JPH05155622A - Production of fine zirconia powder - Google Patents

Production of fine zirconia powder

Info

Publication number
JPH05155622A
JPH05155622A JP34771491A JP34771491A JPH05155622A JP H05155622 A JPH05155622 A JP H05155622A JP 34771491 A JP34771491 A JP 34771491A JP 34771491 A JP34771491 A JP 34771491A JP H05155622 A JPH05155622 A JP H05155622A
Authority
JP
Japan
Prior art keywords
powder
zirconia
calcined
mixture
hydrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34771491A
Other languages
Japanese (ja)
Other versions
JP3146578B2 (en
Inventor
Koji Matsui
光二 松井
Yuji Chikamori
裕二 近森
Michiji Okai
理治 大貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP34771491A priority Critical patent/JP3146578B2/en
Publication of JPH05155622A publication Critical patent/JPH05155622A/en
Application granted granted Critical
Publication of JP3146578B2 publication Critical patent/JP3146578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides

Abstract

PURPOSE:To produce fine zirconia powder having satisfactory compactibility by an easy process in the form of dense particles contg. a stabilizing agent in a uniform solid soln. and having satisfactory dispersibility. CONSTITUTION:When a mixture contg. a zirconia hydrate sol and a compd. of at least one among Y, Ca, Mg and Ce is calcined to produce fine zirconia powder, a layer of the mixture having a thickness H (cm) is calcined at a temp. T ( deg.C) satisfying an inequality 120H<0.5>+500<=T<=1200.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ジルコニア系セラミッ
クスの原料であるジルコニア粉末の製造法、とくに、上
記原料粉末を成形性のよいものとすることができるジル
コニア微粉末の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing zirconia powder, which is a raw material for zirconia-based ceramics, and more particularly to a method for producing fine zirconia powder which enables the raw material powder to have good moldability. ..

【0002】[0002]

【従来の技術】従来、ジルコニア粉末の製造法として
は、 安定化剤の溶解している水和ジルコニア微粒子の懸濁
液にアンモニア水を添加して、濾過,水洗,仮焼してジ
ルコニア粉末を得る方法(特開昭63−129017公
報) 水酸化ジルコニウムの原料に塩化物からなる安定化剤
を添加して、仮焼してジルコニア粉末を得る方法(特開
昭61−266307公報) 炭酸ジルコニルアンモニウム塩と安定化剤との混合水
溶液に過酸化水素を添加し、得られる固形物を乾燥,焼
成してジルコニア粉末を得る方法(特開昭61−447
17公報) 等が知られている。
2. Description of the Related Art Conventionally, as a method for producing zirconia powder, ammonia water is added to a suspension of hydrated zirconia fine particles in which a stabilizer is dissolved, and the zirconia powder is filtered, washed with water, and calcined. Method for Obtaining (JP-A-63-129017) Method for adding a stabilizer consisting of chloride to zirconium hydroxide raw material and calcining to obtain zirconia powder (JP-A-61-266307) Zirconyl ammonium carbonate A method in which hydrogen peroxide is added to a mixed aqueous solution of a salt and a stabilizer, and the resulting solid is dried and calcined to obtain a zirconia powder (JP-A-61-447).
17 gazette) etc. are known.

【0003】[0003]

【発明が解決しようとする課題】ところで、の方法で
得られるジルコニア粉末は、BET比表面積が非常に大
きい、即ち、粒径の小さい微細粉末であり、このように
粒径が極めて小さくなると、粒子間の付着力が著しく増
加するために、得られるジルコニア粉末は強固な凝集粉
末になって、成形しにくいものとなる。の方法で得ら
れるジルコニア粉末は、水酸化ジルコニウムのゲル状沈
殿物などを1100℃で仮焼しており、このゲル状沈殿
物を高い温度で仮焼すると粒子間の強固な凝集が激しく
起こって、分散性の劣ったものとなる。の方法は、炭
酸ジルコニルアンモニウム塩と安定化剤との混合水溶液
に過酸化水素を添加し、得られるゲル状共沈物を焼成し
てジルコニア粉末を得るが、このようにして得られるゲ
ル状共沈物は不均一な組成のものになり、かつ、ゲル状
沈殿物を仮焼するために得られる粉末は、上記のとお
り、分散性の悪いものとなる。さらに共沈の際に使用す
る過酸化水素は、危険性の高い物質であるため工業的な
大量生産が困難になって実用的でなくなる。
By the way, the zirconia powder obtained by the above method is a fine powder having a very large BET specific surface area, that is, a small particle size. Since the adhesive force between them is remarkably increased, the obtained zirconia powder becomes a strong agglomerated powder, which makes it difficult to form. In the zirconia powder obtained by the method of 1, the gel-like precipitate of zirconium hydroxide is calcined at 1100 ° C. When the gel-like precipitate is calcined at a high temperature, strong agglomeration between particles occurs violently. , The dispersibility is inferior. In the method of (1), hydrogen peroxide is added to a mixed aqueous solution of a zirconyl ammonium carbonate salt and a stabilizer, and the gel coprecipitate obtained is calcined to obtain a zirconia powder. The precipitate has a non-uniform composition, and the powder obtained by calcination of the gel-like precipitate has poor dispersibility as described above. Further, the hydrogen peroxide used in the coprecipitation is a substance having a high risk, which makes industrial mass production difficult and impractical.

