch points of each cycle of the unequalized cycle.

【0007】符号位相変調形式のものは、符号化パルス
変調とも呼ばれており、図13によって説明すると、
(ロ)のように、一定の周期Tbをもつ各1サイクルの
信号を1単位のパルス信号とし、各1単位のパルス信号
において位相が0°位置から始まるもの「+」とし、1
80°位置から始まるものを「−」として符号づけ、例
えば、(イ)の符号化したサイクルをもつ(ロ)のよう
な位相変調波を、低い振幅値で送信パルスとして送信
し、探知波として得れる受信パルスには送信時と同様の
位相変調をもつ信号が得られるので、この信号を位相検
波すると、(ハ)のように、送信時の位相変調に対応す
る検波信号が得られ、(ニ)のように、送信時の各単位
パルスの周期Tbに対応する時間ごとタップを設けた遅
延線路DLに与え、各タップ点を送信時の符号化とは逆
順にした点に「−」符号に対応する位相の信号が現れる
ので、この部分の信号のみを位相反転回路Iで反転した
後、合成回路Mに与えて合成することにより、(ホ)の
ように、パルス幅Tの2倍の時間幅2Tの中央部分に振
幅値が集中した高い振幅値をもち、かつ、パルス幅が狭
くなった圧縮パルスPを得るものである。この形式の場
合、各サイクルに対応する点を符号化サイクルの各サイ
クルのピッチ点とみることができる。
The code phase modulation type is also called coded pulse modulation, and will be described with reference to FIG.
As shown in (b), each 1-cycle signal having a constant period Tb is a pulse signal of 1 unit, and in each pulse signal of 1 unit, the phase starting from the 0 ° position is “+”, and 1
The one starting from the 80 ° position is coded as "-", and for example, a phase-modulated wave such as (b) having the coded cycle of (ii) is transmitted as a transmission pulse with a low amplitude value and is used as a detection wave. A signal having the same phase modulation as that at the time of transmission is obtained for the obtained reception pulse. Therefore, when this signal is phase-detected, a detection signal corresponding to the phase modulation at the time of transmission is obtained as shown in (c), As shown in (d), the delay line DL is provided with taps at each time corresponding to the period Tb of each unit pulse at the time of transmission, and each tap point is given a "-" sign at a point reverse to the encoding at the time of transmission. Since the signal of the phase corresponding to the signal appears, the signal of this part is inverted by the phase inversion circuit I and then given to the combining circuit M and combined, so that the pulse width T is doubled as shown in (e). Amplitude values are concentrated in the central part of the time width 2T It has a width value, and is intended to obtain the compressed pulse P having a pulse width is narrowed. In the case of this format, the points corresponding to each cycle can be regarded as the pitch points of each cycle of the encoding cycle.

【0008】符号搬送波変調形式のものは、送信側を、
図11の階段状周波数変調形式のものにおける(B)の
信号の周波数f1〜f5を同一周波数の搬送波信号に変
え、各単位時間Taにおける搬送波を、図13の符号位
相変調形式のものにおける各1単位のパルスと同様にし
て、各単位パルスを符号化したサイクルで変調した信号
を低い振幅値で送信パルスとして送信し、受信側では、
受信信号が搬送波信号になっているので、位相検波する
と図13の符号位相変調形式のものにおける(ハ)と同
様の検波信号がえられるので、それ以降の信号を、図1
3の符号位相変調形式のものにおける周期Tbを各単位
時間Taに代えて処理することにより、同様の圧縮パル
スPを得るものである。この形式の場合、各単位時間T
aに対応する点を符号化サイクルの各サイクルのピッチ
点とみることができる。
In the code carrier modulation type, the transmitting side is
In the stepwise frequency modulation type of FIG. 11, the frequencies f1 to f5 of the signal of (B) are changed to carrier signals of the same frequency, and the carrier wave at each unit time Ta is 1 in the code phase modulation type of FIG. Similarly to the unit pulse, the signal modulated by the cycle in which each unit pulse is encoded is transmitted as a transmission pulse with a low amplitude value, and on the receiving side,
Since the received signal is a carrier signal, the phase detection results in a detection signal similar to (c) in the code phase modulation type of FIG. 13, and the subsequent signals are shown in FIG.
A similar compressed pulse P is obtained by processing the cycle Tb in the code phase modulation format of No. 3 instead of each unit time Ta. In this format, each unit time T
The point corresponding to a can be seen as the pitch point of each cycle of the encoding cycle.

【0009】上記の従来技術の構成は、〔文献〕昭和5
4年6月電子通信学会発行「電子通信シリーズ・レーダ
技術(その2)」などにより開示されている。
The construction of the above-mentioned prior art is described in [Reference] Showa 5
It is disclosed in "Electronic Communication Series-Radar Technology (Part 2)" issued by the Institute of Electronics and Communication Engineers, June 2004.

【0010】[0010]

【発明が解決しようとする課題】上記のパルス圧縮構成
において、圧縮パルスPに歪みがなく、両側に生ずるサ
イドパルスSP1・SP2をなるべく小さくして、良好
な特性を得るためには、階段状周波数変調形式のもので
は、周波数f1〜f5の変化数を階段数、つまり、ステ
ップ数を少なくとも30ステップ以上に増加する必要が
あるため、遅延線路D1〜D5も同様に増加することに
なり、この遅延線路部分の構成が膨大な大きさになるの
で、実用的なものが得られていないという不都合があ
る。
In the above-described pulse compression structure, the compressed pulse P is not distorted, and the side pulses SP1 and SP2 generated on both sides are made as small as possible to obtain good characteristics. In the modulation type, since it is necessary to increase the number of changes of the frequencies f1 to f5 to the number of steps, that is, the number of steps to at least 30 steps or more, the delay lines D1 to D5 also increase, and the delay lines D1 to D5 also increase. Since the configuration of the line portion becomes enormous, there is a disadvantage that a practical one has not been obtained.

【0011】直線状周波数変調形式のものでは、同様に
して、周波数変化をもつサイクルのサイクル数、つま
り、ステップ数を30ステップ以上にすることが必要で
あり、送信時の変調における時間/周波数関係とは逆の
周波数/時間関係をもつ受信特性をもつ回路網を、ステ
ップ数と相当数のフイルタ群で構成したのでは膨大な大
きさになり、実用的なものが得られないという不都合が
あり、これをさけるため、演算処理によるマッチド・フ
イルタで構成すると、ごく近距離の探知信号に対して
は、演算時間が間に合わず、その場で即座に探知像を表
示し得ないという不都合がある。
In the case of the linear frequency modulation type, similarly, it is necessary to set the number of cycles having a frequency change, that is, the number of steps to 30 steps or more, and the time / frequency relationship in modulation at the time of transmission. If a circuit network having a reception characteristic having a frequency / time relationship opposite to that of the above is configured with a large number of steps and a large number of filters, the size becomes enormous, and a practical one cannot be obtained. However, in order to avoid this, if the configuration is made by a matched filter by arithmetic processing, there is an inconvenience that the detection time cannot be displayed immediately on the spot for the detection signal of a very short distance.

