JPH05156032A - Crosslinking method of engineering plastic - Google Patents

Crosslinking method of engineering plastic

Info

Publication number
JPH05156032A
JPH05156032A JP34872891A JP34872891A JPH05156032A JP H05156032 A JPH05156032 A JP H05156032A JP 34872891 A JP34872891 A JP 34872891A JP 34872891 A JP34872891 A JP 34872891A JP H05156032 A JPH05156032 A JP H05156032A
Authority
JP
Japan
Prior art keywords
irradiation
crosslinking
ion
electron beam
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34872891A
Other languages
Japanese (ja)
Inventor
Shinya Nishikawa
信也 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP34872891A priority Critical patent/JPH05156032A/en
Publication of JPH05156032A publication Critical patent/JPH05156032A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/04After-treatment of articles without altering their shape; Apparatus therefor by wave energy or particle radiation, e.g. for curing or vulcanising preformed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/085Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using gamma-ray
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0877Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using electron radiation, e.g. beta-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2081/00Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
    • B29K2081/06PSU, i.e. polysulfones; PES, i.e. polyethersulfones or derivatives thereof

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To provide a process which largely shortens the crosslinking time in the crosslinking process for engineering plastics, not crosslinkable only by electron beams or through a chemical process, but crosslinkable only by ionic irradiation. CONSTITUTION:A process for crosslinking engineering plastics wherein the ion irradiation process is followed by at least one process selected from ion beam irradiation, gamma-ray irradiation, ultraviolet ray irradiation and heat treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、イオンビームを照射
した後、引き続いて、電子線、γ線、あるいは紫外線を
照射、もしくは熱処理を行なうエンジニアリングプラス
チックの架橋方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cross-linking engineering plastics, which comprises irradiating an ion beam and subsequently irradiating it with an electron beam, γ-rays or ultraviolet rays, or heat-treating it.

【0002】[0002]

【従来の技術】従来から、高分子の架橋法としては、電
子線照射や、その他架橋剤を用いる化学的方法によって
架橋させる方法が用いられている。
2. Description of the Related Art Conventionally, as a method for crosslinking a polymer, a method of crosslinking by electron beam irradiation or a chemical method using a crosslinking agent has been used.

【0003】しかし、これらの方法によって架橋できる
高分子の耐熱性はそれほど高くない。
However, the heat resistance of polymers which can be crosslinked by these methods is not so high.

【0004】更に高い耐熱性を必要とする分野での使用
のためには、ポリエーテルエーテルケトン等の耐熱性の
優れたエンジニアリングプラスチックに対し架橋をする
必要がある。
For use in fields requiring higher heat resistance, it is necessary to crosslink engineering plastics having excellent heat resistance such as polyetheretherketone.

【0005】しかしこれらの耐熱性エンジニアリングプ
ラスチックは一般には芳香族高分子であり、このような
芳香族高分子は電子線照射や架橋剤による化学的方法で
は架橋できない。
However, these heat-resistant engineering plastics are generally aromatic polymers, and such aromatic polymers cannot be crosslinked by electron beam irradiation or a chemical method using a crosslinking agent.

【0006】そこで前記の従来法では架橋できないエン
ジニアリングプラスチックを架橋する方法として、例え
ば荷電粒子(イオン)照射法が提案されている(特開平
2−199722号)。
Therefore, for example, a charged particle (ion) irradiation method has been proposed as a method for crosslinking an engineering plastic that cannot be crosslinked by the above-mentioned conventional method (Japanese Patent Laid-Open No. 2-199722).

【0007】上記の方法において、電子線照射では架橋
しない芳香族高分子等が、イオン照射により架橋する
が、これはイオンビームの方が電子線照射等より単位体
積当たりに与えるエネルギーが遥かに大きいために、イ
オンの軌跡の回りに主鎖断裂及びベンゼン環の開環反応
等が起こり大量にラジカルが生成し、生成したラジカル
が周りの水素を引き抜いて結合するためと考えられてい
る。
In the above method, an aromatic polymer or the like which is not crosslinked by electron beam irradiation is crosslinked by ion irradiation, but the ion beam gives much larger energy per unit volume than electron beam irradiation or the like. Therefore, it is considered that the main chain breakage and the ring-opening reaction of the benzene ring occur around the trajectory of the ions, a large amount of radicals are generated, and the generated radicals pull out the surrounding hydrogen and bond.

【0008】[0008]

【発明が解決しようとする課題】ところが、このイオン
照射法による架橋では、照射時に発生する熱的問題及び
設備的問題から照射電流量が制限され、充分架橋させる
ために必要な照射線量を得るには非常に多くの時間を要
し、その生産性に問題が残っていた。
However, in the cross-linking by the ion irradiation method, the irradiation current amount is limited due to thermal problems and facility problems that occur during irradiation, and it is necessary to obtain the irradiation dose necessary for sufficient cross-linking. Took a very long time, and its productivity remained a problem.

【0009】そこで、この発明は、電子線や架橋剤を用
いた化学的方法単独では架橋しないエンジニアリングプ
ラスチックの架橋反応時間を短縮するプロセスを提供す
ることを目的とする。
Therefore, an object of the present invention is to provide a process for shortening the cross-linking reaction time of an engineering plastic which is not cross-linked by a chemical method alone using an electron beam or a cross-linking agent.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
め、この発明は、エンジニアリングプラスチックに対
し、イオン照射プロセスの後、電子線照射、γ線照射、
紫外線照射、及び熱処理の中から選ばれた少なくとも1
つ以上のプロセスを行なうエンジニアリングプラスチッ
クの架橋法である。
In order to solve the above-mentioned problems, the present invention relates to engineering plastics, after ion irradiation process, electron beam irradiation, γ-ray irradiation,
At least 1 selected from ultraviolet irradiation and heat treatment
It is a method of cross-linking engineering plastics that performs one or more processes.

【0011】即ち、電子線や架橋剤を用いた化学的方法
単独では架橋しないエンジニアリングプラスチック(例
えば、ポリフェニレンサルファイド、ポリサルホン、ポ
リエーテルサルホン、ポリエーテルエーテルケトン、ポ
リアリレート、ポリオキシベンジレン、フッ素樹脂、ポ
リアミドイミド、ポリエーテルイミド)に対して、荷電
粒子を前処理として低線量照射して損傷等の反応活性点
を形成させ、引き続いて電子線、γ線、紫外線を照射す
る、もしくは熱処理を行うことで、大幅に芳香族高分子
成形物の架橋反応時間を短縮するプロセスを提供するも
のである。
That is, engineering plastics which are not cross-linked by a chemical method alone using an electron beam or a cross-linking agent (for example, polyphenylene sulfide, polysulfone, polyether sulfone, polyether ether ketone, polyarylate, polyoxybenzylene, fluororesin). , Polyamideimide, polyetherimide) is irradiated with a low dose of charged particles as a pretreatment to form reactive active points such as damage, and subsequently, electron beams, γ rays, ultraviolet rays are irradiated, or heat treatment is performed. Thus, a process for significantly shortening the cross-linking reaction time of the molded aromatic polymer is provided.

【0012】[0012]

【作用】この発明によると、電子線やγ線では架橋しな
い芳香族あるいは複素環を分子内に有する高分子化合物
の荷電粒子照射架橋の生産性を上げることができる。
According to the present invention, it is possible to increase the productivity of charged particle irradiation crosslinking of a polymer compound having an aromatic or heterocyclic ring which is not crosslinked by electron beams or γ rays in the molecule.

【0013】芳香族高分子等は、イオン照射によっての
み架橋するが、これは前述のようにイオンビームの方が
電子線照射等より単位体積当たりに与えるエネルギーが
遥かに大きいために、イオンの軌跡の回りに主鎖断裂及
びベンゼン環の開環反応等が起こり大量にラジカルが生
成し、生成したラジカルが周りの水素を引き抜いて結合
するためと考えられている。
Aromatic polymers and the like are cross-linked only by ion irradiation, but this is because the ion beam gives much larger energy per unit volume than electron beam irradiation etc., as described above, and thus the locus of ions. It is considered that the main chain breakage and the ring-opening reaction of the benzene ring occur around and a large amount of radicals are generated, and the generated radicals abstract and bond with the surrounding hydrogen.

【0014】しかし、イオン照射単独での架橋反応で
は、照射時に発生する熱的問題及び設備的な問題から、
その生産性においては非常に問題点が多く改良が必要と
なっていた。
However, in the cross-linking reaction by ion irradiation alone, due to thermal problems and facility problems that occur during irradiation,
The productivity was very problematic and needed improvement.

【0015】そこで、まずエンジニアリングプラスチッ
クに対し、イオン照射プロセスを前処理として行なう。
Therefore, the engineering plastic is first subjected to an ion irradiation process as a pretreatment.

【0016】このイオン照射により、ベンゼン環を含む
ものでは開環反応が起きパラフィン、オレフィンが生成
する。また、ラジカルが発生した場合には、このラジカ
ルが酸素と反応して水酸基やカルニル基等の反応活性な
基が大量に発生する。
This ion irradiation causes a ring-opening reaction in the one containing a benzene ring to produce paraffin and olefin. When radicals are generated, the radicals react with oxygen to generate a large amount of reactive groups such as a hydroxyl group and a carnyl group.

【0017】更に、生成したラジカルは、全てが反応し
て失活するわけでなく、かなりの部分は高分子中に長時
間とどまる。
Further, the generated radicals do not all react to be deactivated, and a considerable part remains in the polymer for a long time.

【0018】このように低線量イオン照射によっても、
高分子は部分的にパラフィン、オレフィン、水酸基等を
含み反応活性になるために、イオン照射なしでは架橋さ
せることができなかった電子線、γ線、紫外線及び熱線
照射を後処理として行なうことによって更に反応を進ま
せて架橋させることができる。
Thus, even with low dose ion irradiation,
Since the polymer partially contains paraffin, olefin, hydroxyl group, etc. and becomes reactive, it can be further cross-linked by electron beam, γ ray, ultraviolet ray and heat ray irradiation, which could not be crosslinked without ion irradiation. The reaction can proceed and crosslink.

【0019】イオンの照射量としては、イオン照射単独
では5×1014(IONS/cm2) (H+1MeV )程度の照射
量(1m/1時間 の生産性)が必要であるが、併用法
ではその1/100程度の照射量でも後処理を行えば架
橋が可能となる。
As the ion irradiation dose, the ion irradiation alone requires an irradiation dose of about 5 × 10 14 (IONS / cm 2 ) (H + 1 MeV) (productivity of 1 m / 1 hour). Then, even if the irradiation amount is about 1/100, crosslinking can be achieved by post-treatment.

【0020】電子線照射等の後工程はいずれも大量処理
が行えるので、併用法では架橋反応全工程の所要時間が
大幅に削減されることになる。
Since a large amount of treatment can be performed in each of the subsequent steps such as electron beam irradiation, the combined method can significantly reduce the time required for all steps of the crosslinking reaction.

【0021】[0021]

【実施例】以下、この発明を実施例により説明する。EXAMPLES The present invention will be described below with reference to examples.

【0022】PES(ポリエーテルスルホン)、PEE
K(ポリエーテルエーテルケトン)のフィルム(膜厚2
5μm)を用いてPES、PEEK被覆電線を作成し、
この絶縁被覆層(被覆層厚20μm)にイオン照射を行
ない、その後、電子線照射、加熱処置、γ線照射あるい
は紫外線照射の中から選ばれた1処理を施した(実施例
1〜4)。
PES (polyether sulfone), PEE
K (polyether ether ketone) film (thickness 2
5μm) to make PES, PEEK coated electric wire,
This insulating coating layer (coating layer thickness 20 μm) was irradiated with ions, and then subjected to one treatment selected from electron beam irradiation, heating treatment, γ-ray irradiation or ultraviolet irradiation (Examples 1 to 4).

【0023】イオン照射については、イオン種:H+
エネルギー:1MeV の条件で行ない、照射量、所要時間
等の条件や、他の電子線照射や熱処理等の条件は表1に
示す通りである。
For ion irradiation, ion species: H + ,
Energy is set to 1 MeV, and conditions such as irradiation amount and required time, and other conditions such as electron beam irradiation and heat treatment are as shown in Table 1.

【0024】得られた電線の被覆について、ゲル分率、
380℃半田浸漬後の形状の状態を調べたところ表1に
示す結果が得られた。
Regarding the coating of the obtained electric wire, the gel fraction,
When the state of the shape after immersion in the solder at 380 ° C. was examined, the results shown in Table 1 were obtained.

【0025】尚、ゲル分率は120℃のジメチルホルム
アミドを用い測定した。又、半田浸漬は380℃の半田
にフィルムを10秒間浸漬し、フィルムの溶解の有無、
形状変化を調べた。
The gel fraction was measured using dimethylformamide at 120 ° C. For solder dipping, immerse the film in solder at 380 ° C for 10 seconds to determine whether the film is dissolved or not.
The shape change was investigated.

【0026】更に、電線の被覆層に架橋処理を施さない
もの、イオン照射のみ、又は電子線照射のみを行なった
電線を比較例として用意し、同様に測定を行なった(比
較例1〜4)。
Further, an electric wire whose coating layer was not subjected to a crosslinking treatment, an electric wire only subjected to ion irradiation or only an electron beam irradiation was prepared as a comparative example, and the same measurement was carried out (Comparative Examples 1 to 4). ..

【0027】[0027]

【表1】 [Table 1]

【0028】表1から明らかなように、この発明の実施
例は、比較例に比べてゲル分率、半田浸漬後の形状保持
が良好であり、更に、イオン照射のみによる架橋処理に
より良好な結果を得た比較例3と比べても、その架橋処
理時間が著しく短縮されているのがわかる。
As is apparent from Table 1, the examples of the present invention have better gel fraction and shape retention after solder immersion than the comparative examples, and further, good results can be obtained by the crosslinking treatment only by ion irradiation. It can be seen that the cross-linking treatment time is significantly shortened as compared with Comparative Example 3 obtained.

