JPH0515658U - Magnetic bearing motor - Google Patents

Magnetic bearing motor

Info

Publication number
JPH0515658U
JPH0515658U JP7108491U JP7108491U JPH0515658U JP H0515658 U JPH0515658 U JP H0515658U JP 7108491 U JP7108491 U JP 7108491U JP 7108491 U JP7108491 U JP 7108491U JP H0515658 U JPH0515658 U JP H0515658U
Authority
JP
Japan
Prior art keywords
rotor
rotating shaft
rotary shaft
fitted
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7108491U
Other languages
Japanese (ja)
Other versions
JP2584869Y2 (en
Inventor
崇男 藤井
精 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP1991071084U priority Critical patent/JP2584869Y2/en
Publication of JPH0515658U publication Critical patent/JPH0515658U/en
Application granted granted Critical
Publication of JP2584869Y2 publication Critical patent/JP2584869Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】 【構成】 回転軸6Aに嵌合した回転子5の両側をラジ
アル磁気軸受3A,3Bで支持し、かつスラスト磁気軸
受4により軸方向変位を調整するようにし、回転軸6
A,6Bを低膨張性の高抗張力合金鋼により構成し、一
方側の回転軸6Aの小径部と他方側の回転軸6Bの中空
部63とを結合して、回転軸6Aの小径部62に回転子
5を嵌合し、回転子5の両端面を回転軸6Aの段付部と
回転軸6Bの端面に接触するようにしたものである。 【効果】 回転子を低膨張性の高抗張力合金鋼の回転軸
に嵌合して負荷にトルクを伝達するようにしてあるの
で、回転子の温度上昇による軸方向の膨張が回転軸の軸
端の変位に大きく影響を及ぼす事がなく、ロータの温度
が上昇しても回転軸の軸方向変位が小さい磁気軸受モー
タを提供できる。
(57) [Summary] [Structure] Both sides of the rotor 5 fitted to the rotating shaft 6A are supported by the radial magnetic bearings 3A and 3B, and the axial displacement is adjusted by the thrust magnetic bearings 4.
A and 6B are made of low-expansion high tensile strength alloy steel, and the small diameter portion of the rotating shaft 6A on one side and the hollow portion 63 of the rotating shaft 6B on the other side are combined to form a small diameter portion 62 of the rotating shaft 6A. The rotor 5 is fitted and both end faces of the rotor 5 are brought into contact with the stepped portion of the rotary shaft 6A and the end face of the rotary shaft 6B. [Effect] Since the rotor is fitted to the rotary shaft of low tensile expansive high tensile strength alloy steel to transmit torque to the load, axial expansion due to temperature rise of the rotor causes axial end of the rotary shaft. It is possible to provide a magnetic bearing motor in which the axial displacement of the rotating shaft is small even when the temperature of the rotor rises, without significantly affecting the displacement of the magnetic bearing.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、ターボ機械等の高速回転装置に使用される磁気軸受モータに関し、 特に回転軸の両端に負荷を結合させたものに関する。 The present invention relates to a magnetic bearing motor used in a high speed rotating device such as a turbo machine, and more particularly to a magnetic bearing motor having a load connected to both ends of a rotating shaft.

【0002】[0002]

【従来の技術】[Prior Art]

