JPH05157698A - Quantitative analysis of steel for nickel - Google Patents

Quantitative analysis of steel for nickel

Info

Publication number
JPH05157698A
JPH05157698A JP32221991A JP32221991A JPH05157698A JP H05157698 A JPH05157698 A JP H05157698A JP 32221991 A JP32221991 A JP 32221991A JP 32221991 A JP32221991 A JP 32221991A JP H05157698 A JPH05157698 A JP H05157698A
Authority
JP
Japan
Prior art keywords
nickel
sample
steel
strontium
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32221991A
Other languages
Japanese (ja)
Inventor
Fujiko Suzuki
富士子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP32221991A priority Critical patent/JPH05157698A/en
Publication of JPH05157698A publication Critical patent/JPH05157698A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To obtain an ICP method by which steel can be quantitatively analyzed for nickel with high sensitivity in order to quantitatively recognize the relation between the compounded composition and characteristics of the steel containing Ni, Cr, Mo, and V. CONSTITUTION:In the title quantitative analysis, a cutting-dust steel sample is thermally dissolved in aqua regia after the sample is degreased and dried and a filtrate is obtained by filtrating the dissolved solution after cooling. Then ion-exchanged water is added to the filtrate until the mixture reached a fixed amount after strontium is added as a standard reference material. By using the mixture as a sample solution, the luminance intensity of the nickel contained in the sample is measured by using an inductively coupled plasma method and the nickel content of the sample is determined by an internal standard method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高周波誘導結合型プラズ
マ発光法(以下、ICP法という)による合金中、特に
Ni−Cr−Mo−V鋼中のニッケルの定量分析方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantitative analysis of nickel in alloys, especially in Ni-Cr-Mo-V steel, by high frequency inductively coupled plasma emission method (hereinafter referred to as ICP method).

【0002】[0002]

【従来の技術】高速回転発電機とは、ガスを燃焼させて
ガスタービンで発電機を回して電気を発生し、この際生
ずる熱でお湯を沸かし、元のエネルギー量に対し、90
%の効率を上げようとするものである。
2. Description of the Related Art A high-speed rotary generator is a gas turbine that burns gas to turn a generator to generate electricity. The heat generated at this time heats hot water to 90% of the original amount of energy.
It is intended to increase the efficiency of%.

【0003】この高速回転発電機を使用するに際し、従
来600rpmのところを30000rpmと高速で回
転させるため、遠心力もかなりかかり、従来の材料では
強度的にみて使用が無理である。このため回転速度や遠
心力の関係から安全性を考え、小型化が検討されてい
る。
When this high-speed rotary generator is used, the conventional 600 rpm is rotated at a high speed of 30,000 rpm, so that centrifugal force is also considerably applied, and conventional materials cannot be used in terms of strength. For this reason, miniaturization is being considered in consideration of safety in terms of rotational speed and centrifugal force.

【0004】また、回転速度が速くなるので、温度も上
昇し、従来180℃に対し350℃位まで上がることが
あり、このため高温での強度が高いことが要求される。
Further, since the rotation speed increases, the temperature also rises, which may increase up to about 350 ° C. as compared with the conventional 180 ° C. Therefore, high strength at high temperature is required.

【0005】特にロータバー材に使用されるNi−Cr
−Mo−V鋼は、火力発電のガスタービン用としての実
績があり、高温での強度が高いという特徴を有している
が、この特殊鋼は、外部メーカー等による特注品であ
り、且つJIS規格外であるため、Ni−Cr−Mo−
Vの合金組成と特性の関係を明確にかつ定量的に把握し
て、品質管理及び工程管理を向上させる必要があり、そ
のため微量Niの分析方法の確立が不可欠である。
Ni-Cr used especially for rotor bar materials
-Mo-V steel has a track record as a gas turbine for thermal power generation and is characterized by high strength at high temperatures, but this special steel is a custom-made product by an external manufacturer or the like, and JIS Since it is out of the standard, Ni-Cr-Mo-
It is necessary to clearly and quantitatively grasp the relationship between the alloy composition and characteristics of V to improve quality control and process control. Therefore, it is essential to establish a method for analyzing trace Ni.

【0006】[0006]

【発明が解決しようとする課題】本発明はこのような問
題点に着目して創案されたものであって、Ni−Cr−
Mo−V鋼中のニッケルを高感度に定量するICP法を
提供するものである。
SUMMARY OF THE INVENTION The present invention was devised by focusing on such problems, and Ni-Cr-
The present invention provides an ICP method for quantifying nickel in Mo-V steel with high sensitivity.

【0007】[0007]

【課題を解決するための手段】本発明は上記の目的を達
成するために、切り粉状の鋼を脱脂,乾燥し、王水を加
えて加熱分解した後冷却し、この分解液を濾過して得ら
れた濾液に標準物質としてストロンチウムを加えてから
イオン交換水で一定量とし、これを試料溶液として高周
波誘導結合型プラズマ発光法を用いてニッケルの発光強
度を測定し、内部標準法によってニッケルを定量するこ
とをその解決手段としている。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention is to degrease and dry shavings of steel, add aqua regia to heat and decompose, and then cool and filter the decomposed solution. After adding strontium as a standard substance to the obtained filtrate, a fixed amount of ion-exchanged water was used, and this was used as a sample solution to measure the emission intensity of nickel using the high frequency inductively coupled plasma emission method. Quantifying is the solution.

【0008】[0008]

【作用】かかる定量分析方法によれば、切り粉状の鋼を
王水によって加熱分解した際に試料溶液中に他の共存物
質の残査が少なく、ニッケルをほぼ完全に分解すること
ができる。
According to such a quantitative analysis method, when the powdered steel is decomposed by heating with aqua regia, the residual amount of other coexisting substances in the sample solution is small and nickel can be decomposed almost completely.

【0009】そして試料溶液をICP法を用いてニッケ
ルの発光強度を測定し、内部標準法で定量した際に、王
水,試薬が負の影響を示すが、検量線作成用溶液と試料
溶液中の試薬濃度を同一にして、王水,試薬の存在によ
る影響を抑えることができる。
When nickel emission intensity of the sample solution is measured by the ICP method and quantified by the internal standard method, aqua regia and reagents have a negative effect. The same reagent concentration can be used to suppress the influence of the presence of aqua regia and reagents.

【0010】更に合成溶液を測定した時の変動係数、回
収率がともに実用上充分に満足できる分析精度が得ら
れ、その結果鋼中のニッケルが高感度に定量されて、こ
れによりNi−Cr−Mo−V鋼中の微量のニッケルの
分析方法が確立されて、鋼の組成と特性の関係を明確に
することができる。
Further, both the coefficient of variation and the recovery rate when the synthetic solution was measured were sufficiently satisfactory in practical use, and as a result, nickel in steel was quantified with high sensitivity. A method for analyzing trace amounts of nickel in Mo-V steel has been established, and the relationship between the composition and properties of steel can be clarified.

【0011】[0011]

【実施例】以下、本発明にかかるNi−Cr−Mo−V
鋼中のNiの分析方法の具体的な実施例を説明する。
EXAMPLES Ni-Cr-Mo-V according to the present invention will be described below.
A specific example of the method for analyzing Ni in steel will be described.

【0012】先ず図1のフローチャートに基づいて、本
実施例の基本的な操作手順を説明する。
First, the basic operation procedure of this embodiment will be described with reference to the flow chart of FIG.

【0013】先ずステップ101で試料となる切り粉状の
Ni−Cr−Mo−V鋼をクロロホルムで脱脂し、良く
乾燥した後、ステップ102でコニカルビーカー内で王水
を加えて所定温度で加熱分解する。分析をより高精度に
行うため、使用する試薬はホールピペット、マイクロピ
ペットなどで計るのが好ましい。
First, in step 101, a swarfed Ni-Cr-Mo-V steel used as a sample is degreased with chloroform and well dried, and then in step 102, aqua regia is added in a conical beaker for thermal decomposition at a predetermined temperature. To do. In order to carry out the analysis with higher accuracy, it is preferable to measure the reagents used with a whole pipette, a micropipette or the like.

【0014】次にこの分解液を冷却した後、ステップ10
3でNO.5Cの濾紙を用いて濾過し、200mlのメ
スフラスコに受ける。次にステップ104で得られた濾液
に標準物質としてストロンチウム2.0gを加え、イオ
ン交換水で200mlの一定量とする。これをステップ
105でICP法による鋼中のニッケルの定量分析方法に
おける試料溶液とする。
Next, after cooling this decomposition liquid, step 10
No. 3 Filter using 5C filter paper and receive in a 200 ml volumetric flask. Next, 2.0 g of strontium as a standard substance is added to the filtrate obtained in step 104, and a fixed amount of 200 ml is made with ion-exchanged water. Step this
In 105, the sample solution is used in the quantitative analysis method of nickel in steel by the ICP method.

【0015】以下、本発明に係るICP法によるNi−
Cr−Mo−V鋼中のニッケルの定量分析方法の詳細を
実施例に基づいて説明する。
In the following, Ni- by the ICP method according to the present invention
Details of a quantitative analysis method of nickel in Cr-Mo-V steel will be described based on Examples.

【0016】〔1〕 分析方法の操作手順 〔1−1 試料の組成〕試料であるNi−Cr−Mo−
V鋼の組成を表1に示す。
[1] Operating procedure of analysis method [1-1 Composition of sample] Sample Ni-Cr-Mo-
Table 1 shows the composition of V steel.

【0017】[0017]

【表1】 [Table 1]

【0018】〔1−2 試料の分解および試料溶液調製
方法〕切り粉状にしたNi−Cr−Mo−V鋼をクロロ
ホルムで脱脂、乾燥して試料とし、この試料を王水分解
法及び王水−過塩素酸分解法で分解し、それぞれ分解後
の残査を調べた。尚、一部はブランク試験に供した。
[1-2 Decomposition of Sample and Preparation Method of Sample Solution] Debris-like Ni-Cr-Mo-V steel is degreased with chloroform and dried to obtain a sample. This sample is subjected to aqua regia decomposition and aqua regia- The residue was decomposed by perchloric acid decomposition method, and the residue after decomposition was examined. In addition, a part was subjected to a blank test.

【0019】(1)王水分解方法 コニカルビーカーに試料1.0gを採取し、王水40m
lを加え、バーナーを用いて加熱分解する。放冷後、N
o5Cの濾紙で濾過する。
(1) Method for decomposing aqua regia A sample of 1.0 g was taken in a conical beaker, and 40 m of aqua regia
1 is added and the mixture is decomposed by heating using a burner. After cooling down, N
Filter with o5C filter paper.

【0020】(2)王水−過塩素酸分解法 コニカルビーカーに試料1.0gを採取し、王水40m
l,過塩素酸20mlを加え、乾固寸前まで加熱し、こ
れを硝酸で溶解した後、NO.5Cの濾紙で濾過する。
(2) Aqua regia-perchloric acid decomposition method 1.0 g of a sample was sampled in a conical beaker and aqua regia 40 m
1, 20 ml of perchloric acid were added, and the mixture was heated to the point of dryness, dissolved in nitric acid, and then added with NO. Filter with 5C filter paper.

【0021】(3)ブランク 試料0.5gをNO.5Cの濾紙で濾過した。(3) 0.5 g of a blank sample was treated with NO. It was filtered through 5C filter paper.

【0022】〔2〕 分析装置、測定条件および試薬 〔2−1 分析装置〕ICP発光分光装置は島津製IC
PS−1000−2型を用いた。
[2] Analyzing device, measurement conditions and reagents [2-1 Analyzing device] ICP emission spectroscopic device is IC manufactured by Shimadzu
PS-1000-2 type was used.

【0023】〔2−2 測定条件〕測定条件を表2に示
す。
[2-2 Measurement Conditions] Table 2 shows the measurement conditions.

【0024】[0024]

【表2】 [Table 2]

【0025】〔2−3 試薬〕実験に使用した試薬のリ
ストを表3に示す。
[2-3 Reagents] Table 3 shows a list of reagents used in the experiment.

【0026】[0026]

【表3】 [Table 3]

【0027】〔2−4 測定方法〕ピークサーチ内部標
準法とした。
[2-4 Measurement Method] The peak search internal standard method was used.

