JPH05155646A - Hydraulic-material formed body - Google Patents

Hydraulic-material formed body

Info

Publication number
JPH05155646A
JPH05155646A JP32071991A JP32071991A JPH05155646A JP H05155646 A JPH05155646 A JP H05155646A JP 32071991 A JP32071991 A JP 32071991A JP 32071991 A JP32071991 A JP 32071991A JP H05155646 A JPH05155646 A JP H05155646A
Authority
JP
Japan
Prior art keywords
group
polyolefin
thin film
silane
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32071991A
Other languages
Japanese (ja)
Inventor
Masatoshi Horiguchi
昌利 堀口
Toyoji Matsunaga
豊治 松永
Teruyuki Sato
輝行 佐藤
Norihide Arai
範英 新井
Kazuhiko Hiromoto
和彦 広本
Yoshimasa Ishimura
善正 石村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP32071991A priority Critical patent/JPH05155646A/en
Publication of JPH05155646A publication Critical patent/JPH05155646A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/10Treatment for enhancing the mixability with the mortar

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To improve the breaking strength by forming the thin film of a silane compd. shown by a specified formula on the surface of a polyolefin into which a reactive functional group is introduced by irradiation of radioactive rays, etc. CONSTITUTION:A reactive functional group is partially introduced into the surface of polyolefin by irradiation of radioactive rays, corona discharge, etc. The modified polyolefin is then treated with a 100-0.01wt.% soln. of a silane compd. shown by formula I (n=0 to 2, R<1> is a 1-6C hydrocarbon, a 1-6C org. group contg. amino, mercapto, epoxy, methacryloxyl, alkoxyl and halogen and H, and R<2> is 1-6C hydrocarbon, acyl and H), and a silane thin film is formed. A silica coating film is formed by using 0.01-100 pts.wt. of the partial hydrolyzate of alkoxysilane shown by formula II (n=0.1 and R<3> is a 1-6C hydrocarbon) or 0.01-100 pts.wt. of silica sol. The obtained material is cut, the cuttings are added with a hydraulic material, cast into a die and cured, thus the objective reinforced hydraulic-material formed body is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、曲げ強度等の強い成形
性に富む水硬性物質成形体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic material molded product having a high moldability such as bending strength.

【0002】[0002]

【従来の技術】水硬性物質成形体の補強材としては、数
多くの繊維が使用されており、材質で分類すると、金属
系ではスチールファイバー等、無機質系では、ガラス繊
維、カーボンファイバー、ロックウール、石綿(アスベ
スト)などが知られている。また、有機質系としては、
アラミド、ポリプロピレン、ポリエチレン、アクリル、
ポリビニルアルコール等が知られている。
2. Description of the Related Art A large number of fibers are used as a reinforcing material for a hydraulic material molded product. When classified by material, steel fibers and the like are used for metals, and glass fibers, carbon fibers, rock wool, and inorganic fibers for metals. Asbestos is known. Also, as an organic system,
Aramid, polypropylene, polyethylene, acrylic,
Polyvinyl alcohol and the like are known.

【0003】アスベストは、石綿スレート、石綿パイ
プ、高圧石綿管、パルプセメント板、石綿製品(紡織
品、ジョイントシート、石綿紙、摩擦材など)、ビニル
タイル等に数多く使用されており、その中でも特に建材
関連の製品に多量使用されている。各種建材製品は、通
常、抄造法、押し出し法になどによって製造されてい
る。また、左官用モルタルの作業性向上の目的で、現場
でアスベストが使用されている。アスベストは、乾式
法、湿式法を問わず混和性に優れ、経済的に安価である
ことから建材分野で多量に用いられている。また、アス
ベストは、水やセメントなど水硬性物質に親和性、混和
性に富み、その製品は、アスベストを混入しない製品に
比して軽量化できるだけでなく、破壊強度が向上し、脆
性も大幅に改良されるなど優れた水硬性物質成形体の補
強材である。
Asbestos is widely used in asbestos slates, asbestos pipes, high-pressure asbestos pipes, pulp cement boards, asbestos products (textile products, joint sheets, asbestos paper, friction materials, etc.), vinyl tiles and the like, and among them, building materials in particular. Used extensively in related products. Various building material products are usually manufactured by a papermaking method, an extrusion method, or the like. Also, asbestos is used in the field to improve the workability of plastering mortar. Asbestos is used in large amounts in the construction material field because it has excellent miscibility regardless of the dry method or the wet method and is economically inexpensive. In addition, asbestos is highly compatible with and miscible with hydraulic substances such as water and cement, and its products are not only lighter in weight than products without asbestos, but also have improved fracture strength and significantly brittleness. It is a reinforcing material for an improved hydraulic material molded body.

【0004】しかしながら、近年アスベストは人体の健
康に対し、きわめて有害であるとされ、わが国において
も関係官庁の行政指導、石綿セメントメーカー(スレー
ト協会)の自主規制により、建材、建設、セメント製品
製造分野においてアスベストを使用しない方針がだされ
た。また、アスベスト資源の枯渇の問題があり、アスベ
ストに代わる水硬性物質成形体の補強材の開発が必要と
なった。アスベストに代わる補強材として、有機合成繊
維、無機繊維、天然繊維等が提案されているが、それぞ
れ一長一短があり、アスベストに代わる補強材というに
は問題がある。
However, in recent years, asbestos is said to be extremely harmful to human health, and in Japan, construction materials, construction, and cement product manufacturing fields are subject to administrative guidance from relevant government agencies and voluntary regulations of asbestos cement manufacturers (Slate Association). There was a policy not to use asbestos in. In addition, there is a problem of exhaustion of asbestos resources, and it has become necessary to develop a reinforcing material for a hydraulic material molded body that replaces asbestos. Organic synthetic fibers, inorganic fibers, natural fibers and the like have been proposed as reinforcing materials to replace asbestos, but each has its advantages and disadvantages, and there are problems with reinforcing materials to replace asbestos.

【0005】[0005]

【発明が解決しようとする課題】ポリオレフィンは、極
性が小さく表面エネルギーが高いために疎水性物質であ
り、補強水硬性物質成形体を製造する際に、補強材とし
て用いるポリオレフィンをそのまま使用しても製造性が
悪く、水硬性物質との付着力が弱く、補強材としての充
分な効果は期待できない。本発明は、補強成形体を製造
する際、耐アルカリ性に優れ、発錆性がなく、安価なポ
リオレフィンの親水性を向上し、水硬性物質との付着性
を向上させた、ポリオレフィンを用いることにより、補
強水硬性物質成形体を製造することを意図したものであ
る。
Polyolefin is a hydrophobic substance due to its small polarity and high surface energy. Even when the polyolefin used as a reinforcing material is used as it is when producing a reinforced hydraulic substance molded body. The manufacturability is poor and the adhesive force with the hydraulic material is weak, so a sufficient effect as a reinforcing material cannot be expected. The present invention, when producing a reinforced molded article, has excellent alkali resistance, does not have rusting properties, improves the hydrophilicity of an inexpensive polyolefin, and improves the adhesiveness with a hydraulic substance, by using a polyolefin. It is intended to produce a reinforced hydraulic material molded body.

【0006】[0006]

【課題を解決するための手段】本発明者らは、有機物質
の中でも特に、耐熱性に優れ、化学的に安定であり、か
つ安価であるポリオレフィンに着目した。しかしなが
ら、ポリオレフィンは、疎水性であり水硬性物質に対す
る付着性が乏しいために、充分な補強効果は期待できな
い。そこで、本発明者らは、ポリオレフィンに親水性、
水硬性物質に対する付着性を向上させ、補強水硬性物質
成形体に補強材として用いることに着眼した。
Among the organic substances, the present inventors have paid attention to polyolefins which are excellent in heat resistance, chemically stable, and inexpensive. However, since polyolefin is hydrophobic and has poor adhesion to hydraulic substances, a sufficient reinforcing effect cannot be expected. Therefore, the present inventors have found that the polyolefin is hydrophilic,
The inventors focused on improving the adhesion to hydraulic substances and using it as a reinforcing material in a reinforced hydraulic substance molded body.

【0007】その方法とは、ポリオレフィン表面に放射
線照射処理、コロナ放電処理などを用いて部分的に反応
性官能基を導入し、下記一般式(1)で示されるシラン
化合物を、部分的に反応性置換基を導入したポリオレフ
ィンの臨界表面張力よりも小さい表面張力を持つ溶媒に
溶かし、濃度が好ましくは100〜0.01w%となる
ように調整した溶液、もしくは無溶媒で、シラン薄膜を
形成する。シラン薄膜を形成したポリオレフィンに、下
記一般式(2)で示されるアルコキシシラン0.01〜
100重量部の部分加水分解物、もしくはシリカゾル
0.01〜100重量部の一方または両方を用いてシリ
カ薄膜を形成してもよい。
The method is to partially introduce a reactive functional group into the surface of the polyolefin by irradiation treatment, corona discharge treatment, etc., and partially react the silane compound represented by the following general formula (1). A silane thin film is formed by a solution prepared by dissolving a solvent having a surface tension smaller than the critical surface tension of a polyolefin having a functional substituent introduced therein and adjusting the concentration to be 100 to 0.01 w%, or without a solvent. .. On the polyolefin on which the silane thin film is formed, the alkoxysilane represented by the following general formula (2) 0.01-
One or both of 100 parts by weight of the partial hydrolyzate and 0.01 to 100 parts by weight of silica sol may be used to form the silica thin film.

【0008】一般式(1) R1 nSi(OR2(4-n) n=0〜2 (式中R1 は、炭素数1〜6の炭化水素基、またはアミ
ノ基、メルカプト基、エポキシ基、メタクリロキシ基、
アルコキシ基、ハロゲンなどの置換基を含む炭素数1〜
6の有機基、または水素から選ばれる1種もしくは複数
の結合基であり、R2 は、炭素数1〜6の炭化水素基、
または炭素数1〜6のアシル基、または水素である。)
General formula (1) R 1 n Si (OR 2 ) (4-n) n = 0 to 2 (wherein R 1 is a hydrocarbon group having 1 to 6 carbon atoms, or an amino group, a mercapto group, Epoxy group, methacryloxy group,
1 to 1 carbon atoms including substituents such as alkoxy groups and halogens
6 is an organic group, or one or more bonding groups selected from hydrogen, R 2 is a hydrocarbon group having 1 to 6 carbon atoms,
Alternatively, it is an acyl group having 1 to 6 carbon atoms or hydrogen. )

【0009】例えば、メチルトリメトキシシラン、メチ
ルトリエトキシシラン、エチルトリメトキシシラン、エ
チルトリエトキシシラン、ジメチルジメトキシシラン、
ジメチルジエトキシシラン、フェニルトリメトキシシラ
ン、フェニルトリエトキシシラン、ビニルトリメトキシ
シラン、ビニルトリエトキシシラン、ビニルトリス(2
−メトキシエトキシ)シラン、ビニルトリアセトキシシ
ラン、アリルトリメトキシシラン、アリルトリエトキシ
シラン、メチルビニルジメトキシシラン、メチルビニル
ジエトキシシラン、3−アミノプロピルトリメトキシシ
ラン、3−アミノプロピルトリエトキシシラン、N−
(2−アミノエチル)−3−アミノプロピルトリメトキ
シシラン、N−(2−アミノエチル)−3−アミノプロ
ピルメチルジメトキシシラン、3−メルカプトプロピル
トリメトキシシラン、3−グリシドキシプロピルトリメ
トキシシラン、3−グリシドキシプロピルメチルジメト
キシシラン、3−メタクリロキシプロピルトリメトキシ
シラン、3−メタクリロキシメチルジメトキシシラン、
3−クロロプロピルトリメトキシシラン、3−クロロプ
ロピルトリエトキシシラン、3−クロロプロピルメチル
ジメトキシシラン、3−クロロプロピルメチルジエトキ
シシラン、テトラメトキシシラン、テトラエトキシシラ
ン、トリメトキシシラン、トリエトキシシランなどがあ
げられる。
For example, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, dimethyldimethoxysilane,
Dimethyldiethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2
-Methoxyethoxy) silane, vinyltriacetoxysilane, allyltrimethoxysilane, allyltriethoxysilane, methylvinyldimethoxysilane, methylvinyldiethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-
(2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxymethyldimethoxysilane,
3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropylmethyldiethoxysilane, tetramethoxysilane, tetraethoxysilane, trimethoxysilane, triethoxysilane, etc. can give.

【0010】一般式(2) Hn Si(OR3(4-n) n=0,1 (式中R3 は、炭素数1〜6の炭化水素基)General formula (2) H n Si (OR 3 ) (4-n) n = 0,1 (wherein R 3 is a hydrocarbon group having 1 to 6 carbon atoms)

【0011】例えば、テトラメトキシシラン、テトラエ
トキシシラン、テトラプロポキシシラン、テトラブトキ
シシラン、テトラフェノキシシラン、トリメトキシシラ
ン、トリエトキシシラン、トリプロポキシシラン、トリ
ブトキシシラン、トリフェノキシシランなどがあげられ
る。
Examples thereof include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetraphenoxysilane, trimethoxysilane, triethoxysilane, tripropoxysilane, tributoxysilane and triphenoxysilane.

【0012】上記に準じた方法を用いて得られたポリプ
ロピレンプレートを作成した。作成したポリプロピレン
プレートを日本コンクリート工学協会(Japan Concrete
Institute)繊維の付着試験方法(JCI−SF8)AS
TM C190に準じたセメントモルタル引張試験治具
を用いて付着試験片を作成し、その後引張試験により測
定した。すなわち、ポリプロピレン板を長さ35mmに
切断し(幅20mm、厚さ1mm)、約1mmのテフロ
ン板の間隙を貫通させ、片側(引き抜け側)を約10m
m、もう片側(固定側)約25mmになるように固定す
る。これを一個の試験片に2箇所作り型枠の中央部に固
定し、引続き、普通ポルトランドセメント(C)、豊浦
標準砂(S)、水(W)をC:S:W=1:1.7:
0.5の配合比で混練したモルタルペーストを型枠に流
し込み、翌日脱型し、湿空中で6日間養生した。試験片
作成日より7日目に載荷速度0.5mm/minで引張
試験を行い引き抜け強度を測定した結果、処理をしない
ポリプロピレンプレートに比べて、シリカ薄膜を形成さ
せたポリプロピレンプレートは2倍以上の引き抜け強度
を示した。また、得られたポリプロピレンプレートを、
ポリエチレン及びポリプロピレンフィルムのぬれ試験方
法(JIS K 6768)に準じてぬれ指数を測定し
た結果、処理をしないポリプロピレンプレートは31d
yn/cm以下であるのに対して、シリカ薄膜を形成さ
せたポリプロピレンプレートは54dyn/cm以上の
値を示した。また、シラン薄膜のみを形成したポリプロ
ピレンプレートは、無処理品に比して、引き抜け強度は
約2倍であり、ぬれ指数は33dyn/cmであった。
シラン薄膜またはシラン薄膜を形成後シリカ薄膜を形成
させたポリオレフィン繊維は、抄造法及び押し出し法な
どにより成形体を形成する場合、セメントなどの水硬性
物質を含む水性スラリーにアスベストに代えて添加する
ときは凝集することなく容易に均一に分散しセメント製
品の補強効果を発揮する。また、原料をあらかじめ乾燥
状態でよく撹拌し、使用に際して注水するプレミックス
モルタル等の場合にも使用できる。
A polypropylene plate obtained by using the method according to the above was prepared. The created polypropylene plate is
Institute) Fiber adhesion test method (JCI-SF8) AS
An adhesion test piece was prepared using a cement mortar tensile test jig according to TM C190, and then measured by a tensile test. That is, a polypropylene plate is cut into a length of 35 mm (width 20 mm, thickness 1 mm), penetrates a gap of about 1 mm Teflon plate, and one side (pull-out side) is about 10 m.
m so that the other side (fixed side) is about 25 mm. This was made in one test piece at two locations and fixed in the center of the formwork, and then ordinary Portland cement (C), Toyoura standard sand (S) and water (W) were added at C: S: W = 1: 1. 7:
Mortar paste kneaded at a compounding ratio of 0.5 was poured into a mold, demolded the next day, and cured in a moist air for 6 days. The pull-out strength was measured by performing a tensile test at a loading speed of 0.5 mm / min on the 7th day from the date of preparation of the test piece. Shows the pull-out strength. In addition, the obtained polypropylene plate,
As a result of measuring the wetting index according to the wetting test method for polyethylene and polypropylene films (JIS K 6768), the untreated polypropylene plate was 31d.
While it was yn / cm or less, the polypropylene plate on which the silica thin film was formed showed a value of 54 dyn / cm or more. Further, the polypropylene plate on which only the silane thin film was formed had a pull-out strength about twice that of the untreated product and a wetting index of 33 dyn / cm.
When a silane thin film or a polyolefin fiber on which a silica thin film is formed after forming a silane thin film is used in place of asbestos in an aqueous slurry containing a hydraulic substance such as cement when forming a molded product by a papermaking method and an extrusion method, etc. Can easily and uniformly disperse without agglomerating and exert a reinforcing effect on cement products. It can also be used in the case of a premix mortar in which the raw materials are thoroughly stirred in a dry state in advance and water is poured during use.

【0013】[0013]

【実施例】【Example】

(実施例1)ポリプロピレン2Dトウ(37000D、
50cm)に、電子線照射装置(エリアビーム型電子線
照射装置、日新ハイボルテージ株式会社製、Curet
ron EBC−200−AA2)を用いて電子線(加
速電圧150keV、10Mrad)を照射した。照射
後のポリプロピレン2Dトウを、3−アミノプロピルト
リエトキシシランの1重量%1,2−ジメトキシエタン
溶液中60℃で、30分加熱した。反応終了後、反応液
から取り出し、100℃で1時間乾燥して、シラン薄膜
を形成した。シラン薄膜を形成させたポリプロピレン2
Dトウを5mmに切断した。表1に示した配合でモルタ
ルペーストを混練し、型枠に流し込み、翌日脱型し湿空
中で6日間養生した。試験片作成日7日目に載荷速度2
mm/minで曲げ強度試験を行った。
(Example 1) Polypropylene 2D tow (37000D,
50 cm), an electron beam irradiation device (area beam type electron beam irradiation device, Curette manufactured by Nisshin High Voltage Co., Ltd.)
ron EBC-200-AA2) was used to irradiate an electron beam (accelerating voltage 150 keV, 10 Mrad). The irradiated polypropylene 2D tow was heated in a 1 wt% 1,2-dimethoxyethane solution of 3-aminopropyltriethoxysilane at 60 ° C. for 30 minutes. After the reaction was completed, it was taken out from the reaction solution and dried at 100 ° C. for 1 hour to form a silane thin film. Polypropylene on which silane thin film is formed 2
The D tow was cut into 5 mm. Mortar paste having the composition shown in Table 1 was kneaded, poured into a mold, demolded the next day, and cured in a moist air for 6 days. Loading speed 2 on the 7th day of test piece creation
A bending strength test was performed at mm / min.

【0014】(比較例1)ポリプロピレン2Dトウを無
処理で混入した以外は実施例1と同様にし成形体を得、
曲げ強度試験を行った。実施例1、比較例1の曲げ強度
試験の結果を表1に示す。
Comparative Example 1 A molded product was obtained in the same manner as in Example 1 except that polypropylene 2D tow was mixed without treatment.
A bending strength test was performed. Table 1 shows the results of the bending strength tests of Example 1 and Comparative Example 1.

【0015】[0015]

【表1】 [Table 1]

【0016】(実施例2)ポリプロピレン2Dトウ(3
7000D、50cm)に、電子線照射装置(エリアビ
ーム型電子線照射装置、日新ハイボルテージ株式会社
製、Curetron EBC−200−AA2)を用
いて電子線(加速電圧150keV、10Mrad)を
照射した。電子線照射したポリプロピレン2Dトウを空
気中に放置後、3−アミノプロピルトリエトキシシラン
の1重量%1,2−ジメトキシエタン溶液中60℃で、
30分加熱した。反応終了後、反応液から取り出し、1
00℃で1時間乾燥し、第一被覆を形成した。シラン薄
膜を形成したポリプロピレン2Dトウを、テトラエトキ
シシラン10重量部、0.1N水酸化ナトリウム水溶液
2重量部をエタノール100重量部に溶解した溶液にい
れ、80℃で2時間加熱した。反応終了後、100℃で
4時間乾燥しシリカ薄膜を形成した。上記処理を行った
ポリプロピレン2Dトウを5mmに切断した。表2に示
した配合比で固形分濃度が10%になるようにスラリー
を調整し、50メッシュの金網で抄いた後、50kg/
cm2 でプレスした。プレス後1日自然養生しその後1
70℃で5時間オートクレーブ養生を行った。作成した
板をJIS A 1408に準じて曲げ強度試験を行っ
た。
(Example 2) Polypropylene 2D tow (3
7000D, 50 cm) was irradiated with an electron beam (accelerating voltage: 150 keV, 10 Mrad) using an electron beam irradiation device (area beam type electron beam irradiation device, Curetron EBC-200-AA2 manufactured by Nisshin High Voltage Co., Ltd.). After leaving the electron beam-irradiated polypropylene 2D tow in the air, it was placed in a 1% by weight solution of 3-aminopropyltriethoxysilane in 1,2-dimethoxyethane at 60 ° C.
Heated for 30 minutes. After completion of the reaction, remove from the reaction solution, 1
It was dried at 00 ° C for 1 hour to form a first coating. Polypropylene 2D tow on which a silane thin film was formed was added to a solution prepared by dissolving 10 parts by weight of tetraethoxysilane and 2 parts by weight of 0.1N sodium hydroxide aqueous solution in 100 parts by weight of ethanol, and heated at 80 ° C. for 2 hours. After the reaction was completed, it was dried at 100 ° C. for 4 hours to form a silica thin film. The polypropylene 2D tow treated as described above was cut into 5 mm. The slurry was adjusted so that the solid content concentration was 10% at the compounding ratio shown in Table 2, and after the paper was made with a wire mesh of 50 mesh, 50 kg /
Pressed at cm 2 . 1 day of natural curing after pressing and then 1
Autoclave curing was performed at 70 ° C. for 5 hours. A bending strength test was performed on the prepared plate according to JIS A 1408.

【0017】(比較例2)ポリプロピレン2Dトウを無
処理で行った以外は実施例2と同様にし成形体を得、曲
げ強度試験を行った。実施例2、比較例2の曲げ強度試
験の結果を表2に示す。
Comparative Example 2 A molded product was obtained in the same manner as in Example 2 except that polypropylene 2D tow was not treated, and a bending strength test was performed. Table 2 shows the results of the bending strength tests of Example 2 and Comparative Example 2.

【0018】[0018]

【表2】 [Table 2]

【0019】実施例1,2、比較例1,2に示すよう
に、本発明品は比較品に対して曲げ強度が向上した。ま
た、供試体作成時において、本発明品は比較品より成形
性が良好であり、実施例1よりも実施例2の優位性が顕
著であった。
As shown in Examples 1 and 2 and Comparative Examples 1 and 2, the bending strength of the product of the present invention was improved as compared with the comparative product. Further, when the sample was prepared, the product of the present invention had better moldability than the comparative product, and the superiority of Example 2 over Example 1 was remarkable.

【0020】[0020]

【発明の効果】安価であるポリオレフィンの表面にシラ
ン化合物で薄膜を形成またはシラン化合物で薄膜を形成
後シリカ薄膜を形成させた補強材は、水硬性物質に対す
る親和性が大きく改善され、さらに形成させた薄膜とセ
メント等の水硬性物質との間に化学結合を有することに
より、従来の混合物質に比べて著しく付着性が向上す
る。上記補強材を用いることにより、補強材のモルタル
等への分散性が大きく改善され成形体の生産性を高く維
持できる。その結果、補強材としては合成繊維の有する
強度、形成させた薄膜の有する水硬性物質マトリックス
との親和性、付着性のために、水硬性物質成形体製品へ
均一に分散し、その補強効果も充分に発揮できることに
なる。ポリオレフィン表面にシラン化合物で薄膜を形成
またはシラン化合物で薄膜を形成後シリカ薄膜を形成さ
せたポリオレフィンは、親水性、水硬性物質との付着性
に優れており、工業的に安価である。薄膜を形成させた
ポリオレフィンを用いることにより、効果的に補強され
た水硬性物質成形体を提供することが可能になった。
EFFECTS OF THE INVENTION A reinforcing material in which a thin film is formed on a surface of a polyolefin which is inexpensive with a silane compound or a silica thin film is formed after forming a thin film with a silane compound, has a significantly improved affinity for a hydraulic substance and is further formed. By having a chemical bond between the thin film and a hydraulic substance such as cement, the adhesiveness is remarkably improved as compared with the conventional mixed substance. By using the above reinforcing material, the dispersibility of the reinforcing material in mortar or the like is greatly improved, and the productivity of the molded product can be maintained high. As a result, due to the strength of the synthetic fiber as the reinforcing material, the affinity with the hydraulic material matrix of the formed thin film, and the adhesiveness, it is uniformly dispersed in the hydraulic material molded product, and its reinforcing effect is also obtained. You will be able to fully demonstrate it. A polyolefin in which a thin film is formed on the surface of a polyolefin with a silane compound or a silica thin film is formed after forming a thin film with a silane compound is excellent in hydrophilicity and adhesion to a hydraulic substance, and is industrially inexpensive. By using a thin film-formed polyolefin, it has become possible to provide an effectively reinforced hydraulic material molded body.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 範英 神奈川県川崎市川崎区扇町5番1号 昭和 電工株式会社化学品研究所内 (72)発明者 広本 和彦 神奈川県川崎市川崎区扇町5番1号 昭和 電工株式会社化学品研究所内 (72)発明者 石村 善正 神奈川県川崎市川崎区扇町5番1号 昭和 電工株式会社化学品研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Norihide Arai 5-1 Ogimachi, Kawasaki-ku, Kanagawa Prefecture Kanagawa Prefecture Chemicals Research Laboratory (72) Inventor Kazuhiko Hiromoto 5 Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa No. 1 Showa Denko Co., Ltd. Chemicals Research Laboratory (72) Inventor Yoshimasa Ishimura 5-1 Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Showa Denko Chemicals Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィンの表面に、放射線照射処
理、コロナ放電処理などにより部分的に反応性官能基を
導入し、溶媒中もしくは無溶媒で、下記一般式(1)で
示されるシラン化合物からなるシラン薄膜を形成させた
ポリオレフィンを、水硬性物質に添加して成形させたこ
とを特徴とする水硬性物質成形体。 一般式(1) R1 nSi(OR2(4-n) n=0〜2 (式中R1 は、炭素数1〜6の炭化水素基、またはアミ
ノ基、メルカプト基、エポキシ基、メタクリロキシ基、
アルコキシ基、ハロゲンなどの置換基を含む炭素数1〜
6の有機基、または水素から選ばれる1種もしくは複数
の結合基であり、R2 は、炭素数1〜6の炭化水素基、
または炭素数1〜6のアシル基、または水素である。)
1. A silane compound represented by the following general formula (1) in a solvent or without a solvent, in which a reactive functional group is partially introduced into the surface of a polyolefin by radiation irradiation treatment, corona discharge treatment, or the like. A molded product of a hydraulic material, characterized in that a polyolefin having a silane thin film formed thereon is added to a hydraulic material and molded. Formula (1) R 1 n Si ( OR 2) (4-n) n = 0~2 ( wherein R 1 is a hydrocarbon group having 1 to 6 carbon atoms or an amino group, a mercapto group, an epoxy group, Methacryloxy group,
1 to 1 carbon atoms including substituents such as alkoxy groups and halogens
6 is an organic group, or one or more bonding groups selected from hydrogen, R 2 is a hydrocarbon group having 1 to 6 carbon atoms,
Alternatively, it is an acyl group having 1 to 6 carbon atoms or hydrogen. )
【請求項2】 ポリオレフィンの表面に、放射線照射処
理、コロナ放電処理などにより部分的に反応性官能基を
導入し、溶媒中もしくは無溶媒で、上記一般式(1)で
示されるシラン化合物からなるシラン薄膜を形成し、下
記一般式(2)で示されるアルコキシシランの部分加水
分解物もしくはシリカゾルの一方又は両方を用いてシリ
カ薄膜を形成させたポリオレフィンを、水硬性物質に添
加して成形させたことを特徴とする水硬性物質成形体。 一般式(2) Hn Si(OR3(4-n) n=0,1 (式中R3 は、炭素数1〜6の炭化水素基)
2. A silane compound represented by the above general formula (1) in a solvent or without a solvent, in which a reactive functional group is partially introduced into the surface of a polyolefin by irradiation treatment, corona discharge treatment, or the like. A polyolefin having a silica thin film formed by forming a silane thin film and using one or both of a partial hydrolyzate of an alkoxysilane represented by the following general formula (2) or a silica sol was added to a hydraulic material to be molded. A hydraulic substance molded body characterized by the above. Formula (2) H n Si (OR 3) (4-n) n = 0,1 ( wherein R 3 is a hydrocarbon group having 1 to 6 carbon atoms)
JP32071991A 1991-12-04 1991-12-04 Hydraulic-material formed body Pending JPH05155646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32071991A JPH05155646A (en) 1991-12-04 1991-12-04 Hydraulic-material formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32071991A JPH05155646A (en) 1991-12-04 1991-12-04 Hydraulic-material formed body

Publications (1)

Publication Number Publication Date
JPH05155646A true JPH05155646A (en) 1993-06-22

Family

ID=18124568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32071991A Pending JPH05155646A (en) 1991-12-04 1991-12-04 Hydraulic-material formed body

Country Status (1)

Country Link
JP (1) JPH05155646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371798B2 (en) 2001-12-12 2008-05-13 Sumitomo Osaka Cement Co., Ltd. Thermoplastic water-curable composition, molded object made from the thermoplastic water-curable composition, and process for producing the same
CZ305144B6 (en) * 2013-06-18 2015-05-20 SYNPO, akciová společnost Process for preparing stabilized polyethylene (PE)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371798B2 (en) 2001-12-12 2008-05-13 Sumitomo Osaka Cement Co., Ltd. Thermoplastic water-curable composition, molded object made from the thermoplastic water-curable composition, and process for producing the same
CZ305144B6 (en) * 2013-06-18 2015-05-20 SYNPO, akciová společnost Process for preparing stabilized polyethylene (PE)

Similar Documents

Publication Publication Date Title
JP5364073B2 (en) Aqueous silica dispersion
DE2802862C2 (en) Polysiloxane sealing, adhesive or coating composition which can be stored in the absence of moisture and in the presence of the same can be vulcanized to give elastomers at room temperature
WO2019144973A1 (en) Amphipathic multifunctional hybrid nanoparticle, and preparation method therefor and application thereof
Tanoglu et al. Use of silane coupling agents to enhance the performance of adhesively bonded alumina to resin hybrid composites
JPS58142935A (en) Primer composition
KR101347725B1 (en) Binder Compositions Of Hybrid Modified Silicates And Method For Preparing The Same
WO2005113660A1 (en) Modification of platelet-shaped silica clay
JPH05155646A (en) Hydraulic-material formed body
KR100549774B1 (en) Inorganic bio ceramic glue and method for manufaturing it
KR20040058540A (en) Composition of mortar that is mixed suface modified fiber for repair and renovation of concrete structures and its manufacturing process
KR102490818B1 (en) Floor finishing materials for swimming pool and waterproof construction method
KR20160000919A (en) Cellulose surface hydrophobic modification using radiation and composite materials prepared by the same
KR20200037578A (en) Ceramic coating composition for structural reinforcement and manufacturing method thereof
JPH05124845A (en) Hydraulic composition
US20110245372A1 (en) Rubber-Modified Cementitious Substance and Method of Making the Same
JP2687178B2 (en) Calcium silicate compact and method for producing the same
KR101785375B1 (en) High strength composite resin composition for sterolithography type 3-dimensional printing and method of manufacturing the same
JP3533985B2 (en) Room temperature curable organopolysiloxane composition
JP2754306B2 (en) Wood cement board
JPH01157444A (en) Agent for accelerating and protecting bonding and method for bonding between inorganic materials
US7985786B2 (en) Rubber-modified cementitious substance and method of making the same
KR101232673B1 (en) Crack-resistant, water-resistant, antifouling paint manufacturing method and compositions thereof
JPH05156055A (en) Method for forming silica coating film on polyolefin surface
JP2004250310A (en) Fiber powder-containing inorganic adhesive composition
Hand et al. Glass strengthening using ormosil polymeric coatings