【0012】また、符号位相変調形式・符号搬送波変調
形式ものでは、同様にして、50単位パルス程度の符号
化数、つまり、ステップ数が必要であり、階段状周波数
変調形式のものと同様に、遅延線路DLの構成が膨大な
大きさになり、実用的なものが得られていないという不
都合がある。このため、こうした不都合を解消したもの
の提供が望まれているという課題がある。
In the code phase modulation format / code carrier modulation format, similarly, a coding number of about 50 unit pulses, that is, the number of steps is required, and like the stepwise frequency modulation format, There is an inconvenience that the delay line DL has an enormous size and no practical one has been obtained. Therefore, there is a problem that it is desired to provide a product that solves such inconvenience.

【0013】[0013]

【課題を解決するための手段】この発明は、上記のよう
な不等化サイクルまたは符号化サイクルによる広いパル
ス幅の信号、つまり、被圧縮信号をパルス圧縮して狭い
パルス幅の信号、つまり、圧縮パルス信号を得るパルス
圧縮装置において、上記の被圧縮信号を電気/光変換し
た光信号を得る光信号手段と、上記の光信号を上記の被
圧縮信号の各サイクルのピッチ点に対応する各長さをも
つ外周反射型の導光細線の各線の一端に与えて各他端か
ら得られる光信号を各導光信号として得る導光手段と、
上記の各導光信号を光/電気変換した信号にもとづいて
前記圧縮パルス信号を得る圧縮手段とを設けて構成する
ほか、このパルス圧縮装置を用いて反射型探知装置・通
過型探知装置などを構成することにより、上記の課題を
解決し得るようにしたものである。
According to the present invention, a signal having a wide pulse width by the above-described inequality cycle or encoding cycle, that is, a signal having a narrow pulse width by pulse-compressing a compressed signal, that is, In a pulse compression apparatus for obtaining a compressed pulse signal, optical signal means for obtaining an optical signal obtained by electrical / optical conversion of the above-mentioned compressed signal, and each of said optical signal corresponding to a pitch point of each cycle of the above-mentioned compressed signal A light guide means for giving an optical signal obtained from each other end to each one end of each wire of the outer peripheral reflection type light guide thin wire having a length, as each light guide signal;
A compression means for obtaining the compressed pulse signal based on a signal obtained by optically / electrically converting each of the above-mentioned light guide signals is provided, and in addition, a reflection type detection device, a passage type detection device, etc. are provided by using this pulse compression device. With the configuration, the above problems can be solved.

【0014】[0014]

【実施例】以下、図により実施例を説明する。 〔第1実施例〕第1の実施例として、不等化サイクルに
よる構成のうち、図12によって説明した直線状周波数
変調形式の送信パルスを用いた地中埋設物探知用レー
ダ、つまり、反射型探知装置における実施例を図1によ
って説明する。
EXAMPLES Examples will be described below with reference to the drawings. [First Embodiment] As a first embodiment, a radar for detecting an underground buried object using a transmission pulse of the linear frequency modulation type explained in FIG. An embodiment of the detection device will be described with reference to FIG.

【0015】図1において、周波数変調回路1で発生し
た図12(b)のような直線状周波数変調信号1Aを電
力増幅回路2により所要の電力に増幅した送信信号2A
を、地表面4に設けた送信アンテナ3に与えて地表面4
から地中5に送信電磁波6を所定の探知繰返周期で送波
しながら、探知装置100を移動する。
In FIG. 1, a transmission signal 2A obtained by amplifying a linear frequency modulation signal 1A generated by the frequency modulation circuit 1 as shown in FIG.
To the transmitting antenna 3 provided on the ground surface 4,
The detection device 100 is moved while transmitting the transmission electromagnetic wave 6 to the ground 5 at a predetermined detection repetition cycle.

【0016】ここで、送信信号2Aにおける周波数変化
のサイクル数、つまり、ステップ数は実際には少なくと
も30ステップ以上に選ばれるが、図示の都合上、ステ
ップ数を実際よりも少なくしてある。
Here, the number of cycles of frequency change in the transmission signal 2A, that is, the number of steps is actually selected to be at least 30 steps or more, but the number of steps is made smaller than the actual number for convenience of illustration.

【0017】地中埋設物7A・7B・7Cからの反射電
磁波8を地表面4に設けた受信アンテナ9で受波して得
られる受波信号9Aを受信増幅回路10で所要の振幅値
に増幅すると、図2の受信信号10Aが得られる。
The received signal 9A obtained by receiving the reflected electromagnetic wave 8 from the underground buried objects 7A, 7B and 7C by the receiving antenna 9 provided on the ground surface 4 is amplified by the receiving and amplifying circuit 10 to a required amplitude value. Then, the reception signal 10A of FIG. 2 is obtained.

【0018】受信信号10A中の反射信号10a・10
b・10cは地中埋設物7A・7B・7Cからの反射電
磁波に対応する受信信号であり、それぞれ、送信パルス
2Aにおける図12(b)のような広いパルス幅Tに対
応する長さのパルス幅TRをもち、かつ、送信時と同様
の不等化サイクルのステップをもって現れるものと見な
すことができる。
Reflected signals 10a and 10 in the received signal 10A
b.10c are reception signals corresponding to the reflected electromagnetic waves from the underground buried objects 7A, 7B, 7C, and pulses of a length corresponding to a wide pulse width T in the transmission pulse 2A as shown in FIG. 12B. It can be regarded as having the width TR and appearing with the steps of the inequality cycle similar to those at the time of transmission.

【0019】受信信号10Aを、後記の構成をもつ遅延
合成部11に与えて遅延合成し、受信信号10Aをパル
ス圧縮して、図2の圧縮信号11Aを得る。
The received signal 10A is applied to the delay synthesizing section 11 having the structure described later to perform delay synthesizing, and the received signal 10A is pulse-compressed to obtain the compressed signal 11A shown in FIG.

【0020】圧縮信号11A中の圧縮信号11a・11
b・11cは、反射信号10a・10b・10cを、そ
れぞれ、図12(d)の圧縮パルスPと同様に、各反射
信号におけるパルス幅TRの中央部分で振幅値が集中し
た高い振幅値の幅の狭い圧縮パルスに圧縮した信号であ
る。
Compressed signals 11a and 11 in the compressed signal 11A
b · 11c is the width of the high amplitude value in which the amplitude values are concentrated in the central portion of the pulse width TR of each reflection signal, similarly to the compressed pulse P of FIG. 12 (d). The signal is compressed into a narrow compressed pulse of.