【0028】〔3〕 分解試験の結果 図2,図3は王水分解法に供した試料の残査を示すグラ
フである。王水分解法によれば、主成分である鉄とクロ
ムがわずかに残っていることが観測された。
[3] Result of Decomposition Test FIGS. 2 and 3 are graphs showing the residue of the sample subjected to the aqua regia decomposition method. According to the aqua regia method, it was observed that the main components, iron and chromium, remained slightly.

【0029】又、図4,図5は王水−過塩素酸分解法で
分解した後の残査を示すグラフであり、測定項目である
ニッケル,クロム,モリブデン,バナジウムは検出され
なかったが、シリコンSiが僅かに残った。図6はブラ
ンク試験に供した試料の残査を示すグラフである。
FIGS. 4 and 5 are graphs showing the residue after decomposition by the aqua regia-perchloric acid decomposition method. Although nickel, chromium, molybdenum and vanadium which are measurement items were not detected, A small amount of silicon Si remained. FIG. 6 is a graph showing the residue of the sample used in the blank test.

【0030】ここで試料中に過塩素酸が残っていると、
ICP法を適用した際の過塩素酸の粘性の影響を除くた
めの補正が複雑になる。そこで過塩素酸を除くため、分
解後に乾固させるが、この乾固によってクロムが揮散す
る惧れがある。
Here, if perchloric acid remains in the sample,
The correction for removing the influence of the viscosity of perchloric acid when applying the ICP method becomes complicated. Therefore, in order to remove perchloric acid, it is dried to dryness after the decomposition, but this dryness may cause chromium to volatilize.

【0031】〔4〕 王水−過塩素酸分解法の検証 上記(2)王水−過塩素酸分解法によってクロムがどの
程度揮散したかを調べた。
[4] Verification of aqua regia-perchloric acid decomposition method It was examined how much chromium was volatilized by the above-mentioned (2) aqua regia-perchloric acid decomposition method.

【0032】〔4−1 方法〕コニカルビーカーにクロ
ム(原子吸光測定用標準溶液1000ppm)20mg
を採取し、王水40ml及び過塩素酸20mlを加えて
加熱する。白煙を発生して乾固寸前で加熱を停止する。
冷却後に硝酸(1+1)20mlで溶解し、200ml
の一定量とした後、ICP法でクロムを測定する。
[4-1 Method] 20 mg of chromium (1000 ppm standard solution for atomic absorption measurement) in a conical beaker
Are collected, and 40 ml of aqua regia and 20 ml of perchloric acid are added and heated. White smoke is generated and heating is stopped just before drying.
After cooling, dissolve in 20 ml of nitric acid (1 + 1) to obtain 200 ml
After determining a fixed amount, chromium is measured by the ICP method.

【0033】〔4−2 結果〕上記操作を行った後にク
ロムを測定した結果を表4に示す。
[4-2 Result] Table 4 shows the result of measuring chromium after the above operation.

【0034】[0034]

【表4】 [Table 4]

【0035】表4はクロムの揮散試験を3回行った結果
であり、予想した通りに分解の過程でクロムがかなり揮
散していることが判明した。この結果から、王水−過塩
素酸分解法ではニッケル,クロム,モリブデン,バナジ
ウムの同時分析は難しいことがわかった。
Table 4 shows the results of three times of the volatilization test of chromium, and it was found that chromium was considerably volatilized during the decomposition process as expected. From this result, it was found that simultaneous analysis of nickel, chromium, molybdenum and vanadium is difficult by the aqua regia-perchloric acid decomposition method.

【0036】以上の結果から、試料の分解は王水分解法
を採用し、残査については融剤で融解することにした。
即ち、コニカルビーカーに試料1.0gを採取し、王水
40mlを加えて加熱分解し、放冷後に水を約50ml
加えてNo5Cの濾紙で濾過し、この濾液に標準物質と
してストロンチウム2gを加え、イオン交換水を加えて
200mlの一定量とし、これをICP法によるニッケ
ルの定量分析方法における試料溶液とする。
From the above results, the aqua regia decomposition method was adopted for the decomposition of the sample, and the residue was melted with the flux.
That is, a sample of 1.0 g was taken in a conical beaker, 40 ml of aqua regia was added to decompose by heating, and about 50 ml of water was left after cooling.
In addition, the mixture was filtered through No5C filter paper, 2 g of strontium as a standard substance was added to the filtrate, and ion-exchanged water was added to make a fixed amount of 200 ml, which was used as a sample solution in the nickel quantitative analysis method by the ICP method.

【0037】〔5〕 実験および結果 〔5−1 分析線の選定〕ニッケルの分析に最も適した
波長を選定するため、Ni−Cr−Mo−V鋼を構成す
る各元素の単独溶液及び内部標準物質としてのストロン
チウムを用いて分析線の選定を定性的に行った。その結
果を図7〜図9に示す。
[5] Experiments and Results [5-1 Selection of Analysis Line] In order to select the most suitable wavelength for nickel analysis, a single solution of each element constituting the Ni-Cr-Mo-V steel and an internal standard. The analytical line was qualitatively selected using strontium as a substance. The results are shown in FIGS.

【0038】尚、試料溶液中の各元素の濃度はNiが3
60ppm、Crが200ppm、Moが40ppm、
Vが10ppm、Mnが30ppm、Srが10pp
m、Feが10000ppmである。そしてニッケルの
発光強度の高い3本の波長を選び、分析線の選定を行っ
た。
The concentration of each element in the sample solution was 3 for Ni.
60ppm, Cr 200ppm, Mo 40ppm,
V is 10ppm, Mn is 30ppm, Sr is 10pp
m and Fe are 10000 ppm. Then, three wavelengths having high emission intensity of nickel were selected and an analysis line was selected.

【0039】図7は波長231.604nmの発光スペ
クトル、図8は波長341.477nmの発光スペクト
ル、図9は波長221.674nmの発光スペクトルで
あり、どの波長においても共存物質の発光スペクトルは
全てベースライン上にあり、ニッケルに対して妨害しな
いことが推測される。
FIG. 7 shows an emission spectrum at a wavelength of 231.604 nm, FIG. 8 shows an emission spectrum at a wavelength of 341.477 nm, and FIG. 9 shows an emission spectrum at a wavelength of 221.674 nm. The emission spectra of coexisting substances are all base at any wavelength. It is supposed to be on the line and not interfere with nickel.

【0040】従って分析線として、ニッケルの波長の優
先順位一位で感度の高い221.674nmを採用し
た。
Therefore, as the analysis line, 221.674 nm, which has high sensitivity in the first priority of the wavelength of nickel, was adopted.

【0041】〔5−2 感度(HV)の選定〕感度(H
V)とはホトマルに印加する高電圧のことで、濃度によ
り最適なHVが存在する。
[5-2 Selection of Sensitivity (HV)] Sensitivity (H
V) is a high voltage applied to Photomal, and an optimum HV exists depending on the concentration.

【0042】このためニッケル濃度360ppm溶液を
用いて最適なHVの選定を行った。その結果を図10〜
図12に示す。HVは飽和しない限り高い方が好ましい
ので、ここでは図12に示した結果からHVとして30
を採用した。
Therefore, an optimum HV was selected using a solution having a nickel concentration of 360 ppm. The results are shown in Figs.
It shows in FIG. Since HV is preferably as high as possible so long as it is not saturated, here, from the results shown in FIG.
It was adopted.

【0043】〔5−3 内部標準物質とその波長の選
定〕内部標準物質としてストロンチウムを採用し、この
ストロンチウムの分析線を選定するため、ストロンチウ
ムの代表的な波長3本(407.771nm、421.
552nm、216.596nm) のプロファイルを測
定して定性的に行った。その結果を図13〜図15に示
す。波長407.771nm及び波長421.552n
mでは図13,図14に示したようにストロンチウムの
発光線のみで共存物質は全てベースライン上にあり、ス
トロンチウムに対する妨害は観察されなかった。図15
に示した波長216.596nmでは、共存物質の主成
分であるFeの発光線がストロンチウムの発光線に重複
しており、ニッケルの発光線も接近している。従ってこ
れらの物質による妨害が予想されるため、分析線として
不適当である。
[5-3 Selection of Internal Standard Material and Its Wavelength] Strontium is adopted as an internal standard material, and in order to select an analysis line of this strontium, three typical wavelengths of strontium (407.771 nm, 421.
552 nm, 216.596 nm) profile was measured and qualitatively determined. The results are shown in FIGS. 13 to 15. Wavelength 407.771 nm and wavelength 421.552n
As for m, as shown in FIGS. 13 and 14, only the emission line of strontium was present and all the coexisting substances were on the baseline, and no interference with strontium was observed. Figure 15
At the wavelength of 216.5596 nm shown in, the emission line of Fe, which is the main component of the coexisting substance, overlaps the emission line of strontium, and the emission line of nickel is also close. Therefore, since interference by these substances is expected, it is unsuitable as an analytical line.

【0044】以上の結果から、内部標準物質であるスト
ロンチウムの分析線として波長407.771nmと4
21.552nmとが使用可能であるが、ここでは分析
線としての発光強度の高い波長421.552nmを採
用した。
From the above results, the analysis lines of strontium which is an internal standard substance have wavelengths of 407.771 nm and 4
Although 21.552 nm can be used, a wavelength of 421.552 nm having a high emission intensity as an analysis line is adopted here.

【0045】〔5−4 検量線の精度〕前記試料溶液中
のニッケルの濃度は約360ppmである。このためニ
ッケル濃度0〜540ppmの範囲で検量線の精度を確
かめた。その結果を図16に示す。この図から、検量線
はほぼ原点を通り、相関係数は0.99997799、
標準偏差は1.2042758ppmと非常に良い精度
を示していることがわかる。
[5-4 Accuracy of Calibration Curve] The concentration of nickel in the sample solution is about 360 ppm. Therefore, the accuracy of the calibration curve was confirmed in the nickel concentration range of 0 to 540 ppm. The result is shown in FIG. From this figure, the calibration curve almost passes through the origin, and the correlation coefficient is 0.99999777,
It can be seen that the standard deviation is 1.2042758 ppm, which is a very good precision.

【0046】〔5−5 試薬の影響〕ニッケル濃度36
0ppm溶液に分解試薬である塩酸と硝酸を段階的に加
えてその影響を定量的に調べた。その結果を図17.図
18に示す。
[Influence of 5-5 Reagent] Nickel Concentration 36
Hydrochloric acid and nitric acid, which are decomposition reagents, were added stepwise to the 0 ppm solution to quantitatively investigate the effect. The result is shown in FIG. It shows in FIG.

【0047】影響の有無の判定は、回収率(測定値×1
00/仕込み値)の±2%として図中に許容範囲として
破線で表示した。
The determination as to whether there is any influence is made by the recovery rate (measured value x 1
00 / prepared value) ± 2%, and the allowable range is shown by a broken line in the figure.

【0048】塩酸及び硝酸ともに負の影響を示した。こ
のことは王水の存在により、試料溶液の粘度が上昇し、
試料吸い込み量が低下して見掛けの発光強度が低くなっ
たためである。
Both hydrochloric acid and nitric acid showed negative effects. This means that the presence of aqua regia increases the viscosity of the sample solution,
This is because the amount of sample sucked was reduced and the apparent emission intensity was lowered.

【0049】従って検量線作成用溶液と試料溶液中の試
薬濃度を同一にして、王水の存在による影響を抑えるこ
とにした。
Therefore, it was decided to make the concentration of the reagents in the calibration curve preparation solution and the sample solution the same to suppress the influence of the presence of aqua regia.

【0050】〔5−6 共存元素の影響〕ニッケル濃度
180ppm溶液に鉄,クロム,モリブデン,バナジウ
ム,マンガン,銅、リン、ケイ素及び内部標準物質のス
トロンチウムを各々段階的に加えてそれらの共存元素の
影響を定量的に調べた。
[5-6 Effect of Coexisting Elements] Iron, chromium, molybdenum, vanadium, manganese, copper, phosphorus, silicon, and strontium as an internal standard substance are added in stages to a solution having a nickel concentration of 180 ppm, and the coexisting elements are added. The effect was investigated quantitatively.

【0051】その結果を図19〜図27に示す。これら
の影響の有無の判定はニッケルの回収率の±2%以内と
し、図中に許容範囲として破線で表示した。
The results are shown in FIGS. The determination of the presence or absence of these influences was within ± 2% of the nickel recovery rate, and the allowable range is shown by a broken line in the figure.

【0052】その結果、クロム,モリブデン,バナジウ
ム,マンガン,銅、リン、ケイ素及びストロンチウムは
いずれも破線で示した許容範囲内で影響のないことが判
明した。しかし主成分である鉄は、図19に示したよう
に負の影響を示すことが判明した。これは鉄の存在によ
り、試料溶液の粘性が上昇して試料の吸込量が低下し
て、見掛け上の発光強度が低くなったためと考えられ
る。従って検量線作成用溶液と試料溶液中の鉄濃度を同
一にして、鉄による負の影響を抑えることにした。
As a result, it was found that chromium, molybdenum, vanadium, manganese, copper, phosphorus, silicon and strontium all have no effect within the allowable range shown by the broken line. However, it was found that iron, which is the main component, has a negative effect as shown in FIG. It is considered that this is because the presence of iron increased the viscosity of the sample solution and decreased the amount of suction of the sample, resulting in a lower apparent emission intensity. Therefore, the concentration of iron in the solution for preparing the calibration curve and the concentration of iron in the sample solution were made the same to suppress the negative influence of iron.

【0053】〔5−7 内部標準物質ストロンチウムに
対する試薬の影響〕ストロンチウム濃度10ppm溶液
に分解試薬である塩酸と硝酸を各々段階的に加えてその
影響を定量的に調べた。その結果を図28,図29に示
す。
[5-7 Effect of Reagent on Strontium Internal Standard Material] A solution having a strontium concentration of 10 ppm was added stepwise with hydrochloric acid and nitric acid, which are decomposition reagents, to quantitatively investigate the effect. The results are shown in FIGS. 28 and 29.

【0054】この結果、塩酸、硝酸ともに負の影響を示
すことが判明した。即ち、塩酸及び硝酸の添加量が増す
とストロンチウムの回収率は低下した。これは前記した
ように塩酸及び硝酸の存在によって試料溶液の粘度が上
昇したためと考えられる。
As a result, it was found that both hydrochloric acid and nitric acid had negative effects. That is, as the amounts of hydrochloric acid and nitric acid added increased, the recovery rate of strontium decreased. It is considered that this is because the viscosity of the sample solution increased due to the presence of hydrochloric acid and nitric acid as described above.

【0055】従って検量線作成用溶液と試料溶液中の試
薬濃度を同一にして、上記負の影響を抑えることにし
た。
Therefore, the concentration of the reagent in the solution for preparing the calibration curve and the concentration of the reagent in the sample solution were made equal to suppress the above-mentioned negative influence.

【0056】〔5−8 内部標準物質ストロンチウムに
対する共存元素の影響〕ストロンチウム濃度10ppm
溶液に鉄,クロム,モリブデン,バナジウム,マンガ
ン,銅、リン、ケイ素及びニッケルを各々段階的に加え
てそれぞれの元素のストロンチウムに対する影響を定量
的に調べた。その結果を図30〜図38に示す。
[Effect of Coexisting Element on Internal Standard Material Strontium] Strontium Concentration 10 ppm
Iron, chromium, molybdenum, vanadium, manganese, copper, phosphorus, silicon and nickel were added stepwise to the solution to quantitatively investigate the effect of each element on strontium. The results are shown in FIGS.

【0057】クロム,モリブデン,バナジウム,マンガ
ン,銅、リン、ケイ素及びニッケルは破線で示した許容
範囲にあり、ストロンチウムに対する影響はなかった。
Chromium, molybdenum, vanadium, manganese, copper, phosphorus, silicon and nickel were within the permissible range shown by the broken line and had no effect on strontium.

【0058】しかし主成分である鉄は、図30に示した
ように負の影響を示すことが判明した。これは前記した
理由と同様に、鉄の存在により試料溶液の粘性が上昇し
て試料の吸込量が低下し、見掛け上の発光強度が低くな
ったためと考えられる。従って検量線作成用溶液と試料
溶液中の鉄濃度を同一にして、鉄による負の影響を抑え
ることにした。
However, it has been found that iron, which is the main component, has a negative effect as shown in FIG. It is considered that this is because the presence of iron increased the viscosity of the sample solution and decreased the amount of suction of the sample due to the presence of iron, and the apparent emission intensity decreased. Therefore, the concentration of iron in the solution for preparing the calibration curve and the concentration of iron in the sample solution were made the same to suppress the negative influence of iron.

【0059】〔5−9 合成溶液による分析精度の検
証〕上記検討した条件での分析精度を検証するため、合
成溶液を5個調整して実施した。表5に合成溶液の組成
を、表6に測定結果をそれぞれ示す。
[5-9 Verification of Analytical Accuracy Using Synthetic Solution] In order to verify analytical accuracy under the conditions examined above, five synthetic solutions were prepared and carried out. Table 5 shows the composition of the synthetic solution, and Table 6 shows the measurement results.

【0060】[0060]

【表5】 [Table 5]

【0061】[0061]

【表6】 [Table 6]

【0062】表6から、ニッケルの測定値平均は20
3.0ppm,回収率は101.5%、変動係数(C
V)は0.98と実用上十分満足出来る精度が得られ
た。
From Table 6, the average measured nickel value is 20.
3.0 ppm, recovery rate is 101.5%, coefficient of variation (C
V) was 0.98, which was a sufficient accuracy for practical use.

【0063】検量線作成用溶液は以下に示したように調
整した。
The solution for preparing the calibration curve was prepared as shown below.

【0064】即ち、100mlのメスフラスコに王水2
0ml、ストロンチウム1.0mg及び塩化第二鉄2.
4gを加え、ニッケル0〜30mgを段階的に加えてイ
オン交換水で100mlの一定量とした。
That is, 2 ml of aqua regia in a 100 ml volumetric flask.
0 ml, strontium 1.0 mg and ferric chloride 2.
4 g was added, and 0 to 30 mg of nickel was added stepwise to make a fixed amount of 100 ml with ion-exchanged water.

【0065】尚、クロム,モリブデン及びバナジウムを
各々段階的に加えた混合検量線作成標準液を用いること
もできる。
It is also possible to use a standard solution for preparing a mixed calibration curve in which chromium, molybdenum and vanadium are added in stages.

【0066】〔6〕 考察 以上の結果から、本実施例に係るICP法によるNi−
Cr−Mo−V鋼中のニッケルの分析方法を検討するこ
とにより、次の知見が得られた。
[6] Consideration From the above results, Ni- by the ICP method according to this embodiment is
The following findings were obtained by examining the analysis method of nickel in Cr-Mo-V steel.

【0067】(6−1) 試料の分解方法 切粉にした試料に王水を加えて加熱することにより、ニ
ッケルを容易に分解することが可能となった。
(6-1) Sample Decomposition Method Nickel can be easily decomposed by adding aqua regia to the chipped sample and heating it.

【0068】(6−2) 分析線 発光強度及び感度の高い分析線221.647nmの共
存元素の妨害を調べた結果、妨害ピークは見られなかっ
た。
(6-2) Analysis line As a result of examining the interference of coexisting elements on the analysis line 221.647 nm with high emission intensity and high sensitivity, no interference peak was observed.

【0069】(6−3) 分解試薬の影響と抑制 分解試薬である王水は負の干渉を示した。これは王水の
共存により試料溶液中の粘度が上昇して試料の吸込量が
低下したことによるものと考えられるので、この影響を
抑えるため試料溶液と検量線作成用溶液中の試薬濃度を
同一にし、更にストロンチウム内部標準法を用いて測定
することにより、上記の影響を抑えることが可能となっ
た。
(6-3) Influence and suppression of degrading reagent The degrading reagent aqua regia showed negative interference. It is considered that this is because the viscosity of the sample solution increased due to the coexistence of aqua regia and the suction amount of the sample decreased, so in order to suppress this effect, the reagent concentration in the sample solution and the calibration curve preparation solution should be the same. In addition, it was possible to suppress the above-mentioned influence by further measuring by using the strontium internal standard method.

【0070】(6−4) 分析精度 合成溶液を5個測定した時の回収率は101.5%、変
動係数は0.98%といずれも実用上十分満足できる精
度であった。
(6-4) Analytical accuracy The recovery rate when 5 synthetic solutions were measured was 101.5%, and the coefficient of variation was 0.98%, which were all sufficiently satisfactory for practical use.

【0071】[0071]

【発明の効果】本発明に係るICP法によるNi−Cr
−Mo−V鋼中のニッケルの分析方法によれば、切り粉
状の合金を王水によって加熱分解することにより、試料
溶液中に他の共存物質の残査が少なく、ニッケルをほぼ
完全に分解することができる。
EFFECT OF THE INVENTION Ni-Cr by the ICP method according to the present invention
According to the method for analyzing nickel in -Mo-V steel, by thermally decomposing a swarf-like alloy with aqua regia, there is little residual of other coexisting substances in the sample solution, and nickel is almost completely decomposed. can do.

【0072】そして試料溶液をICP法を用いてニッケ
ルの発光強度を測定し、内部標準法で定量した際に、王
水,試薬は負の影響を示すが、検量線作成用溶液と試料
溶液中の試薬濃度を同一にして、王水,試薬の存在によ
る影響を抑えることが可能となった。又、試料溶液をI
CP法によって測定した時の変動係数、回収率がともに
実用上充分に満足できる分析精度が得られ、その結果N
i−Cr−Mo−V鋼中の微量のNiの分析方法が確立
されて、鋼の組成と特性の関係を明確にするとともに、
品質管理及び工程管理を向上させることができる。
When the luminescence intensity of nickel was measured by the ICP method in the sample solution and quantified by the internal standard method, aqua regia and reagents showed a negative effect, but in the calibration curve preparation solution and the sample solution. It became possible to suppress the influence of the presence of aqua regia and reagents by keeping the same reagent concentration. In addition, the sample solution
Both the coefficient of variation and the recovery rate when measured by the CP method were sufficiently satisfactory for practical use, and the result was N
A method for analyzing a trace amount of Ni in i-Cr-Mo-V steel has been established to clarify the relationship between the composition and properties of steel, and
Quality control and process control can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる鋼中のニッケルの定量分析方法
の基本的な操作手順を示すフローチャート。
FIG. 1 is a flowchart showing a basic operation procedure of a method for quantitatively analyzing nickel in steel according to the present invention.

【図2】王水分解法に供した試料の残査を示すグラフ。FIG. 2 is a graph showing the residue of the sample subjected to the aqua regia decomposition method.

【図3】王水分解法に供した試料の残査を示すグラフ。FIG. 3 is a graph showing the residue of the sample subjected to the aqua regia decomposition method.

【図4】王水−過塩素酸分解法に供した試料の残査を示
すグラフ。
FIG. 4 is a graph showing a residue of a sample subjected to an aqua regia-perchloric acid decomposition method.

【図5】王水−過塩素酸分解法に供した試料の残査を示
すグラフ。
FIG. 5 is a graph showing a residue of a sample subjected to an aqua regia-perchloric acid decomposition method.

【図6】ブランク試験に供した試料の残査を示すグラ
フ。
FIG. 6 is a graph showing the residue of the sample used in the blank test.

【図7】波長231.604nmにおける各種元素の発
光スペクトルを示すグラフ。
FIG. 7 is a graph showing emission spectra of various elements at a wavelength of 231.604 nm.

【図8】波長341.477nmにおける各種元素の発
光スペクトルを示すグラフ。
FIG. 8 is a graph showing emission spectra of various elements at a wavelength of 341.477 nm.

【図9】波長221.647nmにおける各種元素の発
光スペクトルを示すグラフ。
FIG. 9 is a graph showing emission spectra of various elements at a wavelength of 221.647 nm.

【図10】波長221.647nm,ニッケル濃度36
0ppm溶液を用いてHVの選定(HV10の場合)を
行ったグラフ。
FIG. 10: Wavelength 221.647 nm, nickel concentration 36
The graph which selected HV (in the case of HV10) using a 0 ppm solution.

【図11】波長221.647nm,ニッケル濃度36
0ppm溶液を用いてHVの選定(HV20の場合)を
行ったグラフ。
FIG. 11: Wavelength 221.647 nm, nickel concentration 36
The graph which selected HV (in the case of HV20) using a 0 ppm solution.

【図12】波長221.647nm,ニッケル濃度36
0ppm溶液を用いてHVの選定(HV30の場合)を
行ったグラフ。
FIG. 12: Wavelength 221.647 nm, nickel concentration 36
The graph which selected HV (in the case of HV30) using a 0 ppm solution.

【図13】王水分解後の試料中の各元素と内部標準物質
としてのストロンチウムの波長407.771nmにお
ける共存物質のプロファイルを示すグラフ。
FIG. 13 is a graph showing profiles of coexisting substances at a wavelength of 407.771 nm of strontium as an internal standard substance and each element in the sample after aqua regia decomposition.

【図14】王水分解後の試料中の各元素と内部標準物質
としてのストロンチウムの波長421.552nmにお
ける共存物質のプロファイルを示すグラフ。
FIG. 14 is a graph showing profiles of coexisting substances at a wavelength of 421.552 nm of strontium as an internal standard substance and each element in the sample after aqua regia decomposition.

【図15】王水分解後の試料中の各元素と内部標準物質
としてのストロンチウムの波長216.596nmにお
ける共存物質のプロファイルを示すグラフ。
FIG. 15 is a graph showing profiles of coexisting substances at a wavelength of 216.5596 nm of each element in the sample after decomposition of aqua regia and strontium as an internal standard substance.

【図16】ニッケルの検量線を示すグラフ。FIG. 16 is a graph showing a calibration curve of nickel.

【図17】分解試薬としての塩酸の影響を示すグラフ。FIG. 17 is a graph showing the effect of hydrochloric acid as a decomposition reagent.

【図18】分解試薬としての硝酸の影響を示すグラフ。FIG. 18 is a graph showing the effect of nitric acid as a decomposition reagent.

【図19】Feの影響によるニッケルの回収率の許容範
囲を定量的に示すグラフ。
FIG. 19 is a graph quantitatively showing an allowable range of nickel recovery rate due to the influence of Fe.

【図20】Crの影響によるニッケルの回収率の許容範
囲を定量的に示すグラフ。
FIG. 20 is a graph quantitatively showing the allowable range of nickel recovery rate due to the influence of Cr.

【図21】Moの影響によるニッケルの回収率の許容範
囲を定量的に示すグラフ。
FIG. 21 is a graph quantitatively showing the allowable range of nickel recovery rate due to the effect of Mo.

【図22】Vの影響によるニッケルの回収率の許容範囲
を定量的に示すグラフ。
FIG. 22 is a graph quantitatively showing the allowable range of nickel recovery rate due to the influence of V.

【図23】Mnの影響によるニッケルの回収率の許容範
囲を定量的に示すグラフ。
FIG. 23 is a graph quantitatively showing the allowable range of nickel recovery rate due to the influence of Mn.

【図24】Cuの影響によるニッケルの回収率の許容範
囲を定量的に示すグラフ。
FIG. 24 is a graph quantitatively showing an allowable range of nickel recovery rate due to the influence of Cu.

【図25】Pの影響によるニッケルの回収率の許容範囲
を定量的に示すグラフ。
FIG. 25 is a graph quantitatively showing an allowable range of nickel recovery rate due to the influence of P.

【図26】Siの影響によるニッケルの回収率の許容範
囲を定量的に示すグラフ。
FIG. 26 is a graph quantitatively showing an allowable range of nickel recovery rate due to the influence of Si.

【図27】Srの影響によるニッケルの回収率の許容範
囲を定量的に示すグラフ。
FIG. 27 is a graph quantitatively showing the allowable range of nickel recovery rate due to the influence of Sr.

【図28】ストロンチウムに対する試薬(塩酸)の影響
を示すグラフ。
FIG. 28 is a graph showing the influence of a reagent (hydrochloric acid) on strontium.

【図29】ストロンチウムに対する試薬(硝酸)の影響
を示すグラフ。
FIG. 29 is a graph showing the influence of a reagent (nitric acid) on strontium.

【図30】Feの影響によるストロンチウムの回収率の
許容範囲を定量的に示すグラフ。
FIG. 30 is a graph quantitatively showing the allowable range of the recovery rate of strontium due to the influence of Fe.

【図31】Crの影響によるストロンチウムの回収率の
許容範囲を定量的に示すグラフ。
FIG. 31 is a graph quantitatively showing the allowable range of the recovery rate of strontium due to the influence of Cr.

【図32】Moの影響によるストロンチウムの回収率の
許容範囲を定量的に示すグラフ。
FIG. 32 is a graph quantitatively showing the allowable range of the recovery rate of strontium due to the influence of Mo.

【図33】Vの影響によるストロンチウムの回収率の許
容範囲を定量的に示すグラフ。
FIG. 33 is a graph quantitatively showing the allowable range of the recovery rate of strontium due to the influence of V.

【図34】Mnの影響によるストロンチウムの回収率の
許容範囲を定量的に示すグラフ。
FIG. 34 is a graph quantitatively showing the allowable range of the strontium recovery rate due to the influence of Mn.

【図35】Cuの影響によるストロンチウムの回収率の
許容範囲を定量的に示すグラフ。
FIG. 35 is a graph quantitatively showing the allowable range of the strontium recovery rate due to the influence of Cu.

【図36】Pの影響によるストロンチウムの回収率の許
容範囲を定量的に示すグラフ。
FIG. 36 is a graph quantitatively showing the allowable range of the recovery rate of strontium due to the influence of P.

【図37】Siの影響によるストロンチウムの回収率の
許容範囲を定量的に示すグラフ。
FIG. 37 is a graph quantitatively showing the allowable range of the recovery rate of strontium due to the influence of Si.

【図38】Niの影響によるストロンチウムの回収率の
許容範囲を定量的に示すグラフ。
FIG. 38 is a graph quantitatively showing the allowable range of the recovery rate of strontium due to the influence of Ni.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 切り粉状の鋼を脱脂,乾燥し、王水を加
えて加熱分解した後、冷却し、この分解液を濾過して得
られた濾液に標準物質としてストロンチウムを加えてか
らイオン交換水で一定量とし、これを試料溶液として高
周波誘導結合型プラズマ発光法を用いてニッケルの発光
強度を測定し、内部標準法によってニッケルを定量する
ことを特徴とする鋼中のニッケルの定量分析方法。
1. A strontium ion as a standard substance is added to a filtrate obtained by degreasing and drying swarfed steel, drying it by adding aqua regia and then heating and decomposing it, and then filtering this decomposing solution. Quantitative analysis of nickel in steel, characterized in that a fixed amount of exchanged water is used as a sample solution, the emission intensity of nickel is measured using the high frequency inductively coupled plasma emission method, and nickel is determined by the internal standard method. Method.
【請求項2】 試料鋼がNi−Cr−Mo−V系である
請求項1記載の鋼中のニッケルの定量分析方法。
2. The method for quantitative analysis of nickel in steel according to claim 1, wherein the sample steel is a Ni—Cr—Mo—V system.
JP32221991A 1991-12-06 1991-12-06 Quantitative analysis of steel for nickel Pending JPH05157698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32221991A JPH05157698A (en) 1991-12-06 1991-12-06 Quantitative analysis of steel for nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32221991A JPH05157698A (en) 1991-12-06 1991-12-06 Quantitative analysis of steel for nickel

Publications (1)

Publication Number Publication Date
JPH05157698A true JPH05157698A (en) 1993-06-25

Family

ID=18141278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32221991A Pending JPH05157698A (en) 1991-12-06 1991-12-06 Quantitative analysis of steel for nickel

Country Status (1)

Country Link
JP (1) JPH05157698A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413497B1 (en) * 2001-12-29 2004-01-03 엘지.필립스 엘시디 주식회사 Quantitative Evaluation Of Ni Concentration
CN103954610A (en) * 2014-04-10 2014-07-30 中国航空工业集团公司北京航空材料研究院 Method for measuring arsenic in high-chromium high-nickel steel
CN113740323A (en) * 2021-08-30 2021-12-03 上海材料研究所 Method for measuring multi-element content in nickel-based brazing filler metal
CN114166827A (en) * 2021-11-05 2022-03-11 本钢板材股份有限公司 Method for detecting boron in steel
CN115598110A (en) * 2022-10-31 2023-01-13 华夏生生药业(北京)有限公司(Cn) Method for detecting nickel element in mannitol bulk drug

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413497B1 (en) * 2001-12-29 2004-01-03 엘지.필립스 엘시디 주식회사 Quantitative Evaluation Of Ni Concentration
CN103954610A (en) * 2014-04-10 2014-07-30 中国航空工业集团公司北京航空材料研究院 Method for measuring arsenic in high-chromium high-nickel steel
CN103954610B (en) * 2014-04-10 2016-08-17 中国航空工业集团公司北京航空材料研究院 A kind of measure the method for arsenic in high-chromium-nickel steel
CN113740323A (en) * 2021-08-30 2021-12-03 上海材料研究所 Method for measuring multi-element content in nickel-based brazing filler metal
CN114166827A (en) * 2021-11-05 2022-03-11 本钢板材股份有限公司 Method for detecting boron in steel
CN115598110A (en) * 2022-10-31 2023-01-13 华夏生生药业(北京)有限公司(Cn) Method for detecting nickel element in mannitol bulk drug
CN115598110B (en) * 2022-10-31 2023-11-07 华夏生生药业(北京)有限公司 Method for detecting nickel element in mannitol bulk drug

Similar Documents

Publication Publication Date Title
Yamini et al. On-line metals preconcentration and simultaneous determination using cloud point extraction and inductively coupled plasma optical emission spectrometry in water samples
EP1939618B1 (en) Combustion analysis apparatus and method
JPH05157698A (en) Quantitative analysis of steel for nickel
Tsalev et al. Study of vanadium (V) as a chemical modifier in electrothermal atomisation atomic absorption spectrometry
JPH05203575A (en) Quantitative analysis method of vanadium within steel
Slaveykova et al. Behaviour of various arsenic species in electrothermal atomic absorption spectrometry
Butcher et al. Determination of thallium, manganese, and lead in food and agricultural standard reference materials by electrothermal atomizer laser-excited atomic fluorescence and atomic absorption spectrometry with slurry sampling
JPH05203576A (en) Quantitative analysis method of chromium in steel
JPH05133899A (en) Method for quantitatively analyzing molybdenum in steel
Aucelio et al. Ultratrace determination of platinum in environmental and biological samples by electrothermal atomization laser-excited atomic fluorescence using a copper vapor laser pumped dye
Azad et al. Determination of selenium in soil digests by non-dispersive atomic-fluorescence spectrometry using an argon-hydrogen flame and the hydride generation technique
Tianyou et al. Volatilization studies of lanthanum, yttrium and europium as their 1-phenyl-3-methyl-4-benzoylpyrazolone [5] complexes from an electrothermal vaporizer for sample introduction in inductively coupled plasma atomic emission spectrometry
Costantini et al. Applicability of anodic-stripping voltammetry and graphite furnace atomic-absorption spectrometry to the determination of antimony in biological matrices: a comparative study
CN1789956B (en) Heavy metal element quantitative method
JPH04503412A (en) Element measurement method and device
Chakraborti et al. Analysis of standard reference materials after microwave-oven digestion in open vessels using graphite furnace atomic absorption spectrophotometry and Zeeman-effect background correction
Tittarelli et al. Vapour-phase behaviour of slurries in electrothermal atomic absorption spectrometry
Smith et al. Simultaneous determination of cadmium and lead in cigarettes and cigarette smoke by impaction-graphite furnace and graphite furnace atomic absorption spectrometry
Kunwar et al. Hot-injection procedures for the rapid analysis of biological samples by electrothermal atomic-absorption spectrometry
Aucélio et al. Determination of lead in whole blood by filter furnace laser-excited atomic fluorescence spectrometry
Rains et al. Application of atomic absorption and plasma emission spectrometry for environmental analysis
JPH05142149A (en) Quantitative analysis of vanadium contained in current-limiting element
Shizhong Study on volatilization of ytterbium as 1-(2-pyridylazo)-2-naphthol chelate from electrothermal vaporizer for sample introduction in inductively coupled plasma atomic emission spectrometry
Peng et al. Direct analysis of silicon carbide by fluorination assisted electrothermal vaporization inductively coupled plasma atomic emission spectrometry using a slurry sampling technique
JPH05142150A (en) Quantitative analysis of tin in currentlimiting element