【0029】[0029]

【発明の効果】以上のように、この発明によると、芳香
族または複素環を分子内に有する高分子材料を架橋する
方法として、荷電粒子を照射し、引き続いて、電子線、
γ線、あるいは紫外線を照射、もしくは熱処理するとい
う併用法を行なうことにより、比較的容易にかつ生産性
良くエンジニアリングプラスチックの架橋を行うことが
できる。
As described above, according to the present invention, as a method for crosslinking a polymer material having an aromatic or heterocyclic ring in the molecule, irradiation with charged particles, followed by irradiation with an electron beam,
By performing the combined method of irradiating with γ-rays or ultraviolet rays or heat treatment, the engineering plastic can be crosslinked relatively easily and with good productivity.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エンジニアリングプラスチックにおい
て、イオン照射プロセスの後、電子線照射、γ線照射、
紫外線照射、及び熱処理の中から選ばれた少なくとも1
つ以上のプロセスを併用することからなるエンジニアリ
ングプラスチックの架橋法。
1. Engineering plastics, after ion irradiation process, electron beam irradiation, γ-ray irradiation,
At least 1 selected from ultraviolet irradiation and heat treatment
A method of cross-linking engineering plastics that involves the use of two or more processes together.
JP34872891A 1991-12-04 1991-12-04 Crosslinking method of engineering plastic Pending JPH05156032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34872891A JPH05156032A (en) 1991-12-04 1991-12-04 Crosslinking method of engineering plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34872891A JPH05156032A (en) 1991-12-04 1991-12-04 Crosslinking method of engineering plastic

Publications (1)

Publication Number Publication Date
JPH05156032A true JPH05156032A (en) 1993-06-22

Family

ID=18398967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34872891A Pending JPH05156032A (en) 1991-12-04 1991-12-04 Crosslinking method of engineering plastic

Country Status (1)

Country Link
JP (1) JPH05156032A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756023A (en) * 1996-05-30 1998-05-26 United States Brass Corporation Method of producing reformed crosslinked polyethylene articles
US5879723A (en) * 1996-03-26 1999-03-09 United States Brass Corporation Automated tube reforming apparatus
US6284178B1 (en) 1999-06-18 2001-09-04 United States Brass Corporation Methods of producing crosslinked polyethylene products

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879723A (en) * 1996-03-26 1999-03-09 United States Brass Corporation Automated tube reforming apparatus
US5756023A (en) * 1996-05-30 1998-05-26 United States Brass Corporation Method of producing reformed crosslinked polyethylene articles
US6284178B1 (en) 1999-06-18 2001-09-04 United States Brass Corporation Methods of producing crosslinked polyethylene products

Similar Documents

Publication Publication Date Title
Ohkubo et al. Drastic improvement in adhesion property of polytetrafluoroethylene (PTFE) via heat-assisted plasma treatment using a heater
JPS6161204B2 (en)
Wang et al. Study on surface structure of plasma‐treated polydimethylsiloxane (PDMS) elastomer by slow positron beam
Gao et al. Effect of chemical corrosion on charge transport behaviour in epoxy/Al2O3 nanocomposite irradiated by gamma ray
JPH05156032A (en) Crosslinking method of engineering plastic
JP4846496B2 (en) Cross-linked polytetrafluoroethylene resin and method for producing the same
EP0165118A1 (en) Method and apparatus for polymerising and/or cross-linking, by using ionising radiation, a resin for use as an article of composite material
US4416724A (en) Method for producing insulator surfaces
US5492761A (en) Heat-resistant coated electrically conductive wire
US4115303A (en) Method of fabrication of porous macromolecular materials having an internal lining and materials obtained by means of said method
US4983460A (en) Films having in their thickness at least two superimposed zones, including an insulating zone and a conductive zone, and the production thereof by irradiating a polymer film by means of a beam of high energy ions
JP2015206703A (en) Evaluation method of crosslinking degree of high molecule polymer
On et al. Effects of microwave‐assisted cross‐linking on the creep resistance and sensing accuracy of a coaxial‐structured fiber strain sensor
JPH0853560A (en) Method for preventing charge of plastic product
Apel et al. Particle track detection and relaxation transitions in polymer
JPH03241613A (en) Heat-proof cross-linking electric wire
JP2005113116A (en) Tetrafluoroethylene polymer alloy and method for producing the same
Zaharescu et al. Electrical properties of polyolefin blends under/spl gamma/-radiation exposure
JPS60132744A (en) Preparation of crosslinked ultra-high molecular weight polyethylene film
JP4682387B2 (en) Insulator surface treatment method
JP2664798B2 (en) Capillary column for gas chromatography and method for producing the same
JP2620357B2 (en) Heat-resistant bridge wire
JP2004087380A (en) Electrolyte film for fuel cell, and its manufacturing method
JP4178150B2 (en) Radiation treatment method for polymer membrane, modified polymer membrane and fuel cell
JPH04345622A (en) Crosslinking by irradiation with electron beam