従来、ターボ機械等の高速回転装置に使用される磁気軸受モータは、回転軸の ほぼ中央に固定されたロータの両側にラジアル磁気軸受を設けてロータとステー タとの間の空隙を維持している。また、モータの反負荷側には軸方向の位置を制 御するスラスト磁気軸受が設けられ、負荷側軸端にはロータの軸方向位置を検出 する軸端位置センサを設けてある。この軸端位置センサの出力により、負荷側軸 端の軸方向位置が所定の位置にくるようにスラスト磁気軸受を制御している。 Conventionally, magnetic bearing motors used in high-speed rotating devices such as turbomachines maintain radial air bearings on both sides of the rotor, which is fixed approximately at the center of the rotating shaft, to maintain the air gap between the rotor and the stator. There is. A thrust magnetic bearing that controls the axial position is provided on the anti-load side of the motor, and a shaft end position sensor that detects the axial position of the rotor is provided at the load side shaft end. The thrust magnetic bearing is controlled by the output of the shaft end position sensor so that the axial position of the load side shaft end comes to a predetermined position.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところが、上記構成では、高速回転で負荷が大きくなると、モータの鉄損など によりロータ部分に発熱が集中し、回転軸の温度が上昇して熱膨張により回転軸 全体が軸方向に伸びる。反負荷側軸端が最も大きく変位するが、その変位が大き 過ぎると、スラスト磁気軸受によって反負荷側軸端の軸方向位置を制御できなく なるという欠点があった。 例えば、磁気軸受モータの両軸端に1段目および2段目のターボブロアを取り つけて、そのインペラを回転する場合、インペラとケーシングとの間の空隙を一 定に維持するため軸方向の変位を極力小さくする必要があるが、回転軸が熱膨張 により軸方向に大きく変位することにより、インペラとケーシングが接触し破損 する恐れがある。これを回避するため熱膨張を見込んで該ギャップを大きくして おくと著しく吐出量が低下して運転効率が低下するおそれがあった。 本考案は、ロータの温度が上昇しても、回転軸の軸方向変位が小さい磁気軸受 モータを提供することを目的とするものである。 However, in the above configuration, when the load increases at high speed rotation, heat is concentrated on the rotor portion due to iron loss of the motor, etc., the temperature of the rotating shaft rises, and thermal expansion expands the entire rotating shaft in the axial direction. The antiload side shaft end is displaced the most, but if the displacement is too large, the thrust magnetic bearing cannot control the axial position of the antiload side shaft end. For example, when attaching the first and second stage turbo blowers to both shaft ends of a magnetic bearing motor and rotating the impeller, axial displacement is required to maintain a constant gap between the impeller and the casing. However, there is a risk of the impeller and casing coming into contact with each other and being damaged due to the large axial displacement of the rotating shaft due to thermal expansion. In order to avoid this, if the gap is enlarged in consideration of thermal expansion, the discharge amount may be significantly reduced and the operating efficiency may be reduced. An object of the present invention is to provide a magnetic bearing motor in which the axial displacement of the rotating shaft is small even when the temperature of the rotor rises.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は、回転軸に嵌合した回転子の両側をラジアル磁気軸受で支持し、かつ スラスト磁気軸受により軸方向変位を調整するようにした磁気軸受モータにおい て、前記回転軸を低膨張性の高抗張力合金鋼よりなる一方側の回転軸の小径部と 低膨張性の高抗張力合金鋼よりなる他方側の回転軸の中空部とを結合して構成し 、前記一方側の回転軸の小径部に前記回転子を嵌合し、前記回転子の両端面を前 記一方側の回転軸の段付部と前記他方側の回転軸の端面に接触するようにしたも のである。 また、第2の方法として、前記回転子と前記一方側の回転軸とをトルクを伝達 し、かつ軸方向に摺動し得るように嵌合し、前記回転子の両側端面と前記一方側 の回転軸の段付部および他方側の回転軸の端面との間にそれぞれ空隙を設けたも のである。 The present invention is a magnetic bearing motor in which both sides of a rotor fitted to a rotary shaft are supported by radial magnetic bearings, and axial displacement is adjusted by thrust magnetic bearings. The small diameter part of the rotating shaft on one side made of high tensile strength alloy steel and the hollow part of the rotating shaft on the other side made of low expansion high tensile strength alloy steel are connected to each other, and the small diameter part of the rotating shaft on the one side is formed. The rotor is fitted in the above, and both end faces of the rotor are brought into contact with the stepped portion of the rotating shaft on one side and the end face of the rotating shaft on the other side. As a second method, the rotor and the rotary shaft on the one side are fitted so as to transmit torque and slide in the axial direction, and both end surfaces of the rotor and the one side are fitted. A gap is provided between the stepped portion of the rotary shaft and the end face of the rotary shaft on the other side.

【0005】[0005]

【作用】[Action]

低膨張性の高抗張力合金鋼よりなる一方側の回転軸の小径部と同じく低膨張性 の高抗張力合金鋼よりなる他方側の回転軸の中空部とを結合し、一方側の回転軸 の小径部に回転子を嵌合してあるので、回転子に負荷を加えた時、回転子の温度 が上昇して軸方向に膨張しようとする。しかし、回転子の両側が一方側の回転軸 の段付部と他方側の回転軸の端面に接触し、一方側の回転軸は他方側の回転軸の 中空部で結合されているので、回転子の両端の間隔は温度上昇によってほとんど 膨張しない。したがって、回転子は軸方向に圧縮されて伸びることができず、回 転子の温度上昇による軸方向の変位は非常に小さくなる。 The small diameter part of the rotating shaft on one side made of low expansion high tensile strength alloy steel and the hollow part of the rotating shaft on the other side made of high expansion tensile strength alloy steel of the same low expansion are combined to form a small diameter part of the rotating shaft on one side. Since the rotor is fitted in the part, when a load is applied to the rotor, the temperature of the rotor rises and the rotor tries to expand in the axial direction. However, since both sides of the rotor come into contact with the stepped portion of the rotating shaft on the one side and the end surface of the rotating shaft on the other side, and the rotating shaft on the one side is connected by the hollow part of the rotating shaft on the other side, The space between the two ends of the child hardly expands due to the temperature rise. Therefore, the rotor cannot be compressed and expanded in the axial direction, and the axial displacement due to the temperature rise of the rotor becomes very small.

【0006】[0006]

【実施例】【Example】

本考案を図に示す実施例について説明する。 図1は本考案の実施例を示す側断面図で、中空円筒状のフレーム1の内側に電 機子コイル21を巻回した中空円筒状の固定子2を設け、固定子2の両側にラジ アル磁気軸受3A,3Bを設け、一方のラジアル軸受3Bと固定子2との間にス ラスト磁気軸受4を設けてある。固定子2の内側には空隙を介して対向する鋼性 のソリッドロータにより形成した回転子5を設けてある。回転子5には軸方向に 伸び、周方向に等間隔に複数本のロータバー51と、回転子5の両端面でロータ バー51と接続する短絡リング52とをダイキャストで鋳込んである。回転子5 の両側の短絡リングの外周にそれぞれ補強リング53を焼きばめにより嵌合して ある。回転子5はインバーなどの低膨張性の高抗張力合金鋼よりなり、かつ段付 部61を有する回転軸6Aの小径部62に嵌合して固定してあり、回転軸6Aの 一方端にはフレーム1の一方端に設けた1段目のターボブロア7のインペラ71 を結合してある。回転軸6Aの回転子5とインペラ71との間は回転子5とほぼ 同じ外径に形成し、ラジアル磁気軸受3Aを空隙を介して対向させ、回転軸6A を浮上させるようにしてある。回転軸6Aの小径部62の他方端は、同心に設け られた同じく低膨張性の高抗張力合金鋼よりなる回転軸6Bの一方端に設けた中 空部63に嵌合して、回転軸6Aと回転軸6Bとを結合し、回転軸6Aの段付部 61と回転軸6Bの端面64がそれぞれ補強リング53の端面に接触するように してある。回転軸6Bの他方端には、フレーム1の他方端に設けた2段目のター ボブロア8のインペラ81を結合してある。回転軸6Bの回転子5とインペラ8 1との間にはスラスト円板65を設け、スラスト磁気軸受4と空隙を介して対向 させ、インペラ71、81の軸方向変位を検出するセンサからの信号により、回 転軸6Aおよび回転軸6Bの軸方向変位を調節するようにしてある。また、回転 軸6Bは回転子5とほぼ同じ外径に形成し、ラジアル磁気軸受3Bを空隙を介し て対向させ、回転軸6Aと共に回転軸6Bを浮上させるようにしてある。 The present invention will be described with reference to the embodiments shown in the drawings. FIG. 1 is a side sectional view showing an embodiment of the present invention, in which a hollow cylindrical stator 2 around which an electric coil 21 is wound is provided inside a hollow cylindrical frame 1, and a radial radiator is provided on both sides of the stator 2. Al magnetic bearings 3A and 3B are provided, and a thrust magnetic bearing 4 is provided between one radial bearing 3B and the stator 2. Inside the stator 2, there is provided a rotor 5 formed of a steel solid rotor facing each other with a gap. A plurality of rotor bars 51 extending in the axial direction and equidistantly in the circumferential direction and a short-circuit ring 52 connected to the rotor bars 51 at both end surfaces of the rotor 5 are die-cast into the rotor 5. Reinforcing rings 53 are fitted onto the outer circumferences of the short-circuit rings on both sides of the rotor 5 by shrink fitting. The rotor 5 is made of low-expansion high tensile strength alloy steel such as Invar, and is fitted and fixed to the small diameter portion 62 of the rotary shaft 6A having the stepped portion 61. One end of the rotary shaft 6A is fixed to the rotor 5. The impeller 71 of the first-stage turbo blower 7 provided at one end of the frame 1 is connected. The rotor 5 and the impeller 71 of the rotary shaft 6A are formed to have an outer diameter substantially the same as that of the rotor 5, the radial magnetic bearings 3A are opposed to each other through a gap, and the rotary shaft 6A is levitated. The other end of the small diameter portion 62 of the rotating shaft 6A is fitted into the hollow portion 63 provided at one end of the rotating shaft 6B, which is also concentrically made of the same low expansion high tensile strength alloy steel, and is fitted into the rotating shaft 6A. And the rotary shaft 6B are connected to each other so that the stepped portion 61 of the rotary shaft 6A and the end face 64 of the rotary shaft 6B come into contact with the end face of the reinforcing ring 53, respectively. An impeller 81 of a second stage turbo blower 8 provided at the other end of the frame 1 is connected to the other end of the rotary shaft 6B. A thrust disk 65 is provided between the rotor 5 of the rotary shaft 6B and the impeller 81, and the thrust disk 65 is opposed to the thrust magnetic bearing 4 via a gap to detect the axial displacement of the impellers 71 and 81. Thus, the axial displacement of the rotating shaft 6A and the rotating shaft 6B is adjusted. Further, the rotating shaft 6B is formed to have substantially the same outer diameter as that of the rotor 5, the radial magnetic bearings 3B are opposed to each other through a gap, and the rotating shaft 6B is levitated together with the rotating shaft 6A.