【0004】本発明では、このような従来方法における
欠点を解消した、即ち、安定化剤がよく固溶した分散性
のよい緻密な粒子、従って、成形性のよいジルコニア粉
末を簡易なプロセスにより製造することのできる方法の
提供を目的とするものである。
In the present invention, such a drawback of the conventional method is solved, that is, fine particles having good dispersibility in which a stabilizer is well solid-dissolved, that is, zirconia powder having good moldability is produced by a simple process. The purpose is to provide a possible method.

【0005】[0005]

【課題を解決するための手段】本発明者らが、水和ジル
コニアゾルとジルコニア系セラミックスの製造に常用さ
れるイットリア,カルシア,マグネシア,セリアなどの
安定化剤との混合物を仮焼してジルコニア粉末を得る際
の仮焼雰囲気と固溶反応とに着目して詳細に検討したと
ころによれば、該混合物を仮焼炉に仕込むときの混合物
層の厚さを制御することにより安定化剤と充分に固溶し
た緻密な粒子、したがって、分散性のよいジルコニア微
粉末を製造することができ、このようにして得られた微
粉末は成形性がよく、比較的低温度で焼結するジルコニ
ア微粉末であることを見い出し、本発明を完成するに至
った。
The present inventors have calcined a mixture of a hydrated zirconia sol and a stabilizer such as yttria, calcia, magnesia, and ceria, which is commonly used in the production of zirconia-based ceramics, to form zirconia. According to a detailed study focusing on the calcination atmosphere and the solid solution reaction when obtaining the powder, according to a stabilizer by controlling the thickness of the mixture layer when the mixture is charged into the calcination furnace. Dense particles that are sufficiently solid-dissolved, and therefore fine zirconia powder with good dispersibility, can be produced, and the fine powder obtained in this way has good moldability and can be sintered at a relatively low temperature. The present invention was completed by finding out that it was a powder.

【0006】本発明は、水和ジルコニアゾルとY,C
a,Mg,Ceのうち少なくとも1種の化合物を含む混
合物を仮焼してジルコニア微粉末を製造する方法におい
て、層厚H(cm)の該混合物を120H0.5+50
0≦T≦1200の条件を満たす温度T(℃)で仮焼す
ることによるジルコニア微粉末の製造法を要旨とするも
のである。以下、本発明を更に詳細に説明する。
The present invention relates to a hydrated zirconia sol and Y, C.
In a method for producing a zirconia fine powder by calcination of a mixture containing at least one compound of a, Mg and Ce, the mixture having a layer thickness H (cm) is 120H 0.5 +50.
The gist is a method for producing fine zirconia powder by calcining at a temperature T (° C.) satisfying the condition of 0 ≦ T ≦ 1200. Hereinafter, the present invention will be described in more detail.

【0007】本明細書において、水和ジルコニアゾルと
安定化剤との固溶反応に係わる「固溶反応率」とは、粉
末X線回折の測定される回折線に着目し、下式により算
出されるものをいう。
In the present specification, the "solid solution reaction rate" relating to the solid solution reaction between the hydrated zirconia sol and the stabilizer is calculated by the following formula, paying attention to the diffraction line of powder X-ray diffraction. What is done.

【0008】 正方晶率(%)=It/(It+Ic+Im)×100 立方晶率(%)=Ic/(It+Ic+Im)×100 ここで、Itは正方晶の(111)の回折線の強度,I
cは立方晶の(111)の強度,Imは単斜晶の(11
1)および(11−1)の強度の和である。水和ジルコ
ニアゾルに係わる「平均粒径」とは、電子顕微鏡または
粒度分布測定器による粒径測定で求められるものであ
り、例えば光子相関法などで与えられる。
Tetragonal crystal ratio (%) = It / (It + Ic + Im) × 100 Cubic crystal ratio (%) = Ic / (It + Ic + Im) × 100 where It is the intensity of the tetragonal (111) diffraction line, I
c is the cubic (111) strength, and Im is the monoclinic (11).
It is the sum of the intensities of 1) and (11-1). The “average particle size” of the hydrated zirconia sol is obtained by particle size measurement using an electron microscope or a particle size distribution measuring device, and is given by, for example, photon correlation method.

【0009】本発明で得られるジルコニア微粉末は、B
ET比表面積が5〜25m/gである。BET比表面
積が5m/gよりも小さくなると、粒子間の焼結によ
る強固な凝集が起こるために分散性のよいジルコニア粉
末が得られず、25m/gよりも大きくなると、粒子
間の付着力が著しく増加するために強固な凝集粉末にな
って、成形しにくいものとなりセラミックス粉末として
適さないものとなる。また、水和ジルコニアゾルと安定
化剤との混合物を仮焼して得られる仮焼粉の固溶反応率
は90%以上のものがよく、固溶反応率が90%よりも
低くなるとジルコニア微粉末の組成が不均一になり、こ
のような粉末を成形して焼成すると異常粒成長に起因す
る不均一収縮などが起こりやすくなるために好ましくな
いものとなる。より望ましくは95%以上である。とこ
ろで、上記の水和ジルコニアゾルは、平均粒径が0.0
5〜0.3μm、かつ、結晶子径が4nm以下であるこ
とが好ましい。水和ジルコニアゾルの平均粒径が0.0
5μmよりも小さくなると、仮焼時に粒子間の焼結によ
る強固な凝集が起こりやすく、0.3μmよりも大きく
なると粉末の粒径も大きくなるために焼結性の低いもの
になりやすく、セラミックス原料粉末として好ましくな
いものとなる。また、結晶子径が4nmよりも大きくな
ると安定化剤との固溶性が低下するため好ましくないも
のになる。
The zirconia fine powder obtained by the present invention is B
The ET specific surface area is 5 to 25 m 2 / g. When the BET specific surface area is smaller than 5 m 2 / g, zirconia powder having good dispersibility cannot be obtained because of strong agglomeration due to sintering between particles, and when the BET specific surface area is larger than 25 m 2 / g, the adhesion between particles is increased. Since the cohesive force is remarkably increased, it becomes a strong agglomerated powder, which makes it difficult to mold and becomes unsuitable as a ceramic powder. Further, the calcined powder obtained by calcining the mixture of the hydrated zirconia sol and the stabilizer preferably has a solid solution reaction rate of 90% or more, and when the solid solution reaction rate becomes lower than 90%, the zirconia fine particles become fine. The composition of the powder becomes non-uniform, and if such powder is molded and fired, non-uniform shrinkage due to abnormal grain growth is likely to occur, which is not preferable. More preferably, it is 95% or more. By the way, the above-mentioned hydrated zirconia sol has an average particle size of 0.0
It is preferable that the crystallite diameter is 5 to 0.3 μm and the crystallite diameter is 4 nm or less. The average particle size of hydrated zirconia sol is 0.0
If it is less than 5 μm, strong agglomeration due to sintering between particles is likely to occur during calcination, and if it is more than 0.3 μm, the particle size of the powder is large and the sinterability tends to be low. It is not preferable as a powder. Further, if the crystallite size is larger than 4 nm, the solid solubility with the stabilizer decreases, which is not preferable.

【0010】本発明において、水和ジルコニアゾルと安
定化剤などの混合物を仮焼するときに、該混合物の層厚
H(cm)と仮焼温度T(℃)とは、 120H0.5+500≦T≦1200 の関係を満たさなければならない。仮焼温度が120H
0.5+500よりも低くなると、仮焼粉末の固溶反応
率が90%よりも低くなり安定化剤と充分に固溶したも
のが得られず、さらに500℃よりも低くなるとBET
比表面積が25m/gよりも大きくなって目的とする
ジルコニア微粉末が得られなくなる。いっぽう、120
0℃よりも高くなると、粒子間の焼結による強固な凝集
が起こるためにBET比表面積が5m/gよりも小さ
くなって分散性のよいジルコニア粉末が得られなくな
る。さらに、このように高い仮焼温度では工業的な大量
生産が困難であるために実用的ではなくなる。より好ま
しい仮焼温度T(℃)は、上記の(120H0.5+5
00)〜1200℃の範囲内であって、水和ジルコニア
ゾルの平均粒径φ(μm)との間の関係が、 T≧1000φ+400 を満足するものであり、さらに望ましくは、 1000φ+400≦T≦3000φ+600 を満足するものである。仮焼時の雰囲気ガスは、種々の
ガスを選択することができる。このとき使用するガスは
水蒸気を含んでいるほうがよく、水蒸気分圧が30mm
Hg以上のガスを用いたほうがよい。30mmHgより
も低くなると、仮焼時の水和ジルコニアゾルの粒成長が
抑制されるために、低い温度で緻密な粒子が得にくくな
り好ましくないものになる。より好ましい水蒸気分圧
は、40〜760mmHgである。ガスの種類として
は、空気,二酸化炭素,窒素,酸素,アルゴン,ヘリウ
ムなどを挙げることができる。仮焼温度の保持時間は
0.5〜10時間がよく、昇温速度は0.5〜10℃/
minが好ましい。保持時間が0.5時間よりも短くな
ると均一に仮焼されにくく、10時間よりも長くなると
生産性が低下するので好ましくない。また、昇温速度が
0.5℃/minよりも小さくなると設定温度に達する
までの時間が長くなり、10℃/minよりも大きくな
ると仮焼時に粉末が激しく飛散して操作性が悪くなり生
産性が低下する。
In the present invention, when the mixture of the hydrated zirconia sol and the stabilizer is calcined, the layer thickness H (cm) and the calcining temperature T (° C.) of the mixture are 120H 0.5 +500. The relationship of ≦ T ≦ 1200 must be satisfied. Calcination temperature is 120H
When it is lower than 0.5 + 500, the solid solution reaction rate of the calcined powder is lower than 90%, and a solid solution with the stabilizer cannot be sufficiently obtained, and when it is lower than 500 ° C, BET
The specific surface area becomes larger than 25 m 2 / g and the desired zirconia fine powder cannot be obtained. On the other hand, 120
If the temperature is higher than 0 ° C., strong agglomeration due to sintering between particles occurs, so that the BET specific surface area becomes smaller than 5 m 2 / g and zirconia powder having good dispersibility cannot be obtained. Further, at such a high calcination temperature, industrial mass production is difficult, so that it is not practical. A more preferable calcination temperature T (° C.) is (120H 0.5 +5).
00) to 1200 ° C., and the relationship between the average particle diameter φ (μm) of the hydrated zirconia sol satisfies T ≧ 1000φ + 400, and more preferably 1000φ + 400 ≦ T ≦ 3000φ + 600. Is satisfied. Various gases can be selected as the atmosphere gas at the time of calcination. It is better that the gas used at this time contains water vapor, and the water vapor partial pressure is 30 mm.
It is better to use a gas of Hg or higher. If it is lower than 30 mmHg, grain growth of the hydrated zirconia sol during calcination is suppressed, and it becomes difficult to obtain dense particles at a low temperature, which is not preferable. The more preferable partial pressure of water vapor is 40 to 760 mmHg. Air, carbon dioxide, nitrogen, oxygen, argon, helium etc. can be mentioned as a kind of gas. The holding time of the calcination temperature is preferably 0.5 to 10 hours, and the temperature rising rate is 0.5 to 10 ° C /
min is preferred. If the holding time is shorter than 0.5 hours, it is difficult to uniformly calcine, and if it is longer than 10 hours, productivity is lowered, which is not preferable. If the heating rate is less than 0.5 ° C / min, it takes longer to reach the set temperature, and if the heating rate is more than 10 ° C / min, the powder will be severely scattered during the calcination, resulting in poor operability. Sex decreases.

【0011】上記の水和ジルコニアゾルは、いかなる反
応条件で得られたものを用いてもよい。ジルコニウム塩
水溶液の加水分解反応による場合、得られる水和ジルコ
ニアゾルの平均粒径は、反応終了時の反応液のpHを調
整することにより制御することができる。例えば、反応
終了のpHが0.1〜1.5になるように調整すること
により、平均粒径0.05〜0.3μmの水和ジルコニ
アゾルが得られる。いっぽう、結晶子径は、ジルコニウ
ム塩水溶液の陰イオン濃度を調整することにより制御す
ることができ、陰イオン濃度を0.8グラムイオン/l
以上にして加水分解させると、結晶子径が4nm以下の
水和ジルコニアゾルが得られる。したがって、ジルコニ
ウム塩水溶液の陰イオン濃度,pHを上記の範囲に制御
することによって、所望の水和ジルコニアゾルを得るこ
とができる。このpH,陰イオン濃度、即ち、水和ジル
コニアゾルの平均粒径と結晶子とを制御する方法として
は、例えば、ジルコニウム塩水溶液に、酸,アルカリま
たは金属塩を添加する、もしくは、陰イオン交換樹脂に
よりジルコニウム塩を構成している陰イオンの一部を除
去することによりpHを調整して加水分解させる方法、
または、水酸化ジルコニウムと酸との混合スラリー、該
混合スラリーに金属塩を添加して、混合物スラリーのp
Hおよび陰イオン濃度を調整して加水分解させる方法な
どが挙げられる。ここで、水和ジルコニアゾルの製造に
用いられるジルコニウム塩としては、オキシ塩化ジルコ
ニウム,硝酸ジルコニル,塩化ジルコニウム,硫酸ジル
コニルなどが挙げられるが、これらの他に水酸化ジルコ
ニウムと酸との混合物を用いてもよい。水和ジルコニゾ
ルの平均粒径を制御するために添加するアルカリとして
は、アンモニア,水酸化ナトリウム,水酸化カリウムな
どを挙げることができるが、これらの他に尿素のように
分解して塩基性を示す化合物でもよい。また、酸として
は、塩酸,硝酸,硫酸などを挙げることができるが、こ
れらの他に酢酸,クエン酸などの有機酸を用いてもよ
い。さらに、ジルコニウム塩水溶液の陰イオン濃度、す
なわち、水和ジルコニゾルの結晶子径を制御するために
添加する金属塩としては、ナトリウム塩などのアルカリ
金属またはアルカリ土類金属の塩,アルミニウム塩など
が挙げられるが、この他にアンモニウム塩を添加しても
よい。水酸化ジルコニウムの原料を用いる場合、その製
造法としては種々の方法が選択でき、例えば、ジルコニ
ウム塩水溶液をアルカリで中和することにより水酸化ジ
ルコニウムを得ることができる。
The hydrated zirconia sol may be obtained under any reaction condition. In the case of the hydrolysis reaction of the zirconium salt aqueous solution, the average particle size of the obtained hydrated zirconia sol can be controlled by adjusting the pH of the reaction solution at the end of the reaction. For example, a hydrated zirconia sol having an average particle size of 0.05 to 0.3 μm can be obtained by adjusting the pH at the end of the reaction to 0.1 to 1.5. On the other hand, the crystallite size can be controlled by adjusting the anion concentration of the zirconium salt aqueous solution, and the anion concentration is 0.8 g ion / l.
When hydrolyzed as described above, a hydrated zirconia sol having a crystallite size of 4 nm or less is obtained. Therefore, a desired hydrated zirconia sol can be obtained by controlling the anion concentration and pH of the zirconium salt aqueous solution within the above ranges. As a method for controlling the pH and the anion concentration, that is, the average particle size and crystallites of the hydrated zirconia sol, for example, an acid, alkali or metal salt is added to the zirconium salt aqueous solution, or anion exchange is performed. A method of adjusting the pH to hydrolyze by removing a part of the anion constituting the zirconium salt with a resin,
Alternatively, a mixed slurry of zirconium hydroxide and an acid, a metal salt is added to the mixed slurry, and p of the mixed slurry is added.
Examples include a method of adjusting the H and anion concentrations to cause hydrolysis. Examples of the zirconium salt used for producing the hydrated zirconia sol include zirconium oxychloride, zirconyl nitrate, zirconium chloride, zirconyl sulfate, and the like. In addition to these, a mixture of zirconium hydroxide and an acid is used. Good. Examples of alkalis added to control the average particle size of hydrated zirconisols include ammonia, sodium hydroxide, and potassium hydroxide. In addition to these, they decompose to show basicity like urea. It may be a compound. Examples of the acid include hydrochloric acid, nitric acid, sulfuric acid and the like, but in addition to these, organic acids such as acetic acid and citric acid may be used. Furthermore, as the anion concentration of the zirconium salt aqueous solution, that is, as the metal salt added to control the crystallite size of the hydrated zirconisol, an alkali metal salt or an alkaline earth metal salt such as a sodium salt, an aluminum salt, or the like can be given. However, in addition to this, an ammonium salt may be added. When a zirconium hydroxide raw material is used, various methods can be selected as the production method, and for example, zirconium hydroxide can be obtained by neutralizing an aqueous zirconium salt solution with an alkali.

【0012】この反応によって得られた水和ジルコニア
ゾルと安定化剤との混合物は、安定化剤を含む水和ジル
コニアゾル含有液を乾燥させて得ることができる。この
含有液を乾燥させる方法に制限はなく、例えば該懸濁液
または該懸濁液に有機溶媒を添加して乾燥する方法、該
懸濁液にアルカリを添加して濾過,水洗したあとに乾燥
する方法などを挙げることができる。このとき得られる
混合物の嵩密度は、0.5〜2.1g/cmの範囲内
であることが好ましい。嵩密度が2.1よりも大きくな
ると、仮焼のときに混合物内の雰囲気が不均一になるた
めに安定化剤との固溶性が悪くなり、0.5よりも小さ
くなると生産効率が低下するために好ましくない。より
好ましい嵩密度は0.9〜1.6g/cmである。ま
た、混合物には、ジルコニアに対する重量比として1%
以上の陰イオンが含まれているほうがよい。陰イオン含
有量が1%よりも低くなると、仮焼時に水和ジルコニア
ゾルの粒成長速度が遅くなるために低温度で緻密な粒子
が得られにくくなる。より好ましい陰イオン含有量は、
3〜33%である。安定化剤の添加は、加水分解が終了
した懸濁液に安定化剤を添加してもよく、さらに加水分
解のときに前もって添加してもよい。安定化剤の添加量
は、水和ジルコニアゾルのジルコニア換算量として1〜
30mol%が好ましく、その種類はY,Ca,Mg,
Ceなどの化合物ならばいかなるものでもよい。とくに
水溶性の塩,水酸化物、酸化物などがよい。もちろん、
必要に応じてアルミニウム,遷移金属などの化合物を乾
燥前に添加してもよい。
The mixture of the hydrated zirconia sol and the stabilizer obtained by this reaction can be obtained by drying the hydrated zirconia sol-containing liquid containing the stabilizer. There is no limitation on the method of drying the contained liquid, for example, the suspension or a method of adding an organic solvent to the suspension to dry, or adding an alkali to the suspension, filtering, washing with water and then drying. And the like. The bulk density of the mixture obtained at this time is preferably in the range of 0.5 to 2.1 g / cm 3 . When the bulk density is higher than 2.1, the atmosphere in the mixture becomes non-uniform during calcination, so that the solid solubility with the stabilizer is deteriorated, and when it is smaller than 0.5, the production efficiency is reduced. Not preferred because of A more preferable bulk density is 0.9 to 1.6 g / cm 3 . In addition, the mixture contains 1% by weight of zirconia.
It is better to include the above anions. If the anion content is lower than 1%, the particle growth rate of the hydrated zirconia sol will be slow during calcination, and it will be difficult to obtain dense particles at a low temperature. More preferable anion content is
3 to 33%. The stabilizer may be added to the suspension after the hydrolysis, or may be added in advance at the time of hydrolysis. The amount of the stabilizer added is 1 to zirconia equivalent of the hydrated zirconia sol.
30 mol% is preferable, and the types are Y, Ca, Mg,
Any compound such as Ce may be used. Water-soluble salts, hydroxides, oxides, etc. are particularly preferable. of course,
If necessary, compounds such as aluminum and transition metals may be added before drying.

【0013】以上のようにして得られた仮焼粉は、粉砕
することにより分散性のよいジルコニア微粉末になる。
The calcined powder obtained as described above is pulverized into fine zirconia powder having good dispersibility.

【0014】[0014]

【作用】ジルコニウム塩水溶液の加水分解により得られ
る水和ジルコニアゾルの微細構造は、結晶性のよい超微
粒子が凝集した粒子からなっていることが電子顕微鏡か
ら観察される。この超微粒子の大きさが小さいほど安定
化剤との反応表面積が大きくなり、さらに安定化剤との
均一性もよくなると考えられる。このