JPH05155894A - Production of glycosyl derivative - Google Patents

Production of glycosyl derivative

Info

Publication number
JPH05155894A
JPH05155894A JP32479391A JP32479391A JPH05155894A JP H05155894 A JPH05155894 A JP H05155894A JP 32479391 A JP32479391 A JP 32479391A JP 32479391 A JP32479391 A JP 32479391A JP H05155894 A JPH05155894 A JP H05155894A
Authority
JP
Japan
Prior art keywords
glycoside
formula
expressed
reaction
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32479391A
Other languages
Japanese (ja)
Other versions
JPH07110871B2 (en
Inventor
Kunio Azuma
邦雄 東
Hiroshi Suzaki
浩 洲崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
D D S KENKYUSHO KK
Original Assignee
D D S KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by D D S KENKYUSHO KK filed Critical D D S KENKYUSHO KK
Priority to JP32479391A priority Critical patent/JPH07110871B2/en
Publication of JPH05155894A publication Critical patent/JPH05155894A/en
Publication of JPH07110871B2 publication Critical patent/JPH07110871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Steroid Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To use a readily available acylglycoside, etc., as a saccharide donor and safely obtain the subject compound under extremely mild conditions without using a heavy metallic salt by using a specific activator. CONSTITUTION:An acylglycoside expressed by formula I (W is monosaccharide or oligosaccharide; the wavy line indicates alpha- or eta-bond at the respective 1- positions of reducing terminal saccharides of W; R<1> is alkyl or aryl) or an alkyl- or an arylglycoside expressed by the formula W-OR<1> is made to react with an alcohol expressed by the formula R-OH [R is (substituted)alkyl or (substituted)aryl] in a reactional solvent using a substituted silyl halide expressed by formula II (R<2> to R<4> are R<1>; X is halogen) and a metal trifluoromethanesulfonate in combination as an activator to afford the objective compound expressed by the formula W-OR. For example, trimethylsilyl chloride is used as the compound expressed by formula II. The reactional solvent may be an inert solvent such as toluene or methylene chloride.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はグリコシル誘導体の新規
な製法に関する。更に詳しくはグリコシドにアルコール
を反応させてグリコシル誘導体を合成する際に使用する
反応の活性化剤についての新規な選択に関する。
FIELD OF THE INVENTION The present invention relates to a novel method for producing glycosyl derivatives. More specifically, it relates to a novel selection of a reaction activator used in the reaction of a glycoside with an alcohol to synthesize a glycosyl derivative.

【0002】[0002]

【従来の技術】近年、細胞表層に分布する複合糖質糖鎖
部の生理的意義および疾病との関わりが解明されるにつ
れて、糖鎖生物学は次代の生命科学を担う中心課題とし
て期待されている。こうした背景から、糖質化学の分野
では新しいグリコシル化反応の開発が今も残された重要
な課題の1つとして注目されている。グリコシル化反応
の成否には、糖の種類は勿論のこと、糖供与体の保護基
および脱離基、糖受容体の求核性、活性化剤、溶媒等の
要因が複雑に絡みあっており、なかでも脱離基と活性化
剤は最も支配的要因を成すと考えられている。
2. Description of the Related Art In recent years, as the physiological significance of glycoconjugate sugar chains distributed on the cell surface and the relationship with diseases have been elucidated, glycobiology is expected to be a central issue for the next generation of life science. There is. Against this background, the development of a new glycosylation reaction has attracted attention as one of the important issues still remaining in the field of glycochemistry. The success or failure of the glycosylation is complicated by factors such as the type of sugar, protecting and leaving groups of sugar donor, nucleophilicity of sugar acceptor, activator and solvent. Among them, the leaving group and the activator are considered to be the most dominant factors.

【0003】これまで一般的に用いられてきたグリコシ
ル化反応としてKoenigs-Knorr 法があげられる(W. Koen
igs et al., Ber., 34, 957(1901))。本方法では、糖供
与体として不安定で取り扱い上難点のある塩化又は臭化
グリコシルを用いること、また、活性化剤として高価
な、時には爆発性のある銀塩や有毒な水銀塩を用いるな
どの問題点があり、これらを克服する新しいグリコシル
化反応の開発が望まれてきた。
The Koenigs-Knorr method has been used as a glycosylation reaction that has been generally used (W. Koen).
igs et al., Ber., 34 , 957 (1901)). In this method, unstable and difficult-to-handle glycosyl chloride or glycosyl bromide is used as a sugar donor, and expensive and sometimes explosive silver salts or toxic mercury salts are used as activators. There are problems, and it has been desired to develop a new glycosylation reaction that overcomes these problems.

【0004】理想的なグリコシル化反応と呼ばれるため
には、糖供与体は安定で取り扱い易く、調製が容易であ
り、また、活性化剤として銀塩、水銀塩などの重金属塩
をいっさい用いないなどの要件を満たす必要がある。こ
のような事情から塩化グリコシル又は臭化グリコシルの
代わりに安定で取扱い易く、調製が容易なアシルグリコ
シド又はアルキルグリコシドを糖供与体として直接に反
応に使用することが考えられる。すなわち、これらの物
質は従来は糖供与体としての塩化グリコシル又は臭化グ
リコシルを合成する際の安定で取り扱いやすい中間体と
して使用されてきた。従って、もしこれらの物質を直接
に糖供与体として使用することができればそれが望まし
い。しかし、僅かな例があるだけで(特開平2-258792及
びJ. Carbohydr. Chem., 6, 509(1987))、実際に使用さ
れることは稀である。その理由はこれらの物質は安定で
あるために直接に反応物質として使用しても反応が容易
に進行せず、又は反応を進行させるための活性化剤を加
えるとグリコシル化反応以外の反応が進行し、目的物質
が得られないからである。
In order to be called an ideal glycosylation reaction, the sugar donor is stable, easy to handle and easy to prepare, and no heavy metal salt such as silver salt or mercury salt is used as an activator. Must meet the requirements of. Under such circumstances, it is conceivable to use an acyl glycoside or an alkyl glycoside, which is stable and easy to handle and is easy to prepare, as a sugar donor directly in the reaction instead of glycosyl chloride or bromide. That is, these materials have traditionally been used as stable and manageable intermediates in the synthesis of glycosyl chloride or glycosyl bromide as sugar donors. Therefore, it would be desirable if these substances could be used directly as sugar donors. However, since there are only a few examples (JP-A-2-258792 and J. Carbohydr. Chem., 6 , 509 (1987)), they are rarely actually used. The reason is that since these substances are stable, the reaction does not easily proceed even if they are directly used as reactants, or when an activator for promoting the reaction is added, reactions other than the glycosylation reaction proceed. However, the target substance cannot be obtained.

【0005】[0005]

【発明が解決しようとする課題】従って、アシルグリコ
シド又はアルキル若しくはアリールグリコシドを糖供与
体として直接に反応に使用する場合に、グリコシル化反
応のみを特異的に進行させるためには極めて限定された
特別の活性化剤がその反応に最も適切なものとして選択
される必要があり、それを見出すことが解決課題として
残される。
Therefore, when an acyl glycoside or an alkyl or aryl glycoside is directly used as a sugar donor in the reaction, a very limited special reaction is required to specifically proceed the glycosylation reaction. The activator of C should be selected as the most suitable for the reaction, and finding it remains a solution.

【0006】[0006]

【課題を解決するための手段】前記の実状にかんがみ、
本発明者は、容易に調製することができ、しかも安定で
長期保存の可能なアシルグリコシド又はアルキル若しく
はアリールグリコシドを糖供与体の直接の反応物質とし
て使用してグリコシル誘導体を製造する方法について種
々の検討を行った結果、意外にも銀塩、水銀塩などの重
金属塩をいっさい使用せず、しかも安全に取り扱うこと
のできる置換シリルハライドとトリフルオロメタンスル
ホン酸金属塩との組合せを活性化剤として使用すること
により目的を達成することができることを見出し、これ
らの知見に基いて本発明を完成した。
[Means for Solving the Problems] Considering the above-mentioned situation,
The present inventor has various methods for producing a glycosyl derivative using an acyl glycoside or an alkyl or aryl glycoside, which can be easily prepared and is stable and can be stored for a long time, as a direct reactant of a sugar donor. As a result of the investigation, surprisingly, a combination of a substituted silyl halide and a metal salt of trifluoromethanesulfonic acid, which does not use any heavy metal salt such as silver salt or mercury salt, and which can be safely handled, is used as an activator. It was found that the object can be achieved by doing so, and the present invention was completed based on these findings.

【0007】すなわち、本発明は、下記一般式(I)又
は下記一般式(II)によって示されるアシルグリコシド
又はアルキル若しくはアリールグリコシドに下記一般式
(III )によって示されるアルコールを反応せしめて下
記一般式(IV)によって示されるグリコシル誘導体を製
造するに当り、反応の活性化剤として下記一般式(V)
によって示される置換シリルハライドとトリフルオロメ
タンスルホン酸金属塩とを併用することを特徴とするグ
リコシル誘導体の製造法に関する。
That is, according to the present invention, an acyl glycoside represented by the following general formula (I) or the following general formula (II) or an alkyl or aryl glycoside is reacted with an alcohol represented by the following general formula (III). In producing the glycosyl derivative represented by (IV), the following general formula (V) is used as an activator of the reaction
The present invention relates to a method for producing a glycosyl derivative, which comprises using a substituted silyl halide represented by and a trifluoromethanesulfonic acid metal salt in combination.

【0008】[0008]

【化2】 [Chemical 2]

【0009】以下に本発明を詳細に説明する。The present invention will be described in detail below.

【0010】本発明において反応物質としての糖供与体
はアシルグリコシド又はアルキル若しくはアリールグリ
コシドであり、それぞれ上記式(I)及び(II)によっ
て示される。これらの式中、Wは単糖又はオリゴ糖を表
し、波線は該単糖の1位又は該オリゴ糖の還元末端の1
位におけるα結合又はβ結合を表し、R1 はアルキル基
又はアリール基を表す。単糖としては、例えば、グルコ
ース、ガラクトース、マンノース、フコース、キシロー
ス、グルコサミン、ガラクトサミン、シアル酸等を挙げ
ることができる。オリゴ砂糖は2〜6糖の構成であり、
その還元末端糖としては例えば前記単糖を挙げることが
できる。
In the present invention, the sugar donor as a reactant is an acyl glycoside or an alkyl or aryl glycoside, which is represented by the above formulas (I) and (II), respectively. In these formulas, W represents a monosaccharide or an oligosaccharide, and a wavy line represents 1-position of the monosaccharide or 1 of the reducing end of the oligosaccharide.
Represents an α bond or a β bond, and R 1 represents an alkyl group or an aryl group. Examples of monosaccharides include glucose, galactose, mannose, fucose, xylose, glucosamine, galactosamine, and sialic acid. Oligo sugar is composed of 2 to 6 sugars,
Examples of the reducing terminal sugar include the above-mentioned monosaccharides.

【0011】本発明において糖受容体としてのアルコー
ルは上記式(III )によって示される。式中、Rは置換
又は非置換のアルキル基又はアリール基を表す。アルキ
ル基としては直鎖、分枝鎖、環状を含み、炭素数に限定
はない。アルキル基又はアリール基に対する置換基とし
ては、例えば、アジド基、メトキシカルボニル基、コハ
ク酸イミド基、シクロヘキシル基、クロル基等を挙げる
ことができる。
The alcohol as the sugar acceptor in the present invention is represented by the above formula (III). In the formula, R represents a substituted or unsubstituted alkyl group or aryl group. The alkyl group includes straight chain, branched chain and cyclic, and the number of carbon atoms is not limited. Examples of the substituent for the alkyl group or the aryl group include an azido group, a methoxycarbonyl group, a succinimide group, a cyclohexyl group and a chloro group.

【0012】本発明の方法の目的物質はグリコシル誘導
体であって、上記式(IV)によって示される。式中、W
及びRは前記したと同じ意味を示す。
The target substance of the method of the present invention is a glycosyl derivative, which is represented by the above formula (IV). In the formula, W
And R have the same meaning as described above.

【0013】本発明の特徴は上記(V)によって示され
る置換シリルハライド(式中R2 、R3 及びR4 はそれ
ぞれ独立にアルキル基又はアリール基を表し、Xはハロ
ゲン原子を表す。)とトリフルオロメタンスルホン酸金
属塩との組合せを反応の活性化剤として使用することに
あり、これらは安定な物質としていずれも入手可能であ
り、市販品を使用すればよい。上記の置換シリルハライ
ドは中性物質であり、トリフルオロメタンスルホン酸金
属塩との組合せは極めて温和な反応条件を与えるが、こ
の組合せによる反応条件は本発明における糖供与体がグ
リコシル化する反応を特異的に進行させる上で最も好適
な条件となっている。従って、本発明は極めて温和な条
件下で反応が進行するという利点を有している。置換シ
リルハライドとしては、例えば、トリメチルシリルクロ
ライド及びトリメチルシリルブロマイドを挙げることが
でき、また、トリフルオロメタンスルホン酸金属塩とし
ては、例えば、トリフルオロメタンスルホン酸の銅(I
I)塩、亜鉛(II)塩及びスズ(II)塩を挙げることが
できる。
A feature of the present invention is a substituted silyl halide represented by the formula (V) (wherein R 2 , R 3 and R 4 each independently represents an alkyl group or an aryl group, and X represents a halogen atom). The use of a combination with a metal salt of trifluoromethanesulfonic acid as an activator of the reaction is available as a stable substance, and a commercially available product may be used. The above-mentioned substituted silyl halide is a neutral substance, and its combination with a metal salt of trifluoromethanesulfonic acid gives a very mild reaction condition, but the reaction condition by this combination is specific to the reaction in which the sugar donor in the present invention is glycosylated. This is the most preferable condition for the progress of the process. Therefore, the present invention has the advantage that the reaction proceeds under extremely mild conditions. Examples of the substituted silyl halide include trimethylsilyl chloride and trimethylsilyl bromide, and examples of the metal salt of trifluoromethanesulfonic acid include copper (I) of trifluoromethanesulfonic acid.
Mention may be made of I) salts, zinc (II) salts and tin (II) salts.

【0014】本発明の方法は、糖供与体と糖受容体との
反応において、反応の活性化剤として置換シリルハライ
ドとトリフルオロメタンスルホン酸金属塩とを併用する
ところに特徴のあることは前記の通りであって、その他
の反応条件は当業者であれば適宜選ぶことができる。例
えば、置換シリルハライドの使用量は糖供与体に対して
1〜10倍モル、トリフルオロメタンスルホン酸金属塩の
使用量は同じく1〜10倍モルと広い範囲から選ぶことが
できる。反応溶媒は、塩化メチレン、アセトニトリル、
トルエンなどの不活性なものであればよく、また、反応
温度は−25℃前後から溶媒の沸点までといった広い範囲
から選ぶことができる。
The method of the present invention is characterized in that a substituted silyl halide and a metal salt of trifluoromethanesulfonic acid are used together as an activator of the reaction in the reaction between the sugar donor and the sugar acceptor. The other reaction conditions can be appropriately selected by those skilled in the art. For example, the amount of the substituted silyl halide used can be selected from a wide range of 1 to 10 times mol, and the amount of the trifluoromethanesulfonic acid metal salt used can also be selected from a wide range of 1 to 10 times the mol. The reaction solvent is methylene chloride, acetonitrile,
Any inert substance such as toluene may be used, and the reaction temperature can be selected from a wide range from about -25 ° C to the boiling point of the solvent.

【0015】反応混合物から目的のグリコシル誘導体を
分離するのにも特別の困難はなく、シリカゲルを用いた
カラムクロマトグラフィーなど適当な方法によるとよ
い。
There is no particular difficulty in separating the desired glycosyl derivative from the reaction mixture, and a suitable method such as column chromatography using silica gel may be used.

【0016】[0016]

【実施例】以下、実施例により本発明を更に説明する。EXAMPLES The present invention will be further described below with reference to examples.

【0017】以下の実施例において、反応はすべてアル
ゴン雰囲気中、0.4ミリモルの糖供与体を用いて行っ
た。糖供与体に対して糖受容体を2倍モル、そして活性
化剤である置換シリルハライド及びトリフルオロメタン
スルホン酸金属塩をそれぞれ 1.5倍モル用いて行った。
反応終了後、通常の後処理を行った後、シリカゲルを用
いたカラムクロマトグラフィー等の分離精製操作によっ
て目的のグリコシドを得た。
In the following examples, all reactions were carried out in an argon atmosphere with 0.4 mmol of sugar donor. The sugar acceptor was used in an amount of 2 times the molar amount of the sugar donor, and the activator, the substituted silyl halide and the metal salt of trifluoromethanesulfonic acid were used in an amount of 1.5 times the molar amount.
After completion of the reaction, usual post-treatment was carried out, and then the desired glycoside was obtained by separation and purification operations such as column chromatography using silica gel.

【0018】なお、実施例で用いた糖受容体アルコール
ROH計9種類(IXa〜i)の構造を第1表にまとめて
示す。
The structures of nine sugar acceptor alcohol ROHs (IXa to i) used in the examples are summarized in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例1 第2表に記載のように、糖供与体としてのL−フコース
誘導体4種類(I−1〜4)及び糖受容体としてのアル
コール3種類(IXa〜b,i)を用い、同表記載の反
応条件下でグリコシル化反応を行い、アルコールに対応
するグリコシド3種類(Ia〜b,i)を同表記載の収
率及び立体選択性で得た。同表中、TMSはトリメチル
シルリ基を、そしてOTfはトリフルオロメタンスルホ
ン酸根を表す。
Example 1 As shown in Table 2, 4 kinds of L-fucose derivatives (I-1 to 4) as sugar donors and 3 kinds of alcohols (IXa to b, i) as sugar acceptors were used. Glycosylation reaction was performed under the reaction conditions shown in the same table, and three glycosides (Ia to b, i) corresponding to alcohols were obtained with the yield and stereoselectivity shown in the same table. In the table, TMS represents a trimethylsiluri group and OTf represents a trifluoromethanesulfonic acid group.

【0021】[0021]

【表2】 [Table 2]

【0022】得られたグリコシド(Ia〜b,i)の物
性値は以下の通りである。
The physical properties of the obtained glycosides (Ia-b, i) are as follows.

【0023】化合物Ia(α−グリコシド): [α]D −30.9°(c 0.90,CHCl3 )。Compound Ia (α-glycoside): [α] D -30.9 ° (c 0.90, CHCl 3 ).

【0024】 1H-NMR(CDCl3 ) δ:0.64(3H,s),0.80(3H,s),0.86(3H,d),0.87(3H,
d),0.89(3H,d),1.08(3H,d),3.48(1H,m),3.65(1H,
d),3.93(1H,dd) ,3.94(1H,q),4.00(1H,dd) ,4.65(1
H,d),4.67(1H,d),4.73(1H,d),4.78(1H,d),4.88(1H,
d),4.94(1H,d),4.97(1H,d),7.24-7.40(15H,m)。
1 H-NMR (CDCl 3 ) δ: 0.64 (3H, s), 0.80 (3H, s), 0.86 (3H, d), 0.87 (3H, s)
d), 0.89 (3H, d), 1.08 (3H, d), 3.48 (1H, m), 3.65 (1H,
d), 3.93 (1H, dd), 3.94 (1H, q), 4.00 (1H, dd), 4.65 (1
H, d), 4.67 (1H, d), 4.73 (1H, d), 4.78 (1H, d), 4.88 (1H,
d), 4.94 (1H, d), 4.97 (1H, d), 7.24-7.40 (15H, m).

【0025】化合物Ia(β−グリコシド): [α]D +13.9°(c 0.92,CHCl3 )。Compound Ia (β-glycoside): [α] D + 13.9 ° (c 0.92, CHCl 3 ).

【0026】 1H-NMR(CDCl3 ) δ:0.64(3H,s),0.82(3H,s),0.86(3H,d),0.88(3H,
d),0.89(3H,d),1.16(3H,d),3.42(1H,q),3.48(1H,d
d) ,3.53(1H,d),3.61(1H,m),3.77(1H,dd) ,4.42(1
H,d),4.69(1H,d),4.70(1H,d),4.74(1H,d),4.79(1H,
d),4.96(1H,d),4.96(1H,d),7.24-7.38(15H,m)。
1 H-NMR (CDCl 3 ) δ: 0.64 (3H, s), 0.82 (3H, s), 0.86 (3H, d), 0.88 (3H, s)
d), 0.89 (3H, d), 1.16 (3H, d), 3.42 (1H, q), 3.48 (1H, d)
d), 3.53 (1H, d), 3.61 (1H, m), 3.77 (1H, dd), 4.42 (1
H, d), 4.69 (1H, d), 4.70 (1H, d), 4.74 (1H, d), 4.79 (1H,
d), 4.96 (1H, d), 4.96 (1H, d), 7.24-7.38 (15H, m).

【0027】化合物Ib(α−グリコシド): [α]D −30.6°(c 1.48,CHCl3 )。Compound Ib (α-glycoside): [α] D- 30.6 ° (c 1.48, CHCl 3 ).

【0028】 1H-NMR(CDCl3 ) δ:0.88(3H,t),1.10(3H,d),1.20-1.38(26H,m),1.58
-1.65(2H,m) ,3.43(1H,m),3.58(1H,m),3.65(1H,d),
3.87(1H,q),3.94(1H,dd) ,4.02(1H,dd) ,4.65(1H,
d),4.67(1H,d),4.74(1H,d),4.78(1H,d),4.81(1H,
d),4.88(1H,d),4.98(1H,d),7.24-7.41(15H,m)。
1 H-NMR (CDCl 3 ) δ: 0.88 (3H, t), 1.10 (3H, d), 1.20-1.38 (26H, m), 1.58
-1.65 (2H, m), 3.43 (1H, m), 3.58 (1H, m), 3.65 (1H, d),
3.87 (1H, q), 3.94 (1H, dd), 4.02 (1H, dd), 4.65 (1H,
d), 4.67 (1H, d), 4.74 (1H, d), 4.78 (1H, d), 4.81 (1H, d)
d), 4.88 (1H, d), 4.98 (1H, d), 7.24-7.41 (15H, m).

【0029】化合物Ib(β−グリコシド): [α]D +9.4 °(c 0.97,CHCl3 )。Compound Ib (β-glycoside): [α] D + 9.4 ° (c 0.97, CHCl 3 ).

【0030】 1H-NMR(CDCl3 ) δ:0.88(3H,t),1.17(3H,d),1.20-1.42(26H,m),1.57
-1.69(2H,m) ,3.43(1H,q),3.46(1H,m),3.50(1H,dd)
,3.54(1H,d),3.79(1H,dd) ,3.92(1H,m),4.30(1H,
d),4.69(1H,d),4.72(1H,d),4.76(1H,d),4.79(1H,
d),4.94(1H,d),4.97(1H,d),7.24-7.38(15H,m)。
1 H-NMR (CDCl 3 ) δ: 0.88 (3H, t), 1.17 (3H, d), 1.20-1.42 (26H, m), 1.57
-1.69 (2H, m), 3.43 (1H, q), 3.46 (1H, m), 3.50 (1H, dd)
, 3.54 (1H, d), 3.79 (1H, dd), 3.92 (1H, m), 4.30 (1H,
d), 4.69 (1H, d), 4.72 (1H, d), 4.76 (1H, d), 4.79 (1H,
d), 4.94 (1H, d), 4.97 (1H, d), 7.24-7.38 (15H, m).

【0031】化合物Ii(α−グリコシド): [α]D −42.4°(c 0.88,CHCl3 )。Compound Ii (α-glycoside): [α] D -42.4 ° (c 0.88, CHCl 3 ).

【0032】 1H-NMR(CDCl3 ) δ:1.11(3H,d),1.32-1.40(2H,m) ,1.40-1.48(2H,m)
,1.56-1.68(2H,m) ,1.76(2H,m),3.43(1H,m),3.51
(2H,t),3.60(1H,m),3.66(1H,d) ,3.86(1H,q),3.93(1
H,dd) ,4.02(1H,dd) ,4.65(1H,d),4.67(1H,d),4.74
(1H,d),4.78(1H,d),4.81(1H,d),4.88(1H,d),4.98(1
H,d),7.24-7.41(15H,m)。
1 H-NMR (CDCl 3 ) δ: 1.11 (3H, d), 1.32-1.40 (2H, m), 1.40-1.48 (2H, m)
, 1.56-1.68 (2H, m), 1.76 (2H, m), 3.43 (1H, m), 3.51
(2H, t), 3.60 (1H, m), 3.66 (1H, d), 3.86 (1H, q), 3.93 (1
H, dd), 4.02 (1H, dd), 4.65 (1H, d), 4.67 (1H, d), 4.74
(1H, d), 4.78 (1H, d), 4.81 (1H, d), 4.88 (1H, d), 4.98 (1
H, d), 7.24-7.41 (15H, m).

【0033】化合物Ii(β−グリコシド): [α]D +8.8 °(c 1.29,CHCl3 )。Compound Ii (β-glycoside): [α] D + 8.8 ° (c 1.29, CHCl 3 ).

【0034】 1H-NMR(CDCl3 ) δ:1.17(3H,d),1.32-1.44(4H,m) ,1.58-1.68(2H,m)
,1.70-1.76(2H,m) ,3.44(1H,q),3.46(1H,m),3.49
(2H,t),3.51(1H,dd) ,3.55(1H,d),3.79(1H,dd) ,3.
93(1H,m),4.30(1H,d),4.70(1H,d),4.72(1H,d),4.77
(1H,d),4.79(1H,d),4.93(1H,d),4.98(1H,d),7.25-
7.37(15H,m)。
1 H-NMR (CDCl 3 ) δ: 1.17 (3H, d), 1.32-1.44 (4H, m), 1.58-1.68 (2H, m)
, 1.70-1.76 (2H, m), 3.44 (1H, q), 3.46 (1H, m), 3.49
(2H, t), 3.51 (1H, dd), 3.55 (1H, d), 3.79 (1H, dd), 3.
93 (1H, m), 4.30 (1H, d), 4.70 (1H, d), 4.72 (1H, d), 4.77
(1H, d), 4.79 (1H, d), 4.93 (1H, d), 4.98 (1H, d), 7.25
7.37 (15H, m).

【0035】実施例2 第3表に記載のように、D−グルコース誘導体3種類
(II−1〜3)とアルコール2種類(IXa〜b)を用
い、同表記載の反応条件下でグリコシル化反応を行い、
アルコールに対応するグリコシド2種類(IIa〜b)を
同表記載の収率及び立体選択性で得た。
Example 2 As shown in Table 3, three types of D-glucose derivatives (II-1 to 3) and two types of alcohol (IXa to b) were used and glycosylated under the reaction conditions shown in the same table. Carry out the reaction,
Two glycosides (IIa-b) corresponding to alcohols were obtained with the yield and stereoselectivity shown in the table.

【0036】[0036]

【表3】 [Table 3]

【0037】得られたグリコシド(IIa〜b)の物性値
は以下の通りである。
The physical properties of the obtained glycosides (IIa-b) are as follows.

【0038】化合物IIa(α−グリコシド): [α]D +60.6°(c 0.94,CHCl3 )。Compound IIa (α-glycoside): [α] D + 60.6 ° (c 0.94, CHCl 3 ).

【0039】 1H-NMR(CDCl3 ) δ:0.65(3H,s),0.80(3H,s),0.86(3H,d),0.87(3H,
d),0.90(3H,d),3.52(1H,m),3.54(1H,dd) ,3.61(1H,
dd) ,3.63(1H,dd) ,3.72(1H,dd) ,3.88(1H,ddd),3.
99(1H,t),4.46(1H,d),4.46(1H,d),4.60(1H,d),4.65
(1H,d),4.75(1H,d),4.80(1H,d),4.83(1H,d),4.93(1
H,d),5.00(1H,d),7.12-7.36(20H,m)。
1 H-NMR (CDCl 3 ) δ: 0.65 (3H, s), 0.80 (3H, s), 0.86 (3H, d), 0.87 (3H, s)
d), 0.90 (3H, d), 3.52 (1H, m), 3.54 (1H, dd), 3.61 (1H,
dd), 3.63 (1H, dd), 3.72 (1H, dd), 3.88 (1H, ddd), 3.
99 (1H, t), 4.46 (1H, d), 4.46 (1H, d), 4.60 (1H, d), 4.65
(1H, d), 4.75 (1H, d), 4.80 (1H, d), 4.83 (1H, d), 4.93 (1
H, d), 5.00 (1H, d), 7.12-7.36 (20H, m).

【0040】化合物IIa(β−グリコシド): [α]D +17.9°(c 0.91,CHCl3 )。Compound IIa (β-glycoside): [α] D + 17.9 ° (c 0.91, CHCl 3 ).

【0041】 1H-NMR(CDCl3 ) δ:0.65(3H,s),0.82(3H,s),0.86(3H,d),0.87(3H,
d),0.90(3H,d),3.43(1H,dd) ,3.45(1H,ddd),3.53(1
H,dd) ,3.62(1H,dd) ,3.65(1H,dd) ,3.66(1H,m),3.
74(1H,dd) ,4.51(1H,d),4.53(1H,d),4.55(1H,d),4.
60(1H,d),4.71(1H,d),4.77(1H,d),4.81(1H,d),4.91
(1H,d),4.96(1H,d),7.16-7.36(20H,m)。
1 H-NMR (CDCl 3 ) δ: 0.65 (3H, s), 0.82 (3H, s), 0.86 (3H, d), 0.87 (3H, s)
d), 0.90 (3H, d), 3.43 (1H, dd), 3.45 (1H, ddd), 3.53 (1
H, dd), 3.62 (1H, dd), 3.65 (1H, dd), 3.66 (1H, m), 3.
74 (1H, dd), 4.51 (1H, d), 4.53 (1H, d), 4.55 (1H, d), 4.
60 (1H, d), 4.71 (1H, d), 4.77 (1H, d), 4.81 (1H, d), 4.91
(1H, d), 4.96 (1H, d), 7.16-7.36 (20H, m).

【0042】化合物IIb(α−グリコシド): [α]D +29.5°(c 1.22,CHCl3 )。Compound IIb (α-glycoside): [α] D + 29.5 ° (c 1.22, CHCl 3 ).

【0043】 1H-NMR(CDCl3 ) δ:0.88(3H,t),1.20-1.38(26H,m),1.62(2H,m),3.42
(1H,m),3.55(1H,dd),3.61(1H,m),3.62(1H,dd) ,3.6
3(1H,dd) ,3.72(1H,dd) ,3.77(1H,ddd),3.99(1H,
t),4.46(1H,d),4.47(1H,d),4.61(1H,d),4.65(1H,
d),4.75(1H,d),4.78(1H,d),4.81(1H,d),4.83(1H,
d),4.99(1H,d),7.11-7.36(20H,m)。
1 H-NMR (CDCl 3 ) δ: 0.88 (3H, t), 1.20-1.38 (26H, m), 1.62 (2H, m), 3.42
(1H, m), 3.55 (1H, dd), 3.61 (1H, m), 3.62 (1H, dd), 3.6
3 (1H, dd), 3.72 (1H, dd), 3.77 (1H, ddd), 3.99 (1H,
t), 4.46 (1H, d), 4.47 (1H, d), 4.61 (1H, d), 4.65 (1H,
d), 4.75 (1H, d), 4.78 (1H, d), 4.81 (1H, d), 4.83 (1H,
d), 4.99 (1H, d), 7.11-7.36 (20H, m).

【0044】化合物IIb(β−グリコシド): [α]D +4.4 °(c 1.46,CHCl3 )。Compound IIb (β-glycoside): [α] D + 4.4 ° (c 1.46, CHCl 3 ).

【0045】 1H-NMR(CDCl3 ) δ:0.88(3H,t),1.18-1.44(26H,m),1.60-1.71(2H,m)
,3.45(1H,dd) ,3.46(1H,ddd),3.56(1H,m),3.57(1
H,dd) ,3.64(1H,t),3.67(1H,dd) ,3.74(1H,dd) ,3.
96(1H,m),4.40(1H,d),4.52(1H,d),4.56(1H,d),4.62
(1H,d),4.72(1H,d),4.79(1H,d),4.81(1H,d),4.93(1
H,d),4.96(1H,d),4.96(1H,d),7.14-7.35(20H,m)。
1 H-NMR (CDCl 3 ) δ: 0.88 (3H, t), 1.18-1.44 (26H, m), 1.60-1.71 (2H, m)
, 3.45 (1H, dd), 3.46 (1H, ddd), 3.56 (1H, m), 3.57 (1
H, dd), 3.64 (1H, t), 3.67 (1H, dd), 3.74 (1H, dd), 3.
96 (1H, m), 4.40 (1H, d), 4.52 (1H, d), 4.56 (1H, d), 4.62
(1H, d), 4.72 (1H, d), 4.79 (1H, d), 4.81 (1H, d), 4.93 (1
H, d), 4.96 (1H, d), 4.96 (1H, d), 7.14-7.35 (20H, m).

【0046】実施例3 第4表に記載のように、D−マンノース誘導体2種類
(III −1〜2)とアルコール5種類(IXd〜h)を用
い、同表記載の反応条件下でグリコシル化反応を行い、
アルコールに対応するグリコシド5種類(III d〜h)
を同表記載の収率及び立体選択性で得た。
Example 3 As shown in Table 4, two types of D-mannose derivatives (III-1 to 2) and five types of alcohol (IXd to h) were used and glycosylated under the reaction conditions shown in the same table. Carry out the reaction,
Five glycosides corresponding to alcohol (III d to h)
Was obtained with the yield and stereoselectivity shown in the table.

【0047】[0047]

【表4】 [Table 4]

【0048】得られたグリコシド(III d〜h)の物性
値は以下の通りである。
The physical properties of the obtained glycosides (III d to h) are as follows.

【0049】化合物III d(α−グリコシド): [α]D +21.1°(c 1.48,CHCl3 )。Compound III d (α-glycoside): [α] D + 21.1 ° (c 1.48, CHCl 3 ).

【0050】 1H-NMR(CDCl3 ) δ:1.27(8H,s),1.51-1.52(2H,m) ,1.59-1.62(2H,m)
,2.29(2H,t),3.34(1H,dt) ,3.37(1H,dt) ,3.66(3
H,s),3.67-3.80(4H,m) ,3.90(1H,dd) ,3.98(1H,dd)
,4.50(1H,d),4.55(1H,d),4.63(2H,s),4.66(1H,
d),4.72(1H,d),4.76(1H,d),4.85(1H,d),4.87(1H,
d),7.15-7.17(2H,m) ,7.23-7.38(18H,m)。
1 H-NMR (CDCl 3 ) δ: 1.27 (8H, s), 1.51-1.52 (2H, m), 1.59-1.62 (2H, m)
, 2.29 (2H, t), 3.34 (1H, dt), 3.37 (1H, dt), 3.66 (3
H, s), 3.67-3.80 (4H, m), 3.90 (1H, dd), 3.98 (1H, dd)
, 4.50 (1H, d), 4.55 (1H, d), 4.63 (2H, s), 4.66 (1H,
d), 4.72 (1H, d), 4.76 (1H, d), 4.85 (1H, d), 4.87 (1H,
d), 7.15-7.17 (2H, m), 7.23-7.38 (18H, m).

【0051】化合物III e(α−グリコシド): [α]D +20.7°(c 1.13,CHCl3 )。Compound III e (α-glycoside): [α] D + 20.7 ° (c 1.13, CHCl 3 ).

【0052】 1H-NMR(CDCl3 ) δ:1.31(8H,s),1.48-1.51(2H,m) ,1.65-1.67(2H,m)
,3.33(1H,dt) ,3.63(1H,dt) ,3.66(2H,t),3.71-3.
80(4H,m) ,3.90(1H,dd) ,3.98(1H,dd) ,4.50(1H,
d),4.54(1H,d),4.63(2H,s),4.66(1H,d),4.71(1H,
d),4.75(1H,d),4.85(1H,d),4.87(1H,d),7.15-7.17
(2H,m) ,7.22-7.38(18H,m),7.69(2H,d),7.83(2H,
d)。
1 H-NMR (CDCl 3 ) δ: 1.31 (8H, s), 1.48-1.51 (2H, m), 1.65-1.67 (2H, m)
, 3.33 (1H, dt), 3.63 (1H, dt), 3.66 (2H, t), 3.71-3.
80 (4H, m), 3.90 (1H, dd), 3.98 (1H, dd), 4.50 (1H,
d), 4.54 (1H, d), 4.63 (2H, s), 4.66 (1H, d), 4.71 (1H,
d), 4.75 (1H, d), 4.85 (1H, d), 4.87 (1H, d), 7.15-7.17
(2H, m), 7.22-7.38 (18H, m), 7.69 (2H, d), 7.83 (2H,
d).

【0053】化合物III f(α−グリコシド): 1 H-NMR(CDCl3 ) δ:0.84-0.91(2H,m) ,1.12-1.26(3H,m) ,1.47-1.70
(6H,m) ,3.15(1H,dd),3.45(1H,dd) ,3.71-3.79(3H,
m) ,3.89(1H,dd),3.97(1H,t),4.51(1H,d),4.55(1H,
d),4.62(1H,d),4.65(1H,d),4.66(1H,d),4.70(1H,
d),4.75(1H,d),4.81(1H,d),4.87(1H,d),7.16-7.18
(2H,m) ,7.23-7.38(18H,m)。
Compound III f (α-glycoside): 1 H-NMR (CDCl 3 ) δ: 0.84-0.91 (2H, m), 1.12-1.26 (3H, m), 1.47-1.70
(6H, m), 3.15 (1H, dd), 3.45 (1H, dd), 3.71-3.79 (3H,
m), 3.89 (1H, dd), 3.97 (1H, t), 4.51 (1H, d), 4.55 (1H,
d), 4.62 (1H, d), 4.65 (1H, d), 4.66 (1H, d), 4.70 (1H,
d), 4.75 (1H, d), 4.81 (1H, d), 4.87 (1H, d), 7.16-7.18
(2H, m), 7.23-7.38 (18H, m).

【0054】化合物III g(α−グリコシド): 1 H-NMR(CDCl3 ) δ:1.45-1.73(8H,m) ,3.69-3.74(2H,m) ,3.78-3.82
(2H,m) ,3.90(1H,dd),3.98(1H,dd) ,4.16-4.18(1H,
m) ,4.35(1H,d),4.54(1H,d),4.63(2H,s),4.67(1H,
d),4.70(1H,d),4.82(1H,d),4.87(1Hz,d) ,4.90(1H,
d),7.16-7.19(2H,m) ,7.24-7.38(18H,m)。
Compound III g (α-glycoside): 1 H-NMR (CDCl 3 ) δ: 1.45-1.73 (8H, m), 3.69-3.74 (2H, m), 3.78-3.82
(2H, m), 3.90 (1H, dd), 3.98 (1H, dd), 4.16-4.18 (1H,
m), 4.35 (1H, d), 4.54 (1H, d), 4.63 (2H, s), 4.67 (1H,
d), 4.70 (1H, d), 4.82 (1H, d), 4.87 (1Hz, d), 4.90 (1H,
d), 7.16-7.19 (2H, m), 7.24-7.38 (18H, m).

【0055】化合物III h(α−グリコシド): 1 H-NMR(CDCl3 ) δ:0.72(3H,d),0.75(3H,d),0.86(3H,d),0.90(3H,
d),1.68-1.81(1H,m) ,3.01(1H,t),3.69(1H,dd) ,3.
76(1H,dd) ,3.81(1H,dd) ,3.88(1H,dd) ,4.05(1H,d
d) ,4.50(1H,d),4.52(1H,d),4.62(1H,d),4.67(1H,
d),4.69(1H,d),4.73(1H,d),4.83(1H,d),4.88(1H,
d),7.15-7.46(20H,m)。
Compound III h (α-glycoside): 1 H-NMR (CDCl 3 ) δ: 0.72 (3H, d), 0.75 (3H, d), 0.86 (3H, d), 0.90 (3H,
d), 1.68-1.81 (1H, m), 3.01 (1H, t), 3.69 (1H, dd), 3.
76 (1H, dd), 3.81 (1H, dd), 3.88 (1H, dd), 4.05 (1H, d
d), 4.50 (1H, d), 4.52 (1H, d), 4.62 (1H, d), 4.67 (1H,
d), 4.69 (1H, d), 4.73 (1H, d), 4.83 (1H, d), 4.88 (1H,
d), 7.15-7.46 (20H, m).

【0056】実施例4 第5表に記載のように、D−ガラクトース誘導体(IV−
1)とアルコール(IXa)を用い、同表記載の反応条件
下でグリコシル化反応を行い、アルコールに対応するグ
リコシド(IVa)を同表記載の収率及び立体選択性で得
た。
Example 4 As shown in Table 5, the D-galactose derivative (IV-
Glycosylation reaction was carried out using 1) and alcohol (IXa) under the reaction conditions shown in the same table to obtain glycoside (IVa) corresponding to alcohol in the yield and stereoselectivity shown in the same table.

【0057】[0057]

【表5】 [Table 5]

【0058】得られたグリコシド(IVa)の物性値は以
下の通りである。
The physical properties of the obtained glycoside (IVa) are as follows.

【0059】化合物IVa(α−グリコシド): 1 H-NMR(CDCl3 ) δ:0.65(3H,s),0.80(3H,s),0.87(3H,d),0.87(3H,
d),3.48-3.68(4H,m) ,3.93-4.07(3H,m) ,4.41(1H,
d),4.49(1H,d),4.57(1H,d),4.68(1H,d),4.73(1H,
d),4.79(1H,d),4.86(1H,d),4.96(1H,d),4.99(1H,
d),7.24-7.40(20H,m)。
Compound IVa (α-glycoside): 1 H-NMR (CDCl 3 ) δ: 0.65 (3H, s), 0.80 (3H, s), 0.87 (3H, d), 0.87 (3H,
d), 3.48-3.68 (4H, m), 3.93-4.07 (3H, m), 4.41 (1H,
d), 4.49 (1H, d), 4.57 (1H, d), 4.68 (1H, d), 4.73 (1H,
d), 4.79 (1H, d), 4.86 (1H, d), 4.96 (1H, d), 4.99 (1H,
d), 7.24-7.40 (20H, m).

【0060】化合物IVa(β−グリコシド): 1 H-NMR(CDCl3 ) δ:0.64(3H,s),0.80(3H,s),0.86(3H,d),0.86(3H,
d),3.48-3.58(4H,m) ,3.79(1H,dd) ,3.86(1H,d),4.
41(1H,d),4.44(1H,d),4.46(1H,d),4.61(1H,d),4.70
(1H,d),4.70(1H,d),4.75(1H,d),4.75(1H,d),4.92(1
H,d),4.94(1H,d),7.24-7.38(20H,m)。
Compound IVa (β-glycoside): 1 H-NMR (CDCl 3 ) δ: 0.64 (3H, s), 0.80 (3H, s), 0.86 (3H, d), 0.86 (3H,
d), 3.48-3.58 (4H, m), 3.79 (1H, dd), 3.86 (1H, d), 4.
41 (1H, d), 4.44 (1H, d), 4.46 (1H, d), 4.61 (1H, d), 4.70
(1H, d), 4.70 (1H, d), 4.75 (1H, d), 4.75 (1H, d), 4.92 (1
H, d), 4.94 (1H, d), 7.24-7.38 (20H, m).

【0061】実施例5 第6表に記載のように、D−キシロース誘導体(V−
1)とアルコール(IXa)を用い、同表記載の反応条件
下でグリコシル化反応を行い、アルコールに対応するグ
リコシド(Va)を同表記載の収率及び立体選択性で得
た。
Example 5 As shown in Table 6, the D-xylose derivative (V-
Glycosylation reaction was performed using 1) and alcohol (IXa) under the reaction conditions shown in the same table, and glycoside (Va) corresponding to alcohol was obtained with the yield and stereoselectivity shown in the same table.

【0062】[0062]

【表6】 [Table 6]

【0063】得られたグリコシド(Va)の物性値は以
下の通りである。
The physical properties of the obtained glycoside (Va) are as follows.

【0064】化合物Va(α−グリコシド): 1 H-NMR(CDCl3 ) δ:0.65(3H,s),0.82(3H,s),0.86(3H,s),0.90(3H,
d),3.43(1H,dd) ,3.55-3.63(4H,m) ,3.91(1H,t),4.
62(1H,d),4.65(1H,d),4.75(1H,d),4.76(1H,d),4.82
(1H,d),4.86(1H,d),4.94(1H,d),7.26-7.38(20H,m)。
Compound Va (α-glycoside): 1 H-NMR (CDCl 3 ) δ: 0.65 (3H, s), 0.82 (3H, s), 0.86 (3H, s), 0.90 (3H,
d), 3.43 (1H, dd), 3.55-3.63 (4H, m), 3.91 (1H, t), 4.
62 (1H, d), 4.65 (1H, d), 4.75 (1H, d), 4.76 (1H, d), 4.82
(1H, d), 4.86 (1H, d), 4.94 (1H, d), 7.26-7.38 (20H, m).

【0065】化合物Va(β−グリコシド): 1 H-NMR(CDCl3 ) δ:0.64(3H,s),0.81(3H,s),0.86(3H,d),0.86(3H,
d),0.90(3H,d),3.17(1H,dd) ,3.34(1H,dd) ,3.52-
3.61(3H,m) ,3.89(1H,dd) ,4.45(1H,d),4.61(1H,
d),4.70(1H,d),4.72(1H,d),4.87(1H,d),4.90(1H,
d),4.92(1H,d),7.26-7.36(20H,m)。
Compound Va (β-glycoside): 1 H-NMR (CDCl 3 ) δ: 0.64 (3H, s), 0.81 (3H, s), 0.86 (3H, d), 0.86 (3H,
d), 0.90 (3H, d), 3.17 (1H, dd), 3.34 (1H, dd), 3.52-
3.61 (3H, m), 3.89 (1H, dd), 4.45 (1H, d), 4.61 (1H,
d), 4.70 (1H, d), 4.72 (1H, d), 4.87 (1H, d), 4.90 (1H, d)
d), 4.92 (1H, d), 7.26-7.36 (20H, m).

【0066】実施例6 第7表に記載のように、シアル酸誘導体(VI−1)とア
ルコール(IXc)を用い、同表記載の反応条件下でグリ
コシル化反応を行い、アルコールに対応するグリコシド
(VIc)を同表記載の収率及び立体選択性で得た。
Example 6 As shown in Table 7, a sialic acid derivative (VI-1) and an alcohol (IXc) were used to carry out a glycosylation reaction under the reaction conditions shown in the same table to give a glycoside corresponding to the alcohol. (VIc) was obtained with the yield and stereoselectivity shown in the table.

【0067】[0067]

【表7】 [Table 7]

【0068】得られたグリコシド(VIc)の物性値は以
下の通りである。
The physical properties of the obtained glycoside (VIc) are as follows.

【0069】化合物VIc(α−グリコシド): [α]D −16.2°(c 1.00,CHCl3 )。Compound VIc (α-glycoside): [α] D -16.2 ° (c 1.00, CHCl 3 ).

【0070】 1H-NMR(CDCl3 ) δ:1.20-1.40(8H,m) ,1.50-1.64(4H,m) ,1.88(3H,
s),1.95(1H,dd) ,2.03(3H,s),2.05(3H,s),2.14(3H,
s),2.15(3H,s),2.58(1H,dd) ,3.21(1H,dt) ,3.26(2
H,t),3.75(1H,dt) ,3.80(3H,s),4.06(1H,ddd),4.08
(1H,dd) ,4.10(1H,dd) ,4.31(1H,dd) ,4.84(1H,dd
d),5.11(1H,d),5.33(1H,dd) ,5.40(1H,ddd)。
1 H-NMR (CDCl 3 ) δ: 1.20-1.40 (8H, m), 1.50-1.64 (4H, m), 1.88 (3H, m
s), 1.95 (1H, dd), 2.03 (3H, s), 2.05 (3H, s), 2.14 (3H,
s), 2.15 (3H, s), 2.58 (1H, dd), 3.21 (1H, dt), 3.26 (2
H, t), 3.75 (1H, dt), 3.80 (3H, s), 4.06 (1H, ddd), 4.08
(1H, dd), 4.10 (1H, dd), 4.31 (1H, dd), 4.84 (1H, dd
d), 5.11 (1H, d), 5.33 (1H, dd), 5.40 (1H, ddd).

【0071】化合物VIc(β−グリコシド): [α]D −11.5°(c 1.01,CHCl3 )。Compound VIc (β-glycoside): [α] D -11.5 ° (c 1.01, CHCl 3 ).

【0072】 1H-NMR(CDCl3 ) δ:1.26-1.42(8H,m) ,1.51-1.65(4H,m) ,1.86(1H,d
d) ,1.88(3H,s),2.02(3H,s),2.03(3H,s),2.07(3H,
s),2.14(3H,s),2.46(1H,dd) ,3.27(2H,t),3.31(1H,
dt) ,3.47(1H,dt) ,3.80(3H,s),3.92(1H,dd) ,4.11
(1H,ddd),4.12(1H,dd) ,4.80(1H,dd) ,5.19(1H,dd
d),5.23(1H,d),5.25(1H,ddd),5.39(1H,dd) 。
1 H-NMR (CDCl 3 ) δ: 1.26-1.42 (8H, m), 1.51-1.65 (4H, m), 1.86 (1H, d
d), 1.88 (3H, s), 2.02 (3H, s), 2.03 (3H, s), 2.07 (3H,
s), 2.14 (3H, s), 2.46 (1H, dd), 3.27 (2H, t), 3.31 (1H,
dt), 3.47 (1H, dt), 3.80 (3H, s), 3.92 (1H, dd), 4.11
(1H, ddd), 4.12 (1H, dd), 4.80 (1H, dd), 5.19 (1H, dd
d), 5.23 (1H, d), 5.25 (1H, ddd), 5.39 (1H, dd).

【0073】実施例7 第8表に記載のように、D−ガラクトサミン誘導体(VI
I −2)とアルコール(IXa)を用い、同表記載の反応
条件下でグリコシル化反応を行い、アルコールに対応す
るグリコシド(VII a)を同表記載の収率及び立体選択
性で得た。
Example 7 As described in Table 8, D-galactosamine derivative (VI
Using I-2) and alcohol (IXa), a glycosylation reaction was carried out under the reaction conditions shown in the same table, and a glycoside (VIIa) corresponding to the alcohol was obtained in the yield and stereoselectivity shown in the same table.

【0074】[0074]

【表8】 [Table 8]

【0075】得られたグリコシド(VII a)の物性値は
以下の通りである。
The physical properties of the obtained glycoside (VIIa) are as follows.

【0076】化合物VII a(α−グリコシド): [α]D +75.6°(c 0.99,CHCl3 )。Compound VIIa (α-glycoside): [α] D + 75.6 ° (c 0.99, CHCl 3 ).

【0077】 1H-NMR(CDCl3 ) δ:0.65(3H,s),0.82(3H,s),0.86(3H,d),0.86(3H,
d),0.90(3H,d),1.97(3H,s),2.04(3H,s),2.16(3H,
s),3.54(1H,m),4.06(1H,dd) ,4.12(1H,dd) ,4.25(1
H,ddd),4.28(1H,dd) ,4.65(1H,d),4.80(1H,d),5.04
(1H,d),5.08(1H,d),5.15(1H,dd) ,5.38(1H,d)。
1 H-NMR (CDCl 3 ) δ: 0.65 (3H, s), 0.82 (3H, s), 0.86 (3H, d), 0.86 (3H,
d), 0.90 (3H, d), 1.97 (3H, s), 2.04 (3H, s), 2.16 (3H,
s), 3.54 (1H, m), 4.06 (1H, dd), 4.12 (1H, dd), 4.25 (1
H, ddd), 4.28 (1H, dd), 4.65 (1H, d), 4.80 (1H, d), 5.04
(1H, d), 5.08 (1H, d), 5.15 (1H, dd), 5.38 (1H, d).

【0078】実施例8 第9表に記載のように、D−グルコサミン誘導体(VIII
−2)とアルコール(IXa)を用い、同表記載の反応条
件下でグリコシル化反応を行い、アルコールに対応する
グリコシド(VIIIa)を同表記載の収率及び立体選択性
で得た。
Example 8 As shown in Table 9, D-glucosamine derivatives (VIII
-2) and alcohol (IXa) were subjected to glycosylation reaction under the reaction conditions shown in the same table to obtain glycoside (VIIIa) corresponding to the alcohol in the yield and stereoselectivity shown in the same table.

【0079】[0079]

【表9】 [Table 9]

【0080】得られたグリコシド(VIIIa)の物性値は
以下の通りである。
The physical properties of the obtained glycoside (VIIIa) are as follows.

【0081】化合物VIIIa(α−グリコシド): [α]D +79.1°(c 0.43,CHCl3 )。Compound VIIIa (α-glycoside): [α] D + 79.1 ° (c 0.43, CHCl 3 ).

【0082】 1H-NMR(CDCl3 ) δ:0.65(3H,s),0.82(3H,s),0.86(3H,d),0.86(3H,
d),0.90(3H,d),2.00(3H,s),2.03(3H,s),2.09(3H,
s),3.54(1H,m),4.02(1H,ddd),4.05-4.12(2H,m),4.2
3(1H,dd) ,4.66(1H,d),4.78(1H,d),5.01(1H,d),5.0
8(1H,t),5.19(1H,d),5.24(1H,t)。
1 H-NMR (CDCl 3 ) δ: 0.65 (3H, s), 0.82 (3H, s), 0.86 (3H, d), 0.86 (3H, s)
d), 0.90 (3H, d), 2.00 (3H, s), 2.03 (3H, s), 2.09 (3H,
s), 3.54 (1H, m), 4.02 (1H, ddd), 4.05-4.12 (2H, m), 4.2
3 (1H, dd), 4.66 (1H, d), 4.78 (1H, d), 5.01 (1H, d), 5.0
8 (1H, t), 5.19 (1H, d), 5.24 (1H, t).

【0083】[0083]

【発明の効果】本発明により、従来から直接の糖供与体
として使用することが困難とされてきたアシルグリコシ
ド又はアルキル若しくはアリールグリコシドを特定の温
和な条件下で特異的にグリコシル化せしめることが可能
となった。
INDUSTRIAL APPLICABILITY According to the present invention, an acyl glycoside or an alkyl or aryl glycoside, which has been conventionally difficult to use as a direct sugar donor, can be specifically glycosylated under a specific mild condition. Became.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(I)又は下記一般式(II)
によって示されるアシルグリコシド又はアルキル若しく
はアリールグリコシドに下記一般式(III )によって示
されるアルコールを反応せしめて下記一般式(IV)によ
って示されるグリコシル誘導体を製造するに当り、反応
の活性化剤として下記一般式(V)によって示される置
換シリルハライドとトリフルオロメタンスルホン酸金属
塩とを併用することを特徴とするグリコシル誘導体の製
法。 【化1】
1. The following general formula (I) or the following general formula (II)
In producing a glycosyl derivative represented by the following general formula (IV) by reacting an acyl glycoside represented by or an alkyl or aryl glycoside with an alcohol represented by the following general formula (III), the following general activator is used as an activator of the reaction. A method for producing a glycosyl derivative, which comprises using a substituted silyl halide represented by the formula (V) in combination with a metal salt of trifluoromethanesulfonic acid. [Chemical 1]
【請求項2】 置換シリルハライドがトリメチルシリル
クロライド又はトリメチルシリルブロマイドであり、そ
してトリフルオロメタンスルホン酸金属塩がトリフルオ
ロメタンスルホン酸銅(II)、トリフルオロメタンスル
ホン酸亜鉛(II)又はトリフルオロメタンスルホン酸ス
ズ(II)である請求項1記載のグリコシル誘導体の製
法。
2. The substituted silyl halide is trimethylsilyl chloride or trimethylsilyl bromide, and the metal salt of trifluoromethanesulfonic acid is copper (II) trifluoromethanesulfonate, zinc (II) trifluoromethanesulfonate or tin (II) trifluoromethanesulfonate. ) Is a glycosyl derivative according to claim 1.
JP32479391A 1991-12-09 1991-12-09 Method for producing glycosyl derivative Expired - Lifetime JPH07110871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32479391A JPH07110871B2 (en) 1991-12-09 1991-12-09 Method for producing glycosyl derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32479391A JPH07110871B2 (en) 1991-12-09 1991-12-09 Method for producing glycosyl derivative

Publications (2)

Publication Number Publication Date
JPH05155894A true JPH05155894A (en) 1993-06-22
JPH07110871B2 JPH07110871B2 (en) 1995-11-29

Family

ID=18169747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32479391A Expired - Lifetime JPH07110871B2 (en) 1991-12-09 1991-12-09 Method for producing glycosyl derivative

Country Status (1)

Country Link
JP (1) JPH07110871B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100676484B1 (en) * 2005-04-12 2007-02-02 재단법인서울대학교산학협력재단 2?O?iodoacetylglycosyl iodide derivatives, process for preparing the same, and process for preparing precursor of 1?2?linked 1,2?trans glycosides using the same
JP2007238502A (en) * 2006-03-08 2007-09-20 Noguchi Inst Trehalose derivative and method for producing the same
JP2007238501A (en) * 2006-03-08 2007-09-20 Noguchi Inst Method for producing fructofuranoside derivative and non-reductive disaccharide fructofuranoside derivative

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100676484B1 (en) * 2005-04-12 2007-02-02 재단법인서울대학교산학협력재단 2?O?iodoacetylglycosyl iodide derivatives, process for preparing the same, and process for preparing precursor of 1?2?linked 1,2?trans glycosides using the same
JP2007238502A (en) * 2006-03-08 2007-09-20 Noguchi Inst Trehalose derivative and method for producing the same
JP2007238501A (en) * 2006-03-08 2007-09-20 Noguchi Inst Method for producing fructofuranoside derivative and non-reductive disaccharide fructofuranoside derivative

Also Published As

Publication number Publication date
JPH07110871B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
US8049002B2 (en) Processes for chemical synthesis of lipochitooligosaccharides
Ogura et al. Syntheses of 2-O-glycosyl derivatives of N-acetyl-d-neuraminic acid
AU2009329067A1 (en) Process for the synthesis of L-fucosyl di- or oligosaccharides and novel 2,3,4 tribenzyl-fucosyl derivatives intermediates thereof
JPH05155894A (en) Production of glycosyl derivative
EP0389110B1 (en) Process for the preparation of 2&#39;-deoxy-5-trifluoromethyl-beta-uridine
US6960654B2 (en) Method of forming glycosidic bonds from thioglycosides using an N,N-dialkylsulfinamide
US6891036B2 (en) Process for the preparation of ribofuranose derivatives
US5696246A (en) Process for the specific synthesis of β-glycosidically linked N-acetylpyranoside derivatives
Rachaman et al. The use of 1-O-sulfonyl-d-mannopyranose derivatives in β-d-mannopyranoside synthesis
US5006646A (en) Process for preparing 2&#39;-deoxy-5-trifluoromethyl-beta-uridine
US5262531A (en) Process for preparing 2&#39;-deoxy-β-adenosine
US8524873B2 (en) Sugar donor
KR100211750B1 (en) New and improved solvent-free synthesis of ethereally substituted blocked monosaccharides and the selective hydrolysis thereof
CA1269660A (en) Process for the preparation of glycosyl fluorides protected on the oxygen
Knoben et al. Synthesis of N-unsubstituted, mono-and disubstituted carbohydrate-1-O-carbamates and their behaviour in glycoside syntheses
US6620921B1 (en) Glucofuranoses
US5679787A (en) Process for isomerization of compound of aldose structure into compound of ketose structure, and isomerization agent or accelerator used therein
US5712387A (en) High yield stereospecific mannosylation
EP0373919B1 (en) Process for the preparation of 2&#39;-deoxy-beta-adenosine
US5126500A (en) Preparation of retinyl glycosides and intermediates therefor
US6376662B1 (en) Method for synthesizing C-glycosides of ulosonic acids
Copeland et al. The reaction of N-dichloromethylene-N, N-dialkylammonium chlorides with free sugars: an efficient synthesis of glycosyl chlorides
US6175005B1 (en) Process for the preparation of cyclic ethers containing an o-silylated hydroxyl group
US20060293250A1 (en) Crystalline sugar compositions and method of making
US4855417A (en) Anomeric deacetylation