【0021】圧縮信号11Aを表示処理回路12に与え
て所要の表示処理を行い、例えば、各圧縮信号11a・
11b・11cの振幅値を輝度値に変換するとともに、
各回の探知周期をラスタ走査表示の1走査として表示す
る信号に変換した表示信号12Aを得る。
The compressed signal 11A is given to the display processing circuit 12 to perform the required display processing.
While converting the amplitude values of 11b and 11c into luminance values,
A display signal 12A is obtained by converting each detection cycle into a signal to be displayed as one scan of raster scan display.

【0022】表示信号12Aをラスタ走査型の表示器1
3に与えて、Bスコープ状の探知画像を表示するように
構成してある。
The display signal 12A is sent to the raster scan type display 1
3 to display a B-scope-shaped detection image.

【0023】受信信号10Aは、後記の電気/光変換回
路111の変換特性が、低い電圧部分では、一般に、直
線性が悪いことを考慮して、図2のように、0Vに対し
てバイアスレベルをもつ信号にしておくことが好まし
い。
The received signal 10A has a bias level with respect to 0 V as shown in FIG. 2 in consideration of the fact that the conversion characteristic of the electric / optical conversion circuit 111, which will be described later, is generally poor in a low voltage portion. It is preferable to keep the signal with.

【0024】また、後記の光/電気変換回路113につ
いても、同様に対処することが好ましいことは言うまで
もない。
It is needless to say that it is preferable to deal with the optical / electrical conversion circuit 113 described later in the same manner.

【0025】遅延合成部11は、不等化サイクルの信号
をパルス圧縮して復調する部分に相当し、図3のように
構成してある。
The delay synthesizing section 11 corresponds to a section for pulse-compressing and demodulating a signal of an unequalized cycle, and is constructed as shown in FIG.

【0026】図3において、受信信号10Aを与える電
気/光変換回路111は、例えば、発光ダイオードによ
り電気/光変換を行う回路であり、光の強度が受信信号
10A中の各信号の振幅値に対応した値をもつ光信号1
11Aを得る。
In FIG. 3, an electric / optical conversion circuit 111 for giving the received signal 10A is a circuit for performing electric / optical conversion by a light emitting diode, for example, and the intensity of light corresponds to the amplitude value of each signal in the received signal 10A. Optical signal 1 with corresponding value
Obtain 11A.

【0027】導光回路112は、多数の外周反射型の導
光細線、例えば、光ファイバーを一束にしたものであ
り、各導光細線の長さを後記の特定条件によって異なら
せたもので、一端を入力端112aとして各導光細線に
光信号111Aを与え、他端を出力端112bとして各
導光細線を経た導光信号112Aを得て、光/電気変換
回路113に与える。
The light guide circuit 112 is a bundle of a large number of outer peripheral reflection type light guide thin wires, for example, an optical fiber, in which the length of each light guide thin wire is varied according to the specific conditions described later. An optical signal 111A is provided to each light guide thin wire with one end as an input end 112a, and a light guide signal 112A that has passed through each light guide thin wire is provided as the other end with an output end 112b, and is provided to the optical / electrical conversion circuit 113.

【0028】光/電気変換回路113は、例えば、受光
ダイオードにより光/電気変換を行う回路であり、電圧
が導光信号112A中の各光信号の強度に対応した値を
もつ信号を圧縮信号11Aとして得るように構成してあ
る。
The optical / electrical conversion circuit 113 is, for example, a circuit for performing optical / electrical conversion by a light receiving diode, and compresses a signal whose voltage has a value corresponding to the intensity of each optical signal in the light guide signal 112A into the compressed signal 11A. Is configured to obtain.

【0029】入力端112aには、電気/光変換回路1
11の構成如何により、必要に応じて、各導光細線に入
力される光を均一にするための光接合導体CT、例え
ば、分配レンズを設け、また、出力端112bには、光
/電気変換回路113の構成如何により、必要に応じ
て、各導光細線から出力される光を収束するための光接
合導体CR、例えば、収束レンズを設ける。
The electric / optical conversion circuit 1 is provided at the input end 112a.
Depending on the configuration of 11, the optical junction conductor CT for uniformizing the light input to each light guide thin line, for example, a distribution lens is provided as necessary, and the output end 112b is provided with an optical / electrical conversion. Depending on the configuration of the circuit 113, an optical junction conductor CR, for example, a converging lens, for converging the light output from each light guide thin line is provided as necessary.

【0030】導光回路112における各導光細線の長
さ、つまり、各導光細線長は、図4のように条件づけて
ある。
The length of each light guiding thin wire in the light guiding circuit 112, that is, each light guiding thin wire length is conditioned as shown in FIG.

【0031】図4において、逆波形(A)は、送信信号
2Aを逆の時系列にして表した信号波形であり、送信信
号2Aの終点、つまり、逆波形(A)の始点から、不等
化サイクルの各サイクルの各波形頂部までは、時間長t
1・t2・t3……tm・tnになっている。
In FIG. 4, the inverse waveform (A) is a signal waveform in which the transmission signal 2A is shown in the reverse time series, and is unequal from the end point of the transmission signal 2A, that is, the start point of the inverse waveform (A). The time length t up to the top of each waveform in each cycle
1 ・ t2 ・ t3 …… tm ・ tn.

【0032】各導光細線長(B)は、各導光細線中の光
の伝播速度において、時間長t1・t2・t3……tm
・tnに相当する長さ、つまり、送信信号2Aを逆波形
にした不等化サイクルの各サイクルのピッチ点に対応す
る長さに設定してある。
Each light guide thin wire length (B) is the time length t1, t2, t3 ... tm in the propagation velocity of light in each light guide thin wire.
The length corresponding to tn, that is, the length corresponding to the pitch point of each cycle of the inequality cycle in which the transmission signal 2A has an inverse waveform is set.

【0033】このため、受信信号10Aに対応する光強
度をもつ光信号111Aを各導光細線長(B)の各一端
から与えると、各導光細線長(B)の各他端には、不等
化サイクルの各サイクルのピッチ点に一致した各導光信
号が得られ、各導光信号を合成した光を光/電気変換回
路113に与えることになるので、光/電気変換回路1
13では図12で説明した遅延合成と同様の作用が行わ
れたことになり、受信信号10A中の反射信号10a・
10b・10cを、パルス圧縮された圧縮信号11a・
11b・11cに形成して出力し得ることになる。
Therefore, when an optical signal 111A having a light intensity corresponding to the received signal 10A is given from one end of each light guide thin wire length (B), the other end of each light guide thin wire length (B) becomes Since each light guide signal that matches the pitch point of each cycle of the unequalization cycle is obtained and the light obtained by combining the light guide signals is supplied to the optical / electrical conversion circuit 113, the optical / electrical conversion circuit 1 is provided.
13, the same operation as the delay combining described in FIG. 12 is performed, and the reflected signal 10a.
10b and 10c are pulse-compressed compressed signals 11a and
11b and 11c can be formed and output.

【0034】〔第2実施例〕第2の実施例として、第1
の実施例と同様の構成において、不等化サイクルの各サ
イクルの各波形底部側の信号をも、パルス圧縮に寄与し
得るように構成した実施例を図5によって説明する。
[Second Embodiment] As a second embodiment, the first embodiment
An embodiment in which the signal on the bottom side of each waveform in each cycle of the inequality cycle can also contribute to pulse compression in the same configuration as the embodiment of FIG.

【0035】図5において、図1における符号と同一の
符号の部分は第1の実施例において説明したと同一の機
能をもつ部分であり、極性反転回路10Xは、例えば、
反転増幅回路であり、受信信号10Aの極性を反転した
信号であって出力値を同じにした信号を反転信号10X
Aとして得る。
In FIG. 5, the portions having the same reference numerals as those in FIG. 1 have the same functions as described in the first embodiment, and the polarity reversing circuit 10X is, for example,
It is an inverting amplifier circuit, which is a signal obtained by inverting the polarity of the received signal 10A and having the same output value.
Get as A.

【0036】遅延合成部11Xは、遅延合成部11と同
様に構成してあり、図3により第1実施例で説明したも
のと同一の機能をもつ部分であり、各導光細線の長さを
図6のように条件づけてある点のみが異なっている。
The delay synthesizing unit 11X has the same structure as the delay synthesizing unit 11 and has the same function as that described in the first embodiment with reference to FIG. The only difference is the condition as shown in FIG.

【0037】図6において、逆波形(AX)は、図4の
逆波形(A)の波形を反転した波形の信号波形であり、
送信信号2Aの終点、つまり、反転した逆波形(AX)
の始点から、不等化サイクルの各サイクルの各波頂点ま
では、時間長t1X・t2X・t3X……tmX・tn
Xになっている。
In FIG. 6, the inverse waveform (AX) is a signal waveform of a waveform obtained by inverting the waveform of the inverse waveform (A) in FIG.
End point of transmission signal 2A, that is, inverted waveform (AX)
From the start point of each of the inequality cycles to the wave vertices of each cycle of the inequality cycle, time lengths t1X, t2X, t3X ...
It is X.

【0038】各導光細線長(BX)は、各導光細線中の
光の伝播速度において、時間長t1X・t2X・t3X
……tmX・tnXに相当する長さ、つまり、送信信号
2Aの逆波形を反転した不等化サイクルの各サイクルの
ピッチ点に対応する長さに設定してある。
Each light guide thin wire length (BX) is a time length t1X.t2X.t3X at the propagation velocity of light in each light guide thin wire.
The length corresponding to tmX · tnX, that is, the length corresponding to the pitch point of each cycle of the inequality cycle in which the inverse waveform of the transmission signal 2A is inverted is set.

【0039】つまり、光/電気変換回路113は、受信
信号10A中の反射信号10a・10b・10cを反転
した信号を、別の経路で、パルス圧縮した圧縮信号11
aX・11bX・11cXに形成した圧縮信号11XA
を出力する。
That is, the optical / electrical conversion circuit 113 pulse-compresses the signal obtained by inverting the reflected signal 10a, 10b, 10c in the received signal 10A through another path, and outputs the compressed signal 11
Compressed signal 11XA formed on aX ・ 11bX ・ 11cX
Is output.

【0040】合成出力回路14は、例えば、2つの入力
信号の振幅を加算する回路であり、遅延合成部11で得
た圧縮信号11Aの振幅値と、遅延合成部11Xで得た
圧縮信号11XAの振幅値とを加算合成した合成圧縮信
号14Aを得ることにより、2つの遅延合成部11・1
1Xで得た各圧縮信号11A・11XAを更に幅の狭い
圧縮パルスの信号にすることができ、この第2実施例の
構成を、送信波形から見た場合の原理的構成で示すと図
7のように表すことができる。
The synthesis output circuit 14 is, for example, a circuit for adding the amplitudes of two input signals, and the amplitude value of the compressed signal 11A obtained by the delay synthesis section 11 and the compressed signal 11XA obtained by the delay synthesis section 11X. By obtaining the combined compressed signal 14A that is added and combined with the amplitude value, the two delay combining units 11.
Each of the compressed signals 11A and 11XA obtained by 1X can be a compressed pulse signal having a narrower width, and the configuration of the second embodiment is shown in FIG. Can be expressed as

【0041】この加算合成を行う場合、圧縮パルスの両
側に生ずるサイドパルスに位相が重なる部分があると、
その部分に大きなサイドパルスを生ずるので、各圧縮信
号11A・11XAを、それぞれ、ごく小さい時定数の
積分定数をもつ回路を通してサイドパルスの部分を平滑
した後、または、低いレベルをカットするレベルクリッ
プ回路を通してサイドパルスの部分をカットした後に加
算合成することが望ましい。
When this addition synthesis is performed, if there is a portion where the phases overlap with the side pulses generated on both sides of the compressed pulse,
Since a large side pulse is generated in that portion, each compressed signal 11A · 11XA is passed through a circuit having an integration constant of a very small time constant to smooth the side pulse portion, or a level clipping circuit for cutting a low level. It is desirable to cut the side pulse portion through and add and synthesize.

【0042】〔第3実施例〕次に、第3の実施例とし
て、図13によって説明した符号位相変調形式の送信パ
ルスを用いた地中埋設物探知用レーダにおける実施例を
図8によって説明する。
[Third Embodiment] Next, as a third embodiment, an embodiment of the underground buried object detecting radar using the transmission pulse of the code phase modulation format described with reference to FIG. 13 will be described with reference to FIG. ..

【0043】図8において、図1・図5における符号と
同一の符号の部分は第1の実施例と第2の実施例とにお
いて説明したと同一の機能をもつ部分であり、符号変調
回路1Yで発生した図13(ロ)のような符号位相変調
信号1AYを電力増幅回路2により所要の電力に増幅し
た送信信号2AYを、地表面4に設けた送信アンテナ3
に与えて地表面4から地中5に送信電磁波6Yを送波し
ながら、送信アンテナ3を移動する。
In FIG. 8, the portions having the same reference numerals as those in FIGS. 1 and 5 have the same functions as described in the first and second embodiments, and the code modulation circuit 1Y. The transmission signal 2AY obtained by amplifying the code phase modulation signal 1AY as shown in FIG. 13B generated by the power amplification circuit 2 to the required power is generated by the transmission antenna 3 provided on the ground surface 4.
Then, the transmitting antenna 3 is moved while transmitting the transmitting electromagnetic wave 6Y from the ground surface 4 to the ground 5 by applying to the antenna.

【0044】ここで、送信信号2AYにおける符号化の
サイクル数、つまり、ステップ数は実際には少なくとも
30ステップ以上に選ばれるが、図示の都合上、ステッ
プ数を実際よりも少なくしてある。
Here, the number of coding cycles in the transmission signal 2AY, that is, the number of steps is actually selected to be at least 30 steps or more, but the number of steps is smaller than the actual number for convenience of illustration.

【0045】地中埋設物7A・7B・7Cからの反射電
磁波8Yを地表面4に設けた受信アンテナ9で受波して
得られる受波信号9AYを受信増幅回路10で所要の振
幅値に増幅した後、位相検波すると、図9の受信信号1
0AYが得られる。
The received signal 9AY obtained by receiving the reflected electromagnetic wave 8Y from the underground buried objects 7A, 7B and 7C by the receiving antenna 9 provided on the ground surface 4 is amplified by the receiving and amplifying circuit 10 to a required amplitude value. Then, when phase detection is performed, the received signal 1 in FIG.
0AY is obtained.

【0046】受信信号10AY中の反射信号10aY・
10bY・10cYは地中埋設7A・7B・7Cからの
反射電磁波に対応する受信信号であり、それぞれ、送信
パルス2AYにおける符号化サイクルの各サイクルを位
相検波した図13(ハ)のような広いパルス幅Tに対応
する長さのパルス幅TRをもち、かつ、送信時と同様の
符号化サイクルのステップをもって現れるものと見なす
ことができる。
Reflected signal 10aY in received signal 10AY
Reference numerals 10bY and 10cY are reception signals corresponding to reflected electromagnetic waves from the underground buried 7A, 7B, and 7C, respectively, and a wide pulse as shown in FIG. It can be regarded as having a pulse width TR of a length corresponding to the width T and appearing with the same steps of the coding cycle as at the time of transmission.

【0047】受信信号10AYを遅延合成部11とに与
えて遅延合成するとともに、反転信号10XAYを遅延
合成部11Xに与えて遅延合成し、各圧縮信号11AY
・11XAYとを合成回路14で加算して、合成圧縮信
号14AYを得ることにより、受信信号10AY中の反
射信号10aY・10bY・10cYを、それぞれ圧縮
信号14aY・14bY・14cYのような圧縮パルス
の信号にして出力するように構成したものである。
The received signal 10AY is given to the delay synthesizing section 11 for delay synthesizing, and the inverted signal 10XAY is given to the delay synthesizing section 11X for delay synthesizing to obtain each compressed signal 11AY.
・ 11XAY is added by the synthesizing circuit 14 to obtain the synthesized compressed signal 14AY, and the reflected signals 10aY, 10bY, 10cY in the received signal 10AY are compressed pulse signals such as compressed signals 14aY, 14bY, 14cY, respectively. It is configured to output.

【0048】この実施例の場合、各遅延合成部11・1
1Xにおける導光回路112と導光回路112Xとの各
導光細線の長さを、第2の実施例で説明した図7の送信
波形から見た場合の原理的構成と同様にして示すと、符
号・送信波形・位相検波波形に対して、図10のように
条件づけてある。
In the case of this embodiment, each delay synthesizing unit 11.1
When the length of each light guide thin line of the light guide circuit 112 and the light guide circuit 112X in 1X is shown in the same manner as the principle configuration when viewed from the transmission waveform of FIG. 7 described in the second embodiment, The code, the transmission waveform, and the phase detection waveform are conditioned as shown in FIG.

【0049】図10において、送信形(BY)に対する
逆波形は、送信波形(BY)の終端側から始端側へ時系
列をとることになるので、符号化サイクルの各ピッチ点
は終端側から見た長さに設定することになり、導光回路
112の各導光細線長と導光回路112Xの各導光細線
長とは、図のような長さに設定する。
In FIG. 10, since the inverse waveform for the transmission type (BY) takes a time series from the end side to the start side of the transmission waveform (BY), each pitch point of the coding cycle is seen from the end side. The length of each light guiding thin line of the light guiding circuit 112 and the length of each light guiding thin line of the light guiding circuit 112X are set to the lengths shown in the figure.

【0050】図10における各導光細長は、逆波形、つ
まり、逆の時系列で見ると、各ピッチの終点に位置づけ
ているように見えるが、これは次の理由により、始点に
位置づけたことになる。
The light guide strips in FIG. 10 appear to be positioned at the end point of each pitch when viewed in reverse waveform, that is, in the reverse time series, but this is because they are positioned at the start point for the following reason. become.

【0051】遅延合成される受信信号は、図6のような
逆波形の時系列で入ってくるのではなく、図10の送信
波形(BY)の正規の時系列と同じ時系列で入ってくる
ので、図10の各導光細線の左端の位置、つまり、図1
0の右端側を先頭として見た逆波形における符号化サイ
クルの各ピッチの終点が、図10の左端側を先頭として
見た正規の送信波形における符号化サイクルの各ピッチ
の始点と同じ位置に当たることになり、結局、図10に
示した各導光細線長に設定すれば、遅延合成は符号化サ
イクルの各ピッチの始点側から行われてゆくことにな
る。
The reception signal subjected to delay synthesis does not enter in the reverse waveform time series as in FIG. 6, but in the same time series as the regular time series of the transmission waveform (BY) in FIG. Therefore, the position of the left end of each light guide thin line in FIG. 10, that is, FIG.
The end point of each pitch of the encoding cycle in the reverse waveform viewed from the right end side of 0 as the head corresponds to the same position as the start point of each pitch of the encoding cycle in the normal transmission waveform viewed from the left end side of FIG. After all, if the light guide thin line lengths shown in FIG. 10 are set, the delay synthesis will be performed from the start point side of each pitch of the encoding cycle.

【0052】〔変形実施〕この発明は次のように変形し
て実施することができる。 (1)階段状周波数変調形式の送信パルスを用いる探知
装置に適用する場合おいて、図11(D)におけるフイ
ルタF1・F2・F3・F4・F5の出力を1つにした
信号を遅延合成部11に与えるようにするとともに、導
光回路112の各導光細線長を符号化サイクルのピッチ
点に一致させて構成する。
[Modified Implementation] The present invention can be modified and implemented as follows. (1) In the case of applying to the detection device using the transmission pulse of the stepwise frequency modulation format, the signal having the outputs of the filters F1, F2, F3, F4, and F5 in FIG. 11, and each light guide thin line length of the light guide circuit 112 is configured to match the pitch point of the encoding cycle.

【0053】(2)符号化位相変調形式の送信パルスを
用いる探知装置の構成において、受信信号を位相検波せ
ずに、図13(ロ)のような位相変調信号のままで、遅
延合成部11・11Xに入力して、同様に圧縮パルスを
得るように構成する。
(2) In the configuration of the detection device using the transmission pulse of the coded phase modulation type, the delay synthesizer 11 does not detect the phase of the received signal but keeps the phase modulated signal as shown in FIG. -Input to 11X and similarly configure to obtain a compressed pulse.

【0054】(3)直線状周波数変調形式のものにおけ
る周波数変化を図12(b)とは逆に高い周波数から低
い周波数に変化するようにした送信パルスに対応させて
構成する。
(3) Contrary to FIG. 12B, the frequency change in the linear frequency modulation type is made to correspond to the transmission pulse which is changed from the high frequency to the low frequency.

【0055】(4)送信アンテナと受信アンテナとを対
向させて間隔配置し、両アンテナ間にある媒体中を通過
させた通過波を受信信号として受信することにより、媒
体中の状態を探知する通過型探知装置において、不等化
サイクルまたは符号化サイクルの送信パルスを用いるも
のに適用する。
(4) A transmission antenna and a reception antenna are opposed to each other with a space therebetween, and a passing wave that has passed through the medium between both antennas is received as a reception signal to detect the state in the medium. The present invention is applied to a type detecting device that uses a transmission pulse of an inequality cycle or an encoding cycle.

【0056】(5)秘匿性向上・耐雑音性向上などの目
的で不等化サイクルまたは符号化サイクルを通信要素と
して用いる通信、例えば、データ通信などを不等化サイ
クルまたは符号化サイクルにして送信し、その受信信号
をパルス圧縮してデコードするようにした通信装置に適
用する。
(5) Communication using an inequality cycle or a coding cycle as a communication element for the purpose of improving confidentiality and noise resistance, for example, data communication is transmitted as an inequality cycle or a coding cycle. Then, the present invention is applied to a communication device in which the received signal is pulse-compressed and decoded.

【0057】(6)受信信号10Aに代えて、単一のパ
ルス信号を駆動信号として与えることにより、遅延合成
部11または遅延合成部11・11Xの部分の構成を不
等化サイクルまたは符号化サイクルの発生用として適用
する。
(6) Instead of the received signal 10A, a single pulse signal is given as a drive signal, so that the configuration of the delay synthesizing unit 11 or the delay synthesizing units 11 and 11X is unequalized or encoded. It is applied for the generation of.

【0058】(7)導光回路112の導光細線の数量に
応じて、電気/光変換回路111を構成する発光ダイオ
ードなどの発光素子を複数個にして構成し、または光/
電気変換回路113を構成する受光ダイオードなどの受
光素子を複数にして構成する。
(7) Depending on the number of light guiding thin lines of the light guiding circuit 112, a plurality of light emitting elements such as light emitting diodes forming the electric / optical conversion circuit 111 may be formed, or light / light converting elements may be formed.
A plurality of light-receiving elements such as light-receiving diodes that configure the electric conversion circuit 113 are configured.

【0059】(8)導光回路112の全部の導光細線を
1つの束にせず、複数の束に分けるとともに、これに対
応させて電気/光変換回路111と光/電気変換回路1
13をわけて構成し、各束ごとに得られる信号を合成回
路で加算合成して圧縮パルスを得るように構成する。
(8) All the light-guiding thin wires of the light-guiding circuit 112 are not bundled into one bundle but are divided into a plurality of bundles, and the electric / optical conversion circuit 111 and the optical / electrical conversion circuit 1 are correspondingly arranged.
The signal is obtained for each bundle, and the signals obtained for each bundle are added and synthesized by a synthesizing circuit to obtain a compressed pulse.

【0060】(9)不等化サイクルと符号化サイクルと
を構成した送信波形を用いてパルス圧縮を行う形式のも
のに適用する。
(9) The present invention is applied to a type in which pulse compression is performed by using a transmission waveform that constitutes an inequality cycle and an encoding cycle.

【0061】(10)導光細線のうちの最短のものが短
か過ぎて構成しにくい場合などに、導光回路112・1
12Xの各導光細線長を、それぞれ一定の長さだけ長く
して同様に形成する。
(10) In the case where the shortest of the light guiding thin wires is too short to be constructed easily, the light guiding circuit 112.1.
Similarly, the length of each of the light guide thin wires of 12X is increased by a certain length.

【0062】(11)電気/光変換回路111と光/電
気変換回路113との変換特性が、低い電圧部分でも直
線性が得られるものであるとはきは、受信信号10A・
10AYをバイアスレベルの無いものにして構成する。
(11) It is said that the conversion characteristics of the electric / optical conversion circuit 111 and the optical / electrical conversion circuit 113 are such that linearity can be obtained even in a low voltage portion.
10AY is configured with no bias level.

【0063】(12)上記の(11)の場合において、
受信信号10Aまたは10AYをコンデンサー結合また
はトランス結合によって取り出すなどにより,信号波形
の振幅の中心を0Vレベルにした波形、例えば、図7に
おける送信波形の振幅の中心を0Vレベルにしたような
波形をもつ両極性型の受信信号を作り、この受信信号を
遅延合成部11・11Xの両方に与えるとともに、遅延
合成部11の電気/光変換回路111に用いる発光ダイ
オードの極性と、遅延合成部11Xの電気/光変換回路
111に用いる発光ダイオードの極性とを逆極性にして
構成することにより、極性反転回路10Xを無くしたも
ので構成にする。
(12) In the case of (11) above,
By taking out the received signal 10A or 10AY by capacitor coupling or transformer coupling, for example, a waveform having the amplitude center of the signal waveform at 0V level, for example, a waveform having the amplitude center of the transmission waveform in FIG. 7 at 0V level is provided. A bipolar-type reception signal is created, and this reception signal is given to both of the delay synthesizing units 11 and 11X. / By configuring the light-emitting diode used in the light conversion circuit 111 to have the opposite polarity, the polarity inversion circuit 10X is eliminated.

【0064】[0064]

【発明の効果】この発明は、以上のように、遅延合成部
11・11Xにおける遅延部分を、多数の外周反射型の
導光細線、例えば、光ファイバーを用いて構成している
ため、不等化サイクルまたは符号化サイクルの各ステッ
プに相当する各遅延線路を数ミクロン程度のごく細い直
径のものにして構成することができるため、ステップ数
が多く、遅延量が数m〜数100mに及ぶものであって
も、各導光細線を巻き回すなどして束ねて小型に構成す
ることができる。
As described above, according to the present invention, since the delay portion in the delay synthesizing unit 11 / 11X is configured by using a large number of outer peripheral reflection type light guide thin wires, for example, optical fibers, the unequalization is performed. Since each delay line corresponding to each step of the cycle or the encoding cycle can be configured to have a very small diameter of several microns, the number of steps is large and the delay amount is several m to several 100 m. Even if there is, each light guide thin wire can be wound and bundled into a small size.

【0065】また、各導光細線を密着させても、遅延す
る信号間に干渉が生ずることがなく、経年変化の面で
も、安定した遅延合成が行えるので、性能のよい探知装
置や通信装置を提供することができ、市販の光ファイバ
ーを利用することによって安価に提供できるほか、受信
信号に代えて単一のパルスを駆動信号として遅延合成部
11・11Xに与えることにより不等化サイクルまたは
符号化サイクルによる変調パルス信号を発生する装置と
して構成し得るなどの特長がある。
Further, even if the light guide thin wires are closely contacted with each other, interference does not occur between delayed signals, and stable delay synthesis can be performed in terms of secular change. Therefore, a detection device or a communication device with good performance can be provided. It can be provided at low cost by using a commercially available optical fiber, and by providing a single pulse as a drive signal instead of the received signal to the delay synthesizing unit 11. It has the feature that it can be configured as a device that generates a modulated pulse signal by a cycle.

【図面の簡単な説明】[Brief description of drawings]

図面は実施例を示し、各図の内容は次のとおりである。 The drawings show examples, and the contents of each drawing are as follows.

【図1】この発明の第1実施例のブロック構成図FIG. 1 is a block diagram of a first embodiment of the present invention.

【図2】第1実施例の要部信号波形図FIG. 2 is a signal waveform diagram of essential parts of the first embodiment.

【図3】第1実施例の要部回路のブロック構成図FIG. 3 is a block configuration diagram of a main circuit according to the first embodiment.

【図4】第1実施例の要部機能構成図FIG. 4 is a functional configuration diagram of main parts of the first embodiment.

【図5】この発明の第2実施例のブロック構成図FIG. 5 is a block configuration diagram of a second embodiment of the present invention.

【図6】第2実施例の要部機能構成図FIG. 6 is a functional configuration diagram of essential parts of the second embodiment.

【図7】第2実施例の原理的構成図FIG. 7 is a principle configuration diagram of a second embodiment.

【図8】この発明の第3実施例のブロック構成図FIG. 8 is a block diagram of a third embodiment of the present invention.

【図9】第3実施例の要部信号波形図FIG. 9 is a signal waveform diagram of essential parts of the third embodiment.

【図10】第3実施例の原理的構成図FIG. 10 is a principle configuration diagram of a third embodiment.

【図11】階段状周波数変調形式による従来技術の要部
信号波形および要部回路ブロック構成図
FIG. 11 is a block diagram of a main part signal waveform and a main part circuit of the related art by the stepwise frequency modulation format.

【図12】直線状周波数変調形式による従来技術の要部
信号波形図
FIG. 12 is a signal waveform diagram of a main part of a conventional technique in a linear frequency modulation format.

【図13】符号変調形式による従来技術の要部信号波形
および要部回路ブロック構成図
FIG. 13 is a block diagram of a signal waveform of a main part and a circuit of a main part according to a conventional technique by a code modulation format

【符号の説明】[Explanation of symbols]

1 周波数変調回路 2 電力増幅回路 3 送信アンテナ 4 地表面 5 地中 6 送信電磁波 7A・7B・7C 地中埋設物 8 反射電磁波 9 受信アンテナ 10 受信増幅回路 11 遅延合成部 100 探知装置 111 電気/光変換回路 112 導光回路 113 光/電気変換回路 1 frequency modulation circuit 2 power amplification circuit 3 transmission antenna 4 ground surface 5 underground 6 transmission electromagnetic wave 7A, 7B, 7C underground buried object 8 reflected electromagnetic wave 9 reception antenna 10 reception amplification circuit 11 delay combiner 100 detection device 111 electric / optical Conversion circuit 112 Light guide circuit 113 Optical / electrical conversion circuit

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 不等化サイクルまたは符号化サイクルに
よる広いパルス幅の信号(以下、被圧縮信号という)を
パルス圧縮して狭いパルス幅の信号(以下、圧縮パルス
信号という)を得るパルス圧縮装置であって、 前記被圧縮信号を電気/光変換した光信号を得る光信号
手段と、 前記光信号を前記被圧縮信号の各サイクルのピッチ点に
対応する各長さをもつ外周反射型の導光細線の各線の一
端に与えて各他端から得られる光信号を各導光信号とし
て得る導光手段と、 前記各導光信号を光/電気変換した信号にもとづいて前
記圧縮パルス信号を得る圧縮手段とを具備することを特
徴とするパルス圧縮装置。
1. A pulse compressor for obtaining a narrow pulse width signal (hereinafter referred to as a compressed pulse signal) by pulse-compressing a signal having a wide pulse width (hereinafter referred to as a compressed signal) by an inequality cycle or an encoding cycle. The optical signal means for obtaining an optical signal obtained by converting the compressed signal into an electrical signal and an optical signal, and an outer peripheral reflection-type conductor having a length corresponding to the pitch point of each cycle of the compressed signal. Light guiding means for applying to one end of each line of the thin optical wire to obtain an optical signal obtained from each other end as each light guiding signal, and obtaining the compressed pulse signal based on a signal obtained by optically / electrically converting each light guiding signal. A pulse compression device comprising a compression means.
【請求項2】 請求項1のパルス圧縮装置であって、 前記被圧縮信号を電気/光変換した第1の光信号を得る
第1光信号手段と、 前記第1の光信号を前記被圧縮信号の各サイクルのピッ
チ点に対応する各長さをもつ外周反射型の導光細線の各
線の一端に与えて各他端から得られる光信号を第1の各
導光信号として得る導光手段と、 前記第1の各導光信号を光/電気変換した信号にもとづ
いて前記圧縮パルス信号(以下、第1圧縮信号という)
を得る圧縮手段と、 前記被圧縮信号の極性を反転した信号を反転信号として
得る反転手段と、 前記反転信号を電気/光変換した第2の光信号を得る第
2光信号手段と、 前記第2の光信号を前記反転信号の各サイクルのピッチ
点に対応する各長さをもつ外周反射型の導光細線の各線
の一端に与えて各他端から得られる光信号を第2の各導
光信号として得る導光手段と、 前記第2の各導光信号を光/電気変換した信号にもとづ
いて前記圧縮パルス信号(以下、第2圧縮信号という)
を得る圧縮手段と、 前記第1圧縮信号と前記第2圧縮信号とを加算合成して
合成圧縮パルスを得る加算合成手段とを具備することを
特徴とするパルス圧縮装置。
2. The pulse compression apparatus according to claim 1, wherein the optical signal is electrically / optically converted into a first optical signal to obtain a first optical signal, and the first optical signal is compressed. Light guiding means for giving an optical signal obtained from each other end to one end of each wire of the outer peripheral reflection type light guiding thin wire having each length corresponding to the pitch point of each cycle of the signal as each first light guiding signal And the compressed pulse signal (hereinafter, referred to as a first compressed signal) based on a signal obtained by optically / electrically converting each of the first light guide signals.
A inverting means for obtaining a signal obtained by inverting the polarity of the signal to be compressed as an inverting signal; a second optical signal means for obtaining a second optical signal obtained by electrically / optically converting the inverting signal; The two optical signals are applied to one end of each line of the outer peripheral reflection type light guiding thin line having a length corresponding to the pitch point of each cycle of the inverted signal, and the optical signals obtained from the other ends are supplied to the second conductive lines. Light guiding means for obtaining as an optical signal, and the compressed pulse signal (hereinafter referred to as a second compressed signal) based on a signal obtained by optically / electrically converting each of the second light guiding signals.
A pulse compression apparatus comprising: a compression unit that obtains the above-mentioned signal; and an addition and synthesis unit that adds and synthesizes the first compressed signal and the second compressed signal to obtain a synthesized compressed pulse.
【請求項3】 請求項1または請求項2のパルス圧縮装
置を用いる反射型探知装置であって、 不等化サイクルまたは符号化サイクルによる広いパルス
幅の信号を送信パルスとして送波し、探知物標から得ら
れる反射波による受信信号を前記被圧縮信号として前記
電気/光変換を行う前記光信号手段を具備することを特
徴とする反射型探知装置。
3. A reflection type detection apparatus using the pulse compression apparatus according to claim 1 or 2, wherein a signal having a wide pulse width due to an inequality cycle or an encoding cycle is transmitted as a transmission pulse, and the detection object is detected. A reflection type detection device comprising the optical signal means for performing the electrical / optical conversion by using a received signal by a reflected wave obtained from a target as the compressed signal.
【請求項4】 請求項1または請求項2のパルス圧縮装
置を用いる通過型探知装置であって、 不等化サイクルまたは符号化サイクルによる広いパルス
幅の信号を送信パルスとして送波し、媒体中を通過させ
た通過波による受信信号を前記被圧縮信号として前記電
気/光変換を行う前記光信号手段を具備することを特徴
とする通過型探知装置。
4. A pass-through detection device using the pulse compression device according to claim 1 or 2, wherein a signal having a wide pulse width due to an inequality cycle or an encoding cycle is transmitted as a transmission pulse, and is transmitted in a medium. A pass-through detecting device comprising: the optical signal means for performing the electrical / optical conversion by using a received signal by a passing wave that has passed through as the compressed signal.
【請求項5】 請求項1または請求項2のパルス圧縮装
置を用いる通信装置であって、 不等化サイクルまたは符号化サイクルを通信要素として
送信して得られる受信信号を前記被圧縮信号として前記
電気/光変換を行う前記光信号手段を具備することを特
徴とする通信装置。
5. A communication apparatus using the pulse compression apparatus according to claim 1 or 2, wherein a received signal obtained by transmitting an inequality cycle or an encoding cycle as a communication element is used as the compressed signal. A communication device comprising the optical signal means for performing electrical / optical conversion.
【請求項6】 単一のパルス信号を駆動信号として、不
等化サイクルまたは符号化サイクルによる広いパルス幅
の信号(以下、変調パルス信号という)を発生する変調
パルス信号装置であって、 前記駆動信号を電気/光変換した光信号を得る光信号手
段と、 前記光信号を前記変調パルス信号の各サイクルのピッチ
点に対応する各長さをもつ外周反射型の導光細線の各線
の一端に与えて各他端から得られる光信号を各導光信号
として得る導光手段と、 前記各導光信号を光/電気変換した信号にもとづいて前
記変調パルス信号を得る変調手段とを具備することを特
徴とする変調パルス信号発生装置。
6. A modulated pulse signal device for generating a signal having a wide pulse width (hereinafter referred to as a modulated pulse signal) by an inequality cycle or an encoding cycle, using a single pulse signal as a driving signal, wherein the driving is performed. Optical signal means for obtaining an optical signal obtained by electrical / optical conversion of the signal, and the optical signal at one end of each line of the outer peripheral reflection type light guiding thin line having a length corresponding to a pitch point of each cycle of the modulated pulse signal Light guide means for giving an optical signal obtained from each other end as each light guide signal; and modulating means for obtaining the modulated pulse signal based on a signal obtained by optically / electrically converting each light guide signal. A modulated pulse signal generator characterized in that.
【請求項7】 請求項3〜請求項5の各装置であって、
請求項6の変調パルス信号発生装置を具備することを特
徴とする各装置。
7. The device according to claim 3, wherein:
7. An apparatus comprising the modulated pulse signal generator of claim 6.
JP03349024A 1991-12-06 1991-12-06 Pulse compression device and its utilization device Expired - Fee Related JP3143179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03349024A JP3143179B2 (en) 1991-12-06 1991-12-06 Pulse compression device and its utilization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03349024A JP3143179B2 (en) 1991-12-06 1991-12-06 Pulse compression device and its utilization device

Publications (2)

Publication Number Publication Date
JPH05157836A true JPH05157836A (en) 1993-06-25
JP3143179B2 JP3143179B2 (en) 2001-03-07

Family

ID=18400976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03349024A Expired - Fee Related JP3143179B2 (en) 1991-12-06 1991-12-06 Pulse compression device and its utilization device

Country Status (1)

Country Link
JP (1) JP3143179B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033095A (en) * 2005-07-25 2007-02-08 Japan Radio Co Ltd Method of determining antenna delay

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033095A (en) * 2005-07-25 2007-02-08 Japan Radio Co Ltd Method of determining antenna delay

Also Published As

Publication number Publication date
JP3143179B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
US4302835A (en) Multiple terminal passive multiplexing apparatus
US4679048A (en) Adaptive spread spectrum radar
US5105294A (en) Digital communicating method and apparatus
US6573982B1 (en) Method and arrangement for compensating for frequency jitter in a laser radar system by utilizing double-sideband chirped modulator/demodulator system
US20030165001A1 (en) Mach-Zehnder optical modulator
JPH02504555A (en) Radar noise inspection device
CN111751844B (en) Coherent laser radar based on frequency domain coding technology
JPS6027077B2 (en) Device for registration of objects
CA2102167C (en) Pulse compression signal processor utilizing identical saw matched filters for both up and down chirps
CN110455324A (en) A kind of quasi-distributed sensor-based system of high-repetition-rate and its implementation based on CP- Φ OTDR
EP1466426B1 (en) Transmission system
US4843586A (en) Distributed sampling of electrical and optical signals using coded switched electrode travelling wave modulators
US3875550A (en) Electronically focused acoustic imaging system and method
JPH05157836A (en) Pulse compression device and its application device
CN109639364B (en) Optical generating device and method for multi-channel arbitrary system phase coding signals
US6441938B1 (en) Optical communication system with a single polarized, phase modulated transmitted beam
US4959654A (en) Digitally generated two carrier phase coded signal source
JPH09218130A (en) Method and circuit for detecting frequency sweep error, optical frequency sweep light source, and optical frequency area reflection measuring circuit
US4354247A (en) Optical cosine transform system
US3430240A (en) Frequency modulated pulse transmission and reception devices utilizing electro-optical transduction
CN115412169A (en) System and method for simultaneously transmitting optical frequency, microwave and time signals of optical fiber
US5847853A (en) Modulation and demodulation of light to facilitate transmission of information
JP3182448B2 (en) Variable period correlation type detection device and variable period correlation type signal detection device
Zhang et al. Flexible Multi-band Dual-chirped Microwave Waveforms Generation with Double Bandwidth
JP3182445B2 (en) Correlation type detection device and correlation type signal detection device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001212

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees