JPH05157697A - Quantitative analysis of alloy for zirconium - Google Patents

Quantitative analysis of alloy for zirconium

Info

Publication number
JPH05157697A
JPH05157697A JP32221891A JP32221891A JPH05157697A JP H05157697 A JPH05157697 A JP H05157697A JP 32221891 A JP32221891 A JP 32221891A JP 32221891 A JP32221891 A JP 32221891A JP H05157697 A JPH05157697 A JP H05157697A
Authority
JP
Japan
Prior art keywords
alloy
zirconium
solution
sample
strontium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32221891A
Other languages
Japanese (ja)
Inventor
Fujiko Suzuki
富士子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP32221891A priority Critical patent/JPH05157697A/en
Publication of JPH05157697A publication Critical patent/JPH05157697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To obtain an ICP method by which a Cu-Cr-Zr alloy can be quantitatively analyzed for zirconium in order to quantitatively recognize the relation between the compounded composition and characteristics of the Cu-Cr-Zr alloy. CONSTITUTION:In the title quantitative analysis, a cutting-dust sample of an alloy is thermally dissolved in aqua regia after the sample is degreased and dried and the dissolved solution is filtrated after cooling. The ash of the filter paper is thermally dissolved in a flux of soda peroxide and sodium carbonate and the flux is thermally dissolved in hydrochloric acid. The filtration of the dissolved solution is obtained. Then the mixed solution of both filtrates is obtained. Ion-exchanged water is added to the mixed solution until a fixed amount is obtained after strontium is added to the mixed solution as a standard reference material and, by using the solution thus prepared as a sample solution, the luminance intensity of the zirconium contained in the alloy is measured by using an inductively coupled plasma method. Then the zirconium content of the alloy is determined by an internal standard method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高周波誘導結合型プラズ
マ発光法(以下、ICP法という)による合金中、特に
Cu−Cr−Zr合金中のジルコニウムの定量分析方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantitative analysis of zirconium in an alloy by a high frequency inductively coupled plasma emission method (hereinafter referred to as ICP method), particularly in a Cu-Cr-Zr alloy.

【0002】[0002]

【従来の技術】高速回転発電機とは、ガスを燃焼させて
ガスタービンで発電機を回して電気を発生し、この際生
ずる熱でお湯を沸かし、元のエネルギー量に対し、90
%の効率を上げようとするものである。
2. Description of the Related Art A high-speed rotary generator is a gas turbine that burns gas to turn a generator to generate electricity. The heat generated at this time heats hot water to 90% of the original amount of energy.
It is intended to increase the efficiency of%.

【0003】この高速回転発電機を使用するに際し、従
来600rpmのところを30000rpmと高速で回
転させるため、遠心力もかなりかかり、従来の材料では
強度的に無理である。このため回転速度や遠心力の関係
から安全性を考え、小型化が検討されている。また、回
転速度が速くなるので、温度も上昇し、従来180℃に
対し350℃位まで上がる。このため高温での強度が高
いことが要求される。
When this high-speed rotary generator is used, the conventional 600 rpm is rotated at a high speed of 30,000 rpm, so that centrifugal force is also considerably applied, and it is impossible to use conventional materials in terms of strength. For this reason, miniaturization is being considered in consideration of safety in terms of rotational speed and centrifugal force. In addition, since the rotation speed becomes faster, the temperature also rises to about 350 ° C as compared to 180 ° C in the related art. Therefore, high strength at high temperature is required.

【0004】特にロータバー材に使用される銅は200
℃までしか強度がもたず、350℃では室温の半分程度
の強度しかない。このためCr,Zrの合金にすること
により強度を上げることにし、外部メーカー製造を依頼
した。しかしこれは特注であるためJIS規格外であ
る。従ってCu−Cr−Zrの合金組成と特性の関係を
明確にかつ定量的に把握して、合金の品質管理及び工程
管理を向上させる必要があり、そのため微量Zrの分析
方法の確立が不可欠である。
Copper used in rotor bar materials is 200
The strength is only up to ℃, at 350 ℃ is only about half the room temperature. Therefore, we decided to increase the strength by using an alloy of Cr and Zr, and requested the manufacture by an external manufacturer. However, since this is a custom order, it is outside the JIS standard. Therefore, it is necessary to clearly and quantitatively grasp the relationship between the alloy composition and the properties of Cu-Cr-Zr to improve the quality control and process control of the alloy. Therefore, it is indispensable to establish a method for analyzing trace Zr. ..

【0005】[0005]

【発明が解決しようとする課題】本発明はこのような問
題点に着目して創案されたものであって、合金中のジル
コニウムを高感度に定量するICP法を提供するもので
ある。
The present invention was devised in view of such problems, and provides an ICP method for quantifying zirconium in an alloy with high sensitivity.

【0006】[0006]

【課題を解決するための手段】即ち、本発明に係る合金
中のジルコニウムの定量分析方法は、切り粉状の合金を
脱脂,乾燥し、王水を加えて加熱分解した後冷却し、こ
の分解液を濾過して得られた濾液と、濾紙を灰化して過
酸化ソーダ:炭酸ソーダの融剤で融解し、塩酸を加えて
加熱溶解した後、濾過した濾液との混合液を作成し、こ
の混合液に標準物質としてストロンチウムを加えてから
イオン交換水で一定量とし、これを試料溶液として高周
波誘導結合型プラズマ発光法を用いてジルコニウムの発
光強度を測定し、内部標準法によってジルコニウムを定
量することをその解決手段としている。
[Means for Solving the Problems] That is, the method for quantitatively analyzing zirconium in an alloy according to the present invention comprises degreasing and drying a swarf-like alloy, heating and decomposing it with aqua regia, followed by cooling and decomposing. The filtrate obtained by filtering the liquid and the filter paper is ashed and melted with a flux of sodium peroxide: sodium carbonate, hydrochloric acid is added and dissolved by heating, and then a mixed liquid with the filtered filtrate is prepared. After adding strontium as a standard substance to the mixed solution, make a fixed amount with ion-exchanged water, use this as a sample solution, measure the emission intensity of zirconium using the high frequency inductively coupled plasma emission method, and quantify zirconium by the internal standard method. That is the solution.

【0007】[0007]

【作用】かかる定量分析方法によれば、切り粉状の合金
を王水によって加熱分解し、濾過して得られた濾液と、
濾紙を灰化して過酸化ソーダ:炭酸ソーダの融剤で融解
し、塩酸を加えて加熱溶解した後、濾過した濾液との混
合液を作成したことにより、試料溶液中に他の共存物質
の残査が少なく、ジルコニウムをほぼ完全に分解するこ
とができる。
According to such a quantitative analysis method, a cutting powder-like alloy is thermally decomposed with aqua regia, and a filtrate obtained by filtration,
The filter paper was ashed and melted with a flux of sodium peroxide: sodium carbonate, and the mixture was heated and dissolved by adding hydrochloric acid, and then a mixed solution with the filtered filtrate was prepared. It requires less inspection and can decompose zirconium almost completely.

【0008】そして試料溶液をICP法を用いてジルコ
ニウムの発光強度を測定し、内部標準法で定量した際
に、王水,試薬及び融剤が負の影響を示すが、検量線作
成用溶液と試料溶液中の試薬濃度を同一にして、王水,
試薬,融剤の存在による影響を抑えることができる。
When the luminescence intensity of zirconium in the sample solution was measured by the ICP method and quantified by the internal standard method, aqua regia, the reagent and the flux had a negative effect. Make the reagent concentration in the sample solution the same,
The influence of the presence of reagents and flux can be suppressed.

【0009】更に合成溶液を測定した時の変動係数、回
収率がともに実用上充分に満足できる分析精度が得ら
れ、その結果合金中のジルコニウムが高感度に定量され
て、これにより合金中の微量のジルコニウムの分析方法
が確立されて、合金組成と特性の関係を明確にすること
ができる。
Furthermore, both the coefficient of variation and the recovery rate when the synthetic solution was measured were sufficiently satisfactory in practical use, and as a result, zirconium in the alloy was quantified with high sensitivity. A method for the analysis of zirconium has been established to clarify the relationship between alloy composition and properties.

【0010】[0010]

【実施例】以下、本発明にかかるCu−Cr−Zr合金
中のZrの分析方法の具体的な実施例を説明する。
EXAMPLES Specific examples of the method for analyzing Zr in the Cu—Cr—Zr alloy according to the present invention will be described below.

【0011】先ず図1のフローチャートに基づいて、本
実施例の基本的な操作手順を説明する。
First, the basic operation procedure of this embodiment will be described with reference to the flowchart of FIG.

【0012】先ずステップ101で試料となる切り粉状の
Cu−Cr−Zr合金をクロロホルムで脱脂し、良く乾
燥した後、ステップ102でコニカルビーカー内で王水を
加え、次にステップ103で所定温度で加熱し、分解す
る。分析をより高精度に行うため、使用する試薬はホー
ルピペット、マイクロピペットなどで計るのが好まし
い。
First, in step 101, a sample of powdery Cu-Cr-Zr alloy is degreased with chloroform and dried well, then in step 102 aqua regia is added in a conical beaker, and then in step 103 a predetermined temperature is applied. Heat to decompose. In order to carry out the analysis with higher accuracy, it is preferable to measure the reagents used with a whole pipette, a micropipette or the like.

【0013】次にこの分解液を冷却した後、ステップ10
4でNO.5Cの濾紙を用いて濾過し、200mlのメ
スフラスコに受ける。次にステップ105で濾紙とコニカ
ルビーカーの内壁を塩酸(1+5)で洗浄し、先の濾液
に合わせてからストロンチウム2.0gを加えて塩酸
(1+5)で200mlの一定量とする。ステップ104
の濾紙はステップ106に移行してZrルツボ内で弱火の
還元炎で灰化した後、ステップ107で過酸化ソーダ:炭
酸ソーダ(Na22:Na2CO3=2:1)の融剤2g
で融解し、ステップ108で塩酸(1+1)を40mlを
加えて加熱溶解し、ステップ109でNO.5Cの濾紙を
用いて濾過してステップ105の濾液に加える。次にステ
ップ110で、濾液に標準物質としてストロンチウム2g
を加え、イオン交換水を加えて一定量とし、これをステ
ップ111でICP法による電極中のジルコニウムの定量
分析方法における試料溶液とする。
Next, after cooling this decomposition liquid, step 10
NO in 4. Filter using 5C filter paper and receive in a 200 ml volumetric flask. Next, in step 105, the filter paper and the inner wall of the conical beaker are washed with hydrochloric acid (1 + 5), 2.0 g of strontium is added to the above filtrate, and 200 ml of hydrochloric acid (1 + 5) is added to make a fixed amount. Step 104
The filter paper of No. 1 moves to step 106 and is ashed by a reducing flame of low heat in the Zr crucible, and then in step 107, a flux of sodium peroxide: sodium carbonate (Na 2 O 2 : Na 2 CO 3 = 2: 1) 2 g
It was thawed in step 108, 40 ml of hydrochloric acid (1 + 1) was added in step 108 to dissolve by heating, and in step 109 NO. Filter using 5C filter paper and add to the filtrate of step 105. Next, in step 110, 2 g of strontium was added to the filtrate as a standard substance.
Then, ion-exchanged water is added to make a fixed amount, and this is used as a sample solution in step 111 in the quantitative analysis method of zirconium in the electrode by the ICP method.

【0014】以下、本発明に係るICP法によるCu−
Cr−Zr合金中のジルコニウムの定量分析方法の詳細
を実施例に基づいて説明する。
Cu-based on the ICP method according to the present invention will be described below.
Details of the quantitative analysis method of zirconium in the Cr-Zr alloy will be described based on Examples.

【0015】〔1〕 分析方法の操作手順 〔1−1 試料の分解および試料溶液調製方法〕切り粉
にしたCu−Cr−Zr合金をクロロホルムで脱脂、乾
燥して試料とし、この試料を王水分解法,塩酸−加圧分
解法,硝酸−加圧分解法の3方法で分解し、それぞれ分
解後の残査を調べた。尚、1部はブランク試験に供し
た。
[1] Operating procedure of analysis method [1-1 Method of decomposing sample and preparing sample solution] Cu-Cr-Zr alloy that has been cut into chips is degreased with chloroform and dried to obtain a sample. Decomposition was carried out by three methods: solution method, hydrochloric acid-pressure decomposition method, nitric acid-pressure decomposition method, and the residue after decomposition was examined. In addition, 1 part was used for the blank test.

【0016】(1)王水分解方法 コニカルビーカーに試料0.5gを採取し、王水40m
lを加え、バーナーを用いて加熱分解する。放冷後、N
o5Cの濾紙で濾過する。
(1) Method of decomposing aqua regia
1 is added and the mixture is decomposed by heating using a burner. After cooling down, N
Filter with o5C filter paper.

【0017】(2)塩酸−加圧分解法及び硝酸−加圧分
解法 試料0.5gを加圧ルツボに採取して、回転子、塩酸又
は硝酸20ml、ふっ酸0.5mlを入れて密栓し、1
70℃の恒温槽中で約1時間加熱した後、恒温槽から取
り出して、スターラ上で30分間撹拌する。この操作を
2回繰り返して試料を完全に分解する。
(2) Hydrochloric acid-pressure decomposition method and nitric acid-pressure decomposition method A sample of 0.5 g was sampled in a pressure crucible, and a rotor, hydrochloric acid or nitric acid (20 ml) and hydrofluoric acid (0.5 ml) were put in the crucible and sealed. 1
After heating in a constant temperature bath at 70 ° C. for about 1 hour, it is taken out of the constant temperature bath and stirred on a stirrer for 30 minutes. This operation is repeated twice to completely decompose the sample.

【0018】冷却後、分解液の全量をほう酸が1.00
g入ったポリビーカーにイオン交換水を用いて移し入
れ、ウオータバス上で加温してほう酸を溶解する。
After cooling, the total amount of the decomposed liquid was adjusted to 1.00 with boric acid.
Transfer to a poly beaker containing g using ion-exchanged water and heat on a water bath to dissolve boric acid.

【0019】冷却後、No.5Cの濾紙を用いて濾過
し、濾液を200mlのメスフラスコに受ける。
After cooling, no. Filter with 5C filter paper and receive the filtrate in a 200 ml volumetric flask.

【0020】濾紙は硝酸50mlとイオン交換水で良く
洗い、前記の濾液と洗液を合わせた液中に標準物質とし
てストロンチウム2.0mgを加えて200mlとし、
試料溶液とする。
The filter paper was thoroughly washed with 50 ml of nitric acid and ion-exchanged water, and 2.0 mg of strontium as a standard substance was added to 200 ml by adding to the combined solution of the above filtrate and washing solution.
Use as a sample solution.

【0021】(3)ブランク 試料0.5gをNO.5Cの濾紙で濾過した。(3) Blank 0.5 g of the sample was filtered through a No. 5C filter paper.

【0022】〔2〕 分析装置、測定条件および試薬 〔2−1 分析装置〕ICP発光分光装置は島津製IC
PS−1000−2型を用いた。
[2] Analyzing device, measurement conditions and reagents [2-1 Analyzing device] ICP emission spectroscopic device is IC manufactured by Shimadzu
PS-1000-2 type was used.

【0023】〔2−2 測定条件〕測定条件を表1に示
す。
[2-2 Measurement Conditions] Table 1 shows the measurement conditions.

【0024】[0024]

【表1】 [Table 1]

【0025】〔2−3 試薬〕実験に使用した試薬のリ
ストを表2に示す。
[2-3 Reagents] Table 2 shows a list of reagents used in the experiment.

【0026】[0026]

【表2】 [Table 2]

【0027】〔2−4 測定方法〕ピークサーチ内部標
準法とした。
[2-4 Measurement Method] The peak search internal standard method was used.

【0028】〔3〕分解試験の結果 図2はブランク試験に供した試料の残査を示すグラフ、
図3は王水分解法に供した試料の残査を示すグラフであ
る。王水分解法によれば、CrとわずかのZrが残って
いることが観測された。Zrは洗浄不足によって濾紙に
吸着されたものと考えられる。
[3] Result of Decomposition Test FIG. 2 is a graph showing the residue of the sample used in the blank test,
FIG. 3 is a graph showing the residue of the sample subjected to the aqua regia decomposition method. According to the aqua regia decomposition method, it was observed that Cr and a small amount of Zr remained. It is considered that Zr was adsorbed on the filter paper due to insufficient washing.

【0029】又、図4,図5はそれぞれ塩酸−加圧分解
法及び硝酸−加圧分解法で分解した後の残査を示すグラ
フであり、両分解法によってZrは完全に分解したが、
CuとCrが若干残った。Crは硝酸−加圧分解法で多
く残り、Cuは塩酸−加圧分解法で多く残った。尚、分
解操作性は塩酸−加圧分解法の方が良好であった。
FIGS. 4 and 5 are graphs showing the residuals after decomposition by the hydrochloric acid-pressure decomposition method and the nitric acid-pressure decomposition method, respectively. Zr was completely decomposed by both decomposition methods.
Some Cu and Cr remained. A large amount of Cr remained in the nitric acid-pressure decomposition method, and a large amount of Cu remained in the hydrochloric acid-pressure decomposition method. The decomposition operability was better in the hydrochloric acid-pressure decomposition method.

【0030】残分のCuとCrとを融解する必要があ
り、操作性を考慮すると塩酸−加圧分解法の方が良いも
のと判断される。
It is necessary to melt the residual Cu and Cr, and it is judged that the hydrochloric acid-pressure decomposition method is better in view of operability.

【0031】そこで(1)の王水分解法の対策として、
分解残査を塩酸(1+5)50ml−水洗浄法又は塩酸
(1+5)洗浄法を行って検討した。又、Zrは硝酸で
分解すると考えられるので、硝酸(1+1)で分解さ
せ、残査を硝酸(1+5)で洗浄する方法を合わせて行
った。
Then, as a countermeasure of the aqua regia decomposition method of (1),
The decomposition residue was examined by performing a 50 ml hydrochloric acid (1 + 5) -water washing method or a hydrochloric acid (1 + 5) washing method. Further, since Zr is considered to be decomposed by nitric acid, a method of decomposing it with nitric acid (1 + 1) and washing the residue with nitric acid (1 + 5) was also performed.

【0032】次にCu−Cr−Zr合金に対して、以下
に記す6種の分解方法を適用した結果を説明する。
Next, the results of applying the following six decomposition methods to the Cu-Cr-Zr alloy will be described.

【0033】〔方法a〕試料0.5gをコニカルビーカ
ーに採取し、硝酸(1+1)40mlを加え、加熱分解
する。冷却後、NO.5Cの濾紙を用いて濾過し、濾紙
を硝酸(1+5)50mlと水とで洗浄した。その結果
は図6に示したようにCrの残査がZrの残査よりも多
く、且つZrが完全に分解されないので、不適当である
と考えられる。
[Method a] 0.5 g of a sample is sampled in a conical beaker, and 40 ml of nitric acid (1 + 1) is added to decompose it by heating. After cooling, NO. It was filtered using a 5C filter paper, and the filter paper was washed with 50 ml of nitric acid (1 + 5) and water. As a result, as shown in FIG. 6, the residual amount of Cr is larger than the residual amount of Zr, and Zr is not completely decomposed, which is considered to be inappropriate.

【0034】〔方法b〕試料0.5gをコニカルビーカ
ーに採取し、硝酸(1+1)40mlを加え、加熱分解
する。冷却後、NO.5Cの濾紙を用いて濾過し、濾紙
を硝酸(1+5)で洗浄し、濾液を200mlの一定量
とした後、濾紙の酸を水で洗浄した。その結果は図7に
示したようにCrの残査がZrの残査よりも多く、且つ
Zrが完全に分解されないので、不適当であると考えら
れる。
[Method b] 0.5 g of a sample is sampled in a conical beaker, and 40 ml of nitric acid (1 + 1) is added to decompose it by heating. After cooling, NO. After filtering using a 5C filter paper, the filter paper was washed with nitric acid (1 + 5), and the filtrate was adjusted to a fixed amount of 200 ml, and then the acid of the filter paper was washed with water. As a result, as shown in FIG. 7, the residual amount of Cr is larger than the residual amount of Zr, and Zr is not completely decomposed, which is considered to be inappropriate.

【0035】〔方法c〕試料0.5gをコニカルビーカ
ーに採取し、王水40mlを加え、加熱分解する。冷却
後、NO.5Cの濾紙を用いて濾過し、濾紙を塩酸(1
+5)50mlと水とで洗浄した。その結果は図8に示
したように少々のCrの残査があるもののZrがほぼ分
解されているので、適当であると考えられる。
[Method c] 0.5 g of a sample is sampled in a conical beaker, and 40 ml of aqua regia is added to decompose it by heating. After cooling, NO. Filter with a 5C filter paper, and filter the filter paper with hydrochloric acid (1
+5) Washed with 50 ml and water. As a result, as shown in FIG. 8, although there is a small amount of Cr residue, Zr is almost decomposed, so it is considered to be appropriate.

【0036】〔方法d〕試料0.5gをコニカルビーカ
ーに採取し、王水40mlを加え、加熱分解する。冷却
後、NO.5Cの濾紙を用いて濾過し、濾紙を塩酸(1
+5)で洗浄し、濾液を200mlの一定量とした後、
濾紙の酸を水で洗浄した。その結果は図9に示したよう
に、方法c(図8)の例よりもCrの残査が少なく、Z
rがほぼ分解されているので、適当であると考えられ
る。
[Method d] 0.5 g of a sample is collected in a conical beaker, and 40 ml of aqua regia is added to decompose it by heating. After cooling, NO. Filter with a 5C filter paper, and filter the filter paper with hydrochloric acid (1
+5), and after making the filtrate a fixed amount of 200 ml,
The acid on the filter paper was washed with water. As a result, as shown in FIG. 9, the residual amount of Cr was smaller than that of the method c (FIG. 8), and
It is considered appropriate because r is almost decomposed.

【0037】〔方法e〕試料0.5gをコニカルビーカ
ーに採取し、王水40mlを加え、加熱分解する。冷却
後、NO.5Cの濾紙を用いて濾過し、濾紙を硝酸(1
+5)50mlと水とで洗浄した。その結果は図10に
示したように、方法c(図8)の例よりもCrの残査が
多いので、不適当と考えられる。
[Method e] 0.5 g of a sample is sampled in a conical beaker, and 40 ml of aqua regia is added to decompose by heating. After cooling, NO. Filter with a 5C filter paper and filter the filter paper with nitric acid (1
+5) Washed with 50 ml and water. As a result, as shown in FIG. 10, the residual amount of Cr is larger than that in the case of the method c (FIG. 8), and therefore it is considered to be inappropriate.

【0038】〔方法f〕試料0.5gをコニカルビーカ
ーに採取し、王水40mlを加え、加熱分解する。冷却
後、NO.5Cの濾紙を用いて濾過し、濾紙を硝酸(1
+5)で洗浄し、濾液を200mlの一定量とした後、
濾紙の酸を水で洗浄した。その結果は図11に示したよ
うに、方法e(図10)の例よりもCrの残査が多いの
で、不適当と考えられる。
[Method f] 0.5 g of a sample is collected in a conical beaker, and 40 ml of aqua regia is added to decompose it by heating. After cooling, NO. Filter with a 5C filter paper and filter the filter paper with nitric acid (1
+5), and after making the filtrate a fixed amount of 200 ml,
The acid on the filter paper was washed with water. As a result, as shown in FIG. 11, the residual amount of Cr is larger than that in the case of the method e (FIG. 10), and thus it is considered to be inappropriate.

【0039】以上の結果から、Cu−Cr−Zr合金の
分解方法として〔方法d〕が最も適当であると判定し
た。
From the above results, it was judged that [Method d] was the most suitable as the decomposition method for the Cu-Cr-Zr alloy.

【0040】従って上記の〔方法d〕によって分解した
分解液を冷却した後、NO.5Cの濾紙を用いて濾過
し、200mlのメスフラスコに受け、前記濾紙とコニ
カルビーカーの内壁を塩酸(1+5)で洗浄し、先の濾
液に合わせてからストロンチウム2.0gを加えて塩酸
(1+5)で200mlの一定量とする。更に濾紙はZ
rルツボ内で弱火の還元炎で灰化した後、過酸化ソー
ダ:炭酸ソーダ(Na22:Na2CO3=2:1)の融
剤2gで融解し、塩酸(1+1)を40mlを加えて加
熱溶解し、NO.5Cの濾紙を用いて濾過してから前記
濾液に加える。
Therefore, after cooling the decomposition liquid decomposed by the above [Method d], NO. Filter using 5C filter paper, receive in a 200 ml volumetric flask, wash the filter paper and the inner wall of the conical beaker with hydrochloric acid (1 + 5), combine with the previous filtrate, add 2.0 g of strontium, and add hydrochloric acid (1 + 5) To a fixed amount of 200 ml. Furthermore, the filter paper is Z
After ashing with a low flame in a crucible, melt with 2 g of flux of sodium peroxide: sodium carbonate (Na 2 O 2 : Na 2 CO 3 = 2: 1) and add 40 ml of hydrochloric acid (1 + 1). In addition, it is heated and dissolved, and NO. Filter using 5C filter paper and add to the filtrate.

【0041】この濾液に標準物質としてストロンチウム
2gを加え、イオン交換水を加えて一定量とし、これを
ICP法による電極中のジルコニウムの定量分析方法に
おける試料溶液とする。
2 g of strontium as a standard substance was added to this filtrate, and ion-exchanged water was added to make a fixed amount, which was used as a sample solution in the method for quantitative analysis of zirconium in electrodes by the ICP method.

【0042】〔4〕 実験および結果 〔4−1 分析線の選定〕ジルコニウムの分析に最も適
した波長を選定するため、Cu−Cr−Zr合金を構成
する各元素の単独溶液及び内部標準物質としてのストロ
ンチウムを用いて分析線の選定を定性的に行った。その
結果を図12〜図14に示す。
[4] Experiments and Results [4-1 Selection of Analysis Line] In order to select the most suitable wavelength for zirconium analysis, a single solution of each element constituting the Cu—Cr—Zr alloy and an internal standard substance were used. The analytical line was qualitatively selected by using strontium. The results are shown in FIGS.

【0043】尚、試料溶液中の各元素の濃度はCuが2
500ppm、Crが30.0ppm、Zrが10.0
ppm、Srが10.0ppmである。そしてジルコニ
ウムの発光強度の高い3本の波長を選び、分析線の選定
を行った。
The concentration of each element in the sample solution was 2 for Cu.
500ppm, Cr 30.0ppm, Zr 10.0
ppm and Sr are 10.0 ppm. Then, three wavelengths having high emission intensity of zirconium were selected and an analysis line was selected.

【0044】図12は波長343.823nmの発光ス
ペクトル、図13は波長339.198nmの発光スペ
クトル、図14は波長349.621nmの発光スペク
トルであり、どの波長においても共存物質の発光スペク
トルは全てベースライン上にあり、ジルコニウムに対し
て妨害しないことが推測される。
FIG. 12 shows an emission spectrum of a wavelength of 343.823 nm, FIG. 13 shows an emission spectrum of a wavelength of 339.198 nm, and FIG. 14 shows an emission spectrum of a wavelength of 349.621 nm. It is presumed that it is on the line and does not interfere with zirconium.

【0045】従って分析線として、ジルコニウムの波長
の優先順位一位で感度の高い343.823nmを採用
した。
Therefore, as the analysis line, 343.823 nm, which has the highest sensitivity in the priority order of the wavelength of zirconium, is adopted.

【0046】〔4−2 感度(HV)の選定〕感度(H
V)とはホトマルに印加する高電圧のことで、濃度によ
り最適なHVが存在する。
[4-2 Selection of Sensitivity (HV)] Sensitivity (H
V) is a high voltage applied to Photomal, and an optimum HV exists depending on the concentration.

【0047】このためジルコニウム濃度10ppm溶液
を用いて最適なHVの選定を行った。その結果を図15
〜図17に示す。
Therefore, the optimum HV was selected using a 10 ppm zirconium solution. Figure 15 shows the result.
~ Shown in FIG.

【0048】図17はHVが50の場合を示しており、
発光強度が飽和している。感度HVは飽和しない限り高
い方が好ましいので、ここでは図16に示した結果から
HVとして40を採用した。
FIG. 17 shows the case where the HV is 50,
The emission intensity is saturated. Since the sensitivity HV is preferably as high as possible as long as it is not saturated, here, 40 is adopted as the HV from the results shown in FIG.

【0049】〔4−3 内部標準物質とその波長の選
定〕内部標準物質としてストロンチウムを採用し、この
ストロンチウムの分析線を選定するため、ストロンチウ
ムの代表的な波長3本(216.596nm、407.7
71nm、421.522nm) のプロファイルを測定
して定性的に行った。その結果を図18〜図23に示
す。図18〜図20は王水分解後の試料中の各元素とス
トロンチウムの発光スペクトルであり、図18,図19
に示した波長407.771nmと波長421.552
nmではストロンチウムの発光線のみで共存物質は全て
ベースライン上にありストロンチウムに対する妨害は観
察されなかった。図20に示した波長216.596n
mでは、共存物質の主成分であるCuの発光線の近接に
よるバックグランド(BG)の上昇が観察され、分析線
として不適当である。
[4-3 Selection of Internal Standard Material and Its Wavelength] Strontium is adopted as the internal standard material, and in order to select the analysis line of this strontium, three typical wavelengths of strontium (216.5596 nm, 407. 7
71 nm, 421.522 nm) profile was measured and qualitatively determined. The results are shown in FIGS. 18 to 20 are emission spectra of each element and strontium in the sample after aqua regia decomposition.
Wavelength of 407.771 nm and wavelength of 421.552
In nm, only the emission line of strontium was present and all coexisting substances were on the baseline, and no interference with strontium was observed. The wavelength 216.5596n shown in FIG.
In m, an increase in background (BG) due to the proximity of the emission line of Cu, which is the main component of the coexisting substance, was observed, which is unsuitable as an analysis line.

【0050】図21〜図23は王水分解残査を融剤で融
解した時の各元素とストロンチウムの発光スペクトルで
あり、ストロンチウムの各波長407.771nm、4
21.552nm、216.596nmで共存物質は全
てベースライン上にありストロンチウムに対する妨害は
観察されなかった。このことから、分析線として波長4
07.771nmと421.552nmとが使用可能であ
るが、ここでは分析線として発光強度の高い波長40
7.771nm を採用した。
21 to 23 are emission spectra of each element and strontium when the aqua regia decomposition residue is melted with a fluxing agent. Each wavelength of strontium is 407.771 nm, 4
At 21.552 nm and 216.5596 nm, all coexisting substances were on the baseline and no interference with strontium was observed. From this, the wavelength of 4
07.771 nm and 421.552 nm can be used, but here, as the analysis line, the wavelength 40 with high emission intensity is used.
7.771 nm was adopted.

【0051】〔4−4 検量線の精度〕前記試料溶液中
のジルコニウムの濃度は約7ppmである。このためジ
ルコニウム濃度0〜10ppmの範囲で検量線の精度を
確かめた。その結果を図24に示す。この図から、検量
線はほぼ原点を通り、相関係数は0.9999585
5、標準偏差は0.3462237ppmと非常に良い
精度を示していることがわかる。
[4-4 Accuracy of Calibration Curve] The zirconium concentration in the sample solution is about 7 ppm. Therefore, the accuracy of the calibration curve was confirmed in the zirconium concentration range of 0 to 10 ppm. The result is shown in FIG. From this figure, the calibration curve passes almost the origin and the correlation coefficient is 0.99999585.
5, the standard deviation is 0.3462237 ppm, which shows that the accuracy is very good.

【0052】〔4−5 試薬の影響〕ジルコニウム濃度
7ppm溶液に王水を段階的に加えてその影響を定量的
に調べた。その結果を図25に示す。
[Influence of 4-5 Reagent] Aqua regia was added stepwise to a 7 ppm zirconium solution to quantitatively investigate the influence. The result is shown in FIG.

【0053】影響の有無の判定は、回収率(測定値×1
00/仕込み値)の±2%として図中に許容範囲として
破線で表示した。
The determination of the presence or absence of influence is made by the collection rate (measured value x 1
00 / prepared value) ± 2%, and the allowable range is shown by a broken line in the figure.

【0054】検量線法で測定すると、王水は負の影響を
示した。このことは王水の存在により、試料溶液の粘度
が上昇し、試料吸い込み量が低下して見掛けの発光強度
が低くなったためである。
When measured by the calibration curve method, aqua regia showed a negative effect. This is because the presence of aqua regia increased the viscosity of the sample solution, decreased the amount of sample taken in, and lowered the apparent emission intensity.

【0055】従って検量線作成用溶液と分析供試液中の
試薬濃度を同一にして、王水の存在による影響を抑える
ことにした。
Therefore, the concentration of the reagent in the solution for preparing the calibration curve and the concentration of the reagent in the sample solution for analysis were set to be the same to suppress the influence of the presence of aqua regia.

【0056】〔4−6 共存元素の影響〕ジルコニウム
濃度10ppm溶液にCu,Cr,及び内部標準物質の
Srを各々段階的に加えてそれらの共存元素の影響を定
量的に調べた。
[4-6 Effects of Coexisting Elements] Cu, Cr, and Sr as an internal standard substance were added stepwise to a 10 ppm zirconium solution to quantitatively investigate the effects of these coexisting elements.

【0057】その結果を図26〜図28に示す。これら
の影響の有無の判定はジルコニウムの回収率の±2%以
内とし、図中に許容範囲として破線で表示した。図26
〜図28から、Cu,Cr,Srはいずれの元素も破線
で示した許容範囲内で影響のないことが判明した。
The results are shown in FIGS. The determination as to whether or not these effects were exerted was within ± 2% of the recovery rate of zirconium, and is shown by a broken line as an allowable range in the figure. FIG. 26
28. From FIG. 28, it was found that Cu, Cr, and Sr did not affect any of the elements within the allowable range shown by the broken line.

【0058】〔4−7 内部標準物質ストロンチウムに
対する試薬の影響〕ストロンチウム濃度10ppm溶液
に試薬を各々段階的に加えてその影響を定量的に調べ
た。その結果を図29に示す。
[4-7 Effects of Reagents on Strontium Internal Standard Material] Reagents were added stepwise to a 10 ppm strontium solution to quantitatively investigate the effects. The result is shown in FIG.

【0059】この結果、塩酸、融剤(Na22:Na2
CO3=2:1)ともに負の影響を示すことが判明し
た。即ち、塩酸及び融剤の添加量が増すとストロンチウ
ムの回収率は低下した。これはこれら試薬の共存によ
り、試料溶液の粘度が上昇して試料吸い込み量が減少
し、発光強度が低下したためである。従って検量線作成
用溶液と分析供試液中の試薬濃度を同一にして、負の影
響を抑えることにした。
As a result, hydrochloric acid and a flux (Na 2 O 2 : Na 2
It was found that both CO 3 = 2: 1) have a negative effect. That is, as the amounts of hydrochloric acid and flux added increased, the recovery rate of strontium decreased. This is because the coexistence of these reagents increases the viscosity of the sample solution, reduces the amount of sample taken in, and reduces the emission intensity. Therefore, the concentration of the reagent in the solution for preparing the calibration curve and the concentration of the reagent in the analytical test solution were made the same to suppress the negative influence.

【0060】〔4−8 内部標準物質に対する共存元素
の影響〕ストロンチウム濃度10ppm溶液にCu,C
r,Zrを各々段階的に加えてそれぞれの元素のストロ
ンチウムに対する影響を定量的に調べた。その結果を図
30〜図32に示す。
[4-8 Effect of Coexisting Element on Internal Standard Material] Cu and C were added to a solution containing 10 ppm of strontium.
The effects of each element on strontium were quantitatively investigated by adding r and Zr in stages. The results are shown in FIGS.

【0061】いずれの元素も破線で示した許容範囲にあ
り、ストロンチウムに対する影響はなかった。
All the elements were within the allowable range shown by the broken line and had no effect on strontium.

【0062】〔4−9 合成溶液による分析精度の検
証〕上記検討した条件での分析精度を検証するため、合
成溶液を調整して実施した。その結果、ジルコニウムの
回収率は99.91%、変動係数は1.61%と実用上
十分満足出来る精度が得られた。
[4-9 Verification of Analytical Accuracy Using Synthetic Solution] In order to verify the analytical accuracy under the conditions examined above, a synthetic solution was prepared and implemented. As a result, the recovery rate of zirconium was 99.91% and the coefficient of variation was 1.61%, which was a sufficient accuracy for practical use.

【0063】以下、表3に合成溶液の組成、表4に測定
結果をそれぞれ示す。
The composition of the synthetic solution is shown in Table 3 and the measurement results are shown in Table 4.

【0064】[0064]

【表3】 [Table 3]

【0065】[0065]

【表4】 [Table 4]

【0066】尚、表3中のCuはメタルを硝酸で溶解し
て使用し、Cr,Zr,Srは原子吸光分析用標準試薬
を使用した。検量線作成用溶液は、以下に示したように
調整した。
In Table 3, Cu was used by dissolving a metal in nitric acid, and Cr, Zr, and Sr were standard reagents for atomic absorption spectrometry. The solution for preparing the calibration curve was prepared as shown below.

【0067】即ち、100mlのメスフラスコに塩酸2
5ml、硝酸5ml及びストロンチウム1.0mgを加
え、ジルコニウムを0〜1mgを段階的に加えてイオン
交換水で一定量とした。
That is, hydrochloric acid 2 was added to a 100 ml volumetric flask.
5 ml, 5 ml of nitric acid and 1.0 mg of strontium were added, and 0 to 1 mg of zirconium was added stepwise, and the amount was made constant with ion-exchanged water.

【0068】〔5〕 考察 以上の結果から、本実施例に係るICP法によるCu−
Cr−Zr合金中のジルコニウムの分析方法を検討する
ことにより、次の知見が得られた。
[5] Consideration From the above results, Cu- by the ICP method according to this example was
The following findings were obtained by examining the analysis method of zirconium in Cr-Zr alloy.

【0069】(5−1) 試料の分解方法 切粉にした試料を王水で溶解し、残査を濾紙ごと灰化
し、融剤で融解することにより、従来完全に分解するこ
とができなかったジルコニウム容易に分解することが可
能となった。
(5-1) Sample Decomposition Method Conventionally, complete decomposition was not possible by dissolving a chipped sample with aqua regia, ashing the residue together with filter paper and melting with a flux. Zirconium can be easily decomposed.

【0070】(5−2) 分析線 発光強度の高い分析線343.823nmの共存元素の
妨害を調べた結果、妨害ピークは見られなかった。
(5-2) Analysis line As a result of examining the interference of coexisting elements at the analysis line 343.823 nm with high emission intensity, no interference peak was observed.

【0071】(5−3) 分解試薬の影響と抑制 分解試薬である王水は負の干渉を示した。これは王水の
共存により試料溶液中の粘度が上昇して試料の吸込量が
低下したことによるものと考えられるので、この影響を
抑えるため試料溶液と検量線作成用溶液中の試薬濃度を
同一にし、更にストロンチウム内部標準法を用いて測定
することにより、上記の影響を抑えることが可能となっ
た。
(5-3) Influence and suppression of decomposition reagent The decomposition reagent aqua regia showed negative interference. It is considered that this is because the viscosity of the sample solution increased due to the coexistence of aqua regia and the suction amount of the sample decreased, so in order to suppress this effect, the reagent concentration in the sample solution and the calibration curve preparation solution should be the same. In addition, it was possible to suppress the above-mentioned influence by further measuring by using the strontium internal standard method.

【0072】(5−4) 分析精度 合成溶液を5個測定した時の回収率は99.91%、変
動係数は1.61 といずれも実用上十分満足できる精
度であった。
(5-4) Analytical accuracy The recovery rate when measuring 5 synthetic solutions was 99.91%, and the coefficient of variation was 1.61, which were all sufficiently satisfactory for practical use.

【0073】[0073]

【発明の効果】本発明に係るICP法によるCu−Cr
−Zr合金中のジルコニウムの分析方法によれば、切り
粉状の合金を王水によって加熱分解することにより、試
料溶液中に他の共存物質の残査が少なく、ジルコニウム
がほぼ分解される。
EFFECT OF THE INVENTION Cu-Cr by the ICP method according to the present invention
According to the method for analyzing zirconium in a Zr alloy, the powdery alloy is thermally decomposed with aqua regia, so that the residual amount of other coexisting substances in the sample solution is small and zirconium is almost decomposed.

【0074】そして試料溶液をICP法を用いてジルコ
ニウムの発光強度を測定し、検量線法で定量した際に、
王水,試薬及び融剤は負の影響を示すが、検量線作成用
溶液と試料溶液中の試薬濃度を同一にして、王水,試
薬,融剤の存在による影響を抑えることが可能となっ
た。又、試料溶液をICP法によって測定した時の変動
係数、回収率がともに実用上充分に満足できる分析精度
が得られ、その結果Cu−Cr−Zr中の微量のZrの
分析方法が確立されて、合金組成と特性の関係を明確に
するとともに、合金の品質管理及び工程管理を向上させ
ることができる。
When the emission intensity of zirconium in the sample solution was measured by the ICP method and quantified by the calibration curve method,
Although aqua regia, reagents and fluxes have negative effects, it is possible to suppress the effects of the presence of aqua regia, reagents and fluxes by making the reagent concentrations in the calibration curve preparation solution and sample solution the same. It was Further, both the coefficient of variation and the recovery rate when the sample solution was measured by the ICP method were sufficiently satisfactory in practical use, and as a result, a method for analyzing a trace amount of Zr in Cu-Cr-Zr was established. In addition to clarifying the relationship between alloy composition and characteristics, it is possible to improve the quality control and process control of the alloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる合金中のジルコニウムの定量分
析方法の基本的な操作手順を示すフローチャート。
FIG. 1 is a flowchart showing a basic operation procedure of a method for quantitatively analyzing zirconium in an alloy according to the present invention.

【図2】ブランク試験に供した試料の残査を示すグラ
フ。
FIG. 2 is a graph showing a residue of a sample used in a blank test.

【図3】王水分解法に供した試料の残査を示すグラフ。FIG. 3 is a graph showing the residue of the sample subjected to the aqua regia decomposition method.

【図4】塩酸−加圧分解法で分解した後の試料の残査を
示すグラフ。
FIG. 4 is a graph showing the residue of a sample after decomposition by a hydrochloric acid-pressure decomposition method.

【図5】硝酸−加圧分解法で分解した後の試料の残査を
示すグラフ。
FIG. 5 is a graph showing the residue of the sample after decomposition by nitric acid-pressure decomposition method.

【図6】詳細な説明中の〔方法a〕によって分解した後
の試料の残査を示すグラフ。
FIG. 6 is a graph showing the residue of the sample after being decomposed by [Method a] in the detailed description.

【図7】詳細な説明中の〔方法b〕によって分解した後
の試料の残査を示すグラフ。
FIG. 7 is a graph showing the residue of the sample after being decomposed by [Method b] in the detailed description.

【図8】詳細な説明中の〔方法c〕によって分解した後
の試料の残査を示すグラフ。
FIG. 8 is a graph showing the residue of the sample after being decomposed by [Method c] in the detailed description.

【図9】詳細な説明中の〔方法d〕によって分解した後
の試料の残査を示すグラフ。
FIG. 9 is a graph showing the residue of the sample after being decomposed by [Method d] in the detailed description.

【図10】詳細な説明中の〔方法e〕によって分解した
後の試料の残査を示すグラフ。
FIG. 10 is a graph showing the residue of the sample after being decomposed by [Method e] in the detailed description.

【図11】詳細な説明中の〔方法f〕によって分解した
後の試料の残査を示すグラフ。
FIG. 11 is a graph showing the residue of the sample after being decomposed by [Method f] in the detailed description.

【図12】波長343.823nmにおける各種元素の
発光スペクトルを示すグラフ。
FIG. 12 is a graph showing emission spectra of various elements at a wavelength of 343.823 nm.

【図13】波長339.198nmにおける各種元素の
発光スペクトルを示すグラフ。
13 is a graph showing emission spectra of various elements at a wavelength of 339.198 nm.

【図14】波長349.621nmにおける各種元素の
発光スペクトルを示すグラフ。
FIG. 14 is a graph showing emission spectra of various elements at a wavelength of 349.621 nm.

【図15】波長343.823nm,ジルコニウム濃度
10ppm溶液を用いてHVの選定(HV30の場合)
を行ったグラフ。
FIG. 15: Selection of HV using a solution having a wavelength of 343.823 nm and a zirconium concentration of 10 ppm (in the case of HV30)
The graph that was done.

【図16】波長343.823nm,ジルコニウム濃度
10ppm溶液を用いてHVの選定(HV40の場合)
を行ったグラフ。
FIG. 16: Selection of HV using a solution having a wavelength of 343.823 nm and a zirconium concentration of 10 ppm (in the case of HV40)
The graph that was done.

【図17】波長343.823nm,ジルコニウム濃度
10ppm溶液を用いてHVの選定(HV50の場合)
を行ったグラフ。
FIG. 17: Selection of HV using a solution having a wavelength of 343.823 nm and a zirconium concentration of 10 ppm (in the case of HV50)
The graph that was done.

【図18】王水分解後の試料中の各元素と内部標準物質
としてのストロンチウムの波長407.771nmにお
ける共存物質のプロファイルを示すグラフ。
FIG. 18 is a graph showing the profile of coexisting substances at a wavelength of 407.771 nm of strontium as an internal standard substance and each element in the sample after aqua regia decomposition.

【図19】王水分解後の試料中の各元素と内部標準物質
としてのストロンチウムの波長421.552nmにお
ける共存物質のプロファイルを示すグラフ。
FIG. 19 is a graph showing profiles of coexisting substances at a wavelength of 421.552 nm of strontium as an internal standard substance and each element in the sample after decomposition of aqua regia.

【図20】王水分解後の試料中の各元素と内部標準物質
としてのストロンチウムの波長216.596nmにお
ける共存物質のプロファイルを示すグラフ。
FIG. 20 is a graph showing the profile of coexisting substances at a wavelength of 216.5596 nm of each element in the sample after aqua regia decomposition and strontium as an internal standard substance.

【図21】王水分解残査を融剤で融解した時の各元素と
内部標準物質としてのストロンチウムの波長407.7
71nmにおける共存物質のプロファイルを示すグラ
フ。
FIG. 21: Wavelength of each element and strontium 407.7 as an internal standard substance when the aqua regia decomposition residue was melted with a fluxing agent
The graph which shows the profile of a coexisting substance in 71 nm.

【図22】王水分解残査を融剤で融解した時の各元素と
内部標準物質としてのストロンチウムの波長421.5
52nmにおける共存物質のプロファイルを示すグラ
フ。
FIG. 22: Wavelength 421.5 of each element and strontium as an internal standard when the aqua regia decomposition residue was melted with a fluxing agent
The graph which shows the profile of a coexisting substance in 52 nm.

【図23】王水分解残査を融剤で融解した時の各元素と
内部標準物質としてのストロンチウムの波長216.5
96nmにおける共存物質のプロファイルを示すグラ
フ。
FIG. 23: Wavelength 216.5 of each element and strontium as an internal standard substance when the aqua regia decomposition residue was melted with a fluxing agent
The graph which shows the profile of a coexisting substance in 96 nm.

【図24】ジルコニウムの検量線を示すグラフ。FIG. 24 is a graph showing a calibration curve of zirconium.

【図25】試薬の影響を示すグラフ。FIG. 25 is a graph showing the influence of reagents.

【図26】Cuの影響によるジルコニウムの回収率の許
容範囲を定量的に示すグラフ。
FIG. 26 is a graph quantitatively showing the allowable range of the recovery rate of zirconium due to the influence of Cu.

【図27】Crの影響によるジルコニウムの回収率の許
容範囲を定量的に示すグラフ。
FIG. 27 is a graph quantitatively showing the allowable range of the recovery rate of zirconium due to the influence of Cr.

【図28】Srの影響によるジルコニウムの回収率の許
容範囲を定量的に示すグラフ。
FIG. 28 is a graph quantitatively showing the allowable range of the recovery rate of zirconium due to the influence of Sr.

【図29】ストロンチウムに対する試薬の影響を示すグ
ラフ。
FIG. 29 is a graph showing the influence of reagents on strontium.

【図30】Cuの影響によるストロンチウムの回収率の
許容範囲を定量的に示すグラフ。
FIG. 30 is a graph quantitatively showing the allowable range of the recovery rate of strontium due to the influence of Cu.

【図31】Crの影響によるストロンチウムの回収率の
許容範囲を定量的に示すグラフ。
FIG. 31 is a graph quantitatively showing the allowable range of the recovery rate of strontium due to the influence of Cr.

【図32】Zrの影響によるストロンチウムの回収率の
許容範囲を定量的に示すグラフ。
FIG. 32 is a graph quantitatively showing the allowable range of the strontium recovery rate due to the influence of Zr.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 切り粉状の合金を脱脂,乾燥し、王水を
加えて加熱分解した後冷却し、この分解液を濾過して得
られた濾液と、濾紙を灰化して過酸化ソーダ:炭酸ソー
ダの融剤で融解し、塩酸を加えて加熱溶解した後、濾過
した濾液との混合液を作成し、この混合液に標準物質と
してストロンチウムを加えてからイオン交換水で一定量
とし、これを試料溶液として高周波誘導結合型プラズマ
発光法を用いてジルコニウムの発光強度を測定し、内部
標準法によってジルコニウムを定量することを特徴とす
る合金中のジルコニウムの定量分析方法。
1. A cutting powdery alloy is degreased and dried, aqua regia is added thereto for thermal decomposition and then cooled, and a filtrate obtained by filtering the decomposed solution and filter paper are ashed to obtain sodium peroxide: Melt with a fluxing agent of sodium carbonate, add hydrochloric acid to dissolve by heating, and then create a mixed solution with the filtered filtrate, add strontium as a standard substance to this mixed solution, and make a fixed amount with ion-exchanged water. A quantitative analysis method of zirconium in an alloy, which comprises measuring the emission intensity of zirconium by using a high frequency inductively coupled plasma emission method as a sample solution and quantifying zirconium by an internal standard method.
【請求項2】 試料合金がCu−Cr−Zr系である請
求項1記載の合金中のジルコニウムの定量分析方法。
2. The method for quantitative analysis of zirconium in an alloy according to claim 1, wherein the sample alloy is a Cu—Cr—Zr system.
JP32221891A 1991-12-06 1991-12-06 Quantitative analysis of alloy for zirconium Pending JPH05157697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32221891A JPH05157697A (en) 1991-12-06 1991-12-06 Quantitative analysis of alloy for zirconium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32221891A JPH05157697A (en) 1991-12-06 1991-12-06 Quantitative analysis of alloy for zirconium

Publications (1)

Publication Number Publication Date
JPH05157697A true JPH05157697A (en) 1993-06-25

Family

ID=18141269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32221891A Pending JPH05157697A (en) 1991-12-06 1991-12-06 Quantitative analysis of alloy for zirconium

Country Status (1)

Country Link
JP (1) JPH05157697A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297226A (en) * 2014-10-16 2015-01-21 宁夏共享集团有限责任公司 Method for detecting content of aluminum and calcium in nodulizing agent by ICP-AES process
CN104697984A (en) * 2015-03-30 2015-06-10 西部新锆核材料科技有限公司 Method for measuring magnesium content in nuclear-grade sponge zirconium particles
CN105300786A (en) * 2015-11-20 2016-02-03 沈阳黎明航空发动机(集团)有限责任公司 Composition analysis method for nickel chromium aluminum alloy porous ceramic composite powder
CN105806826A (en) * 2015-11-18 2016-07-27 华东理工大学 Method for determining content of elements in potassium-bearing ore by ICP (Inductively Coupled Plasma) internal standard method
CN114199857A (en) * 2021-12-09 2022-03-18 中国第一汽车股份有限公司 Method for detecting zirconium content in chromium-free passivation solution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297226A (en) * 2014-10-16 2015-01-21 宁夏共享集团有限责任公司 Method for detecting content of aluminum and calcium in nodulizing agent by ICP-AES process
CN104697984A (en) * 2015-03-30 2015-06-10 西部新锆核材料科技有限公司 Method for measuring magnesium content in nuclear-grade sponge zirconium particles
CN105806826A (en) * 2015-11-18 2016-07-27 华东理工大学 Method for determining content of elements in potassium-bearing ore by ICP (Inductively Coupled Plasma) internal standard method
CN105300786A (en) * 2015-11-20 2016-02-03 沈阳黎明航空发动机(集团)有限责任公司 Composition analysis method for nickel chromium aluminum alloy porous ceramic composite powder
CN114199857A (en) * 2021-12-09 2022-03-18 中国第一汽车股份有限公司 Method for detecting zirconium content in chromium-free passivation solution

Similar Documents

Publication Publication Date Title
White Jr et al. Use of microwave oven and nitric acid-hydrogen peroxide digestion to prepare botanical materials for elemental analysis by inductively coupled argon plasma emission spectroscopy
Xiao-Quan et al. Is palladium or palladium–ascorbic acid or palladium–magnesium nitrate a more universal chemical modifier for electrothermal atomic absorption spectrometry?
JP2008309767A (en) Method for decomposing solid sample and method for determining quantity of chrome using the same
Levine et al. Evaluation of a high-pressure, high-temperature microwave digestion system
JPH05157697A (en) Quantitative analysis of alloy for zirconium
Azad et al. Determination of selenium in soil digests by non-dispersive atomic-fluorescence spectrometry using an argon-hydrogen flame and the hydride generation technique
JPH05203576A (en) Quantitative analysis method of chromium in steel
Aucelio et al. Ultratrace determination of platinum in environmental and biological samples by electrothermal atomization laser-excited atomic fluorescence using a copper vapor laser pumped dye
Costantini et al. Applicability of anodic-stripping voltammetry and graphite furnace atomic-absorption spectrometry to the determination of antimony in biological matrices: a comparative study
JPH05157698A (en) Quantitative analysis of steel for nickel
JPH05203575A (en) Quantitative analysis method of vanadium within steel
Rivoldini et al. Inductively coupled plasma mass spectrometric determination of low-level rare earth elements in rocks using potassium-based fluxes for sample decomposition
JPH05142149A (en) Quantitative analysis of vanadium contained in current-limiting element
JPH05133899A (en) Method for quantitatively analyzing molybdenum in steel
JPH05333018A (en) Quantitative analysis method of chromium in current limiting element
Botelho et al. Determination of trace elements in carbonaceous samples by graphite furnace atomic absorption spectrometry: microwave digestion versus slurry sampling
Bond et al. Interference of lithium in atomic absorption spectrometry
Ruiz Díaz et al. Ultrasonic-assisted Dissolution of Vegetable Oils With Tetrabuthylammonium Hydroxide for Multielemental Analysis by Inductively Coupled Plasma Mass Spectrometry
Dittrich et al. Simultaneous determination of hydride forming elements by furnace atomic nonthermal excitation spectrometry (FANES)
Aucélio et al. Determination of lead in whole blood by filter furnace laser-excited atomic fluorescence spectrometry
Goyal et al. Atomization mechanism and determination of Ag, Be, Cd, Li, Na, Sn and Zn in uranium-plutonium matrices by ETA-AAS
Byrne A rapid method for the determination of arsenic, cadmium, copper, lead and zinc in airborne particulates by flame atomic absorption spectrometry
Yokota et al. Determination of impurities in zirconium disilicide and zirconium diboride by inductively coupled plasma atomic emission spectrometry
Lagesson Analysis by means of atomic-absorption spectroscopy, using a tantalum boat
JPH04120446A (en) Quantitative analysis of copper