【0007】 回転子5に負荷を加えると、回転子5の温度が上昇して軸方向に膨張しようと するが、補強リング53が回転軸6Aの段付部61と回転軸6Bの端面64に接 触し、回転軸6Aは回転軸6Bの中空部63で結合されているので、回転子5の 両端の間隔は温度上昇によってほとんど膨張しない。したがって、回転子5は軸 方向に圧縮されて伸びることができず、回転子5の温度上昇による軸方向の変位 は非常に小さくなる。なお、インバーなどの低膨張性の高抗張力合金鋼の膨張率 は1.0×10-6/℃で、回転子5などに使用されるマルエージング鋼の10. 1×10-6/℃に比較して極めて膨張率が低いため、温度上昇による軸方向の変 位は非常に小さい。 また、図2および図3に示すように、回転軸6Aの外周にスプライン歯66を 設け、回転子5の内周にスプライン歯66と噛み合うスプライン溝54を設けて 回転軸6Aと回転軸5をトルクを伝達するとともに軸方向に摺動し得るように嵌 合し、補強リング53と段付部61および端面64との間に空隙を設けておき、 回転子5が回転軸6Aにトルクを伝達しながら軸方向に自由に膨張しても、回転 軸6Aおよび回転軸6Bの軸端の変位に影響を及ぼさないようにしてもよい。When a load is applied to the rotor 5, the temperature of the rotor 5 rises and tries to expand in the axial direction. However, the reinforcing ring 53 is formed on the stepped portion 61 of the rotary shaft 6A and the end surface 64 of the rotary shaft 6B. In contact with each other, the rotary shaft 6A is connected by the hollow portion 63 of the rotary shaft 6B, so that the space between the both ends of the rotor 5 hardly expands due to the temperature rise. Therefore, the rotor 5 cannot be compressed and expanded in the axial direction, and the axial displacement due to the temperature rise of the rotor 5 becomes very small. In addition, the expansion coefficient of low tensile strength high tensile strength alloy steel such as Invar is 1.0 × 10 −6 / ° C., and the expansion ratio of maraging steel used for the rotor 5 is 10. Since the coefficient of expansion is extremely low compared to 1 × 10 -6 / ° C, the axial displacement due to temperature rise is very small. Further, as shown in FIGS. 2 and 3, spline teeth 66 are provided on the outer circumference of the rotary shaft 6A, and spline grooves 54 that mesh with the spline teeth 66 are provided on the inner circumference of the rotor 5 to connect the rotary shaft 6A and the rotary shaft 5 to each other. It is fitted so as to be able to transmit torque and slide in the axial direction, and a gap is provided between the reinforcing ring 53 and the stepped portion 61 and the end surface 64 so that the rotor 5 transmits torque to the rotating shaft 6A. However, even if it freely expands in the axial direction, the displacement of the shaft ends of the rotary shaft 6A and the rotary shaft 6B may not be affected.

【0008】[0008]

【考案の効果】[Effect of the device]

以上述べたように、本考案によれば、回転子を低膨張性の高抗張力合金鋼の回 転軸に嵌合して負荷にトルクを伝達するようにしてあるので、回転子の温度上昇 による軸方向の膨張が回転軸の軸端の変位に大きく影響を及ぼす事がなく、例え ば、回転軸の両端に負荷を持つ2段のターボブロアの軸方向ギャップに大きな変 化を与えることなく高効率の運転ができるなど、ロータの温度が上昇しても、回 転軸の軸方向変位が小さい磁気軸受モータを提供できる効果がある。 As described above, according to the present invention, the rotor is fitted to the rotating shaft of low tensile strength high tensile strength alloy steel to transmit the torque to the load. Axial expansion does not significantly affect the displacement of the shaft end of the rotating shaft. For example, high efficiency can be achieved without significantly changing the axial gap of a two-stage turbo blower with loads on both ends of the rotating shaft. It is possible to provide a magnetic bearing motor in which the axial displacement of the rotating shaft is small even when the temperature of the rotor rises due to such operations as above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の実施例を示す側断面図である。FIG. 1 is a side sectional view showing an embodiment of the present invention.

【図2】本考案の他の実施例を示す側断面図である。FIG. 2 is a side sectional view showing another embodiment of the present invention.

【図3】本考案の他の実施例を示す正断面図である。FIG. 3 is a front sectional view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 フレーム 2 固定子 3A,3B ラジアル磁気軸受 4 スラスト磁
気軸受 5 回転子 51ロータバー 52 短絡リング 53 補強リン
グ 54 スプライン溝 6A,6B 回
転軸 61 段付部 62 小径部 63 中空部 64 端面 65 スラスト円板 66 スプライ
ン歯 7、8 ターボブロア 71、81 イ
ンペラ
1 frame 2 stator 3A, 3B radial magnetic bearing 4 thrust magnetic bearing 5 rotor 51 rotor bar 52 short-circuit ring 53 reinforcing ring 54 spline groove 6A, 6B rotary shaft 61 stepped portion 62 small diameter portion 63 hollow portion 64 end face 65 thrust disk 66 Spline teeth 7, 8 Turbo blower 71, 81 Impeller

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 回転軸に嵌合した回転子の両側をラジア
ル磁気軸受で支持し、かつスラスト磁気軸受により軸方
向変位を調整するようにした磁気軸受モータにおいて、
前記回転軸を低膨張性の高抗張力合金鋼よりなる一方側
の回転軸の小径部と低膨張性の高抗張力合金鋼よりなる
他方側の回転軸の中空部とを結合して構成し、前記一方
側の回転軸の小径部に前記回転子を嵌合し、前記回転子
の両端面を前記一方側の回転軸の段付部と前記他方側の
回転軸の端面に接触するようにしたことを特徴とする磁
気軸受モータ。
1. A magnetic bearing motor in which both sides of a rotor fitted to a rotary shaft are supported by radial magnetic bearings, and axial displacement is adjusted by thrust magnetic bearings.
The rotating shaft is configured by connecting a small diameter portion of the rotating shaft on one side made of low expansion high tensile strength alloy steel and a hollow portion of the rotating shaft on the other side made of low expansion high tensile strength alloy steel, The rotor is fitted to the small diameter portion of the rotary shaft on one side, and both end faces of the rotor are in contact with the stepped portion of the rotary shaft on the one side and the end face of the rotary shaft on the other side. Magnetic bearing motor characterized by.
【請求項2】 前記回転子と前記一方側の回転軸とをト
ルクを伝達し、かつ軸方向に摺動し得るように嵌合し、
前記回転子の両側端面と前記一方側の回転軸の段付部お
よび他方側の回転軸の端面との間にそれぞれ空隙を設け
た請求項1記載の磁気軸受モータ。
2. The rotor and the rotary shaft on the one side are fitted so as to transmit torque and slide in the axial direction,
2. The magnetic bearing motor according to claim 1, wherein a gap is provided between each side end surface of the rotor and the stepped portion of the one rotation shaft and the end surface of the other rotation shaft.
JP1991071084U 1991-08-08 1991-08-08 Magnetic bearing motor Expired - Fee Related JP2584869Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991071084U JP2584869Y2 (en) 1991-08-08 1991-08-08 Magnetic bearing motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991071084U JP2584869Y2 (en) 1991-08-08 1991-08-08 Magnetic bearing motor

Publications (2)

Publication Number Publication Date
JPH0515658U true JPH0515658U (en) 1993-02-26
JP2584869Y2 JP2584869Y2 (en) 1998-11-11

Family

ID=13450310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991071084U Expired - Fee Related JP2584869Y2 (en) 1991-08-08 1991-08-08 Magnetic bearing motor

Country Status (1)

Country Link
JP (1) JP2584869Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223679A (en) * 2010-04-06 2011-11-04 Ihi Corp Turbo compressor and centrifugal chiller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634153U (en) * 1986-06-26 1988-01-12
JPH0226248A (en) * 1988-05-28 1990-01-29 Asea Brown Boveri Ag Spindle having independent motor driven by electric motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634153U (en) * 1986-06-26 1988-01-12
JPH0226248A (en) * 1988-05-28 1990-01-29 Asea Brown Boveri Ag Spindle having independent motor driven by electric motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223679A (en) * 2010-04-06 2011-11-04 Ihi Corp Turbo compressor and centrifugal chiller

Also Published As

Publication number Publication date
JP2584869Y2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
JP3788558B2 (en) Turbo molecular pump
EP0367387A3 (en) Eddy current retarder
JPS63171145A (en) Motor
US5380112A (en) Assembly for concentrically positioning a casing relative to a shaft
JP2003336631A (en) Self-aligning bearing
TW202026543A (en) Vacuum pump
JPH0515658U (en) Magnetic bearing motor
EP0433247B1 (en) Casing construction for electric motors
JPS6342180Y2 (en)
JP4799159B2 (en) Motor-integrated magnetic bearing device
CN108155736B (en) Elevator traction machine rotor
JPH0928065A (en) Squirrel-cage induction motor and its rotor
JP3661332B2 (en) Outer rotor type hot roller motor
JP2004332722A (en) Turbo-machine
JPH0211609Y2 (en)
CN220748602U (en) Air compressor
CN113653536B (en) Turbine interstage support with cage bars
CN215682037U (en) Magnetic suspension high-speed asynchronous motor
US3194995A (en) Electric motor
JP3147731B2 (en) Rotating electric machine and its rotor
JP2000035048A (en) Rotor structure
JPH0645115U (en) Thrust magnetic bearing for turbo machinery
JPH04236812A (en) Rotary machine
JP2002070859A (en) Magnetic bearing device
JP2008045586A (en) Motor integrated magnetic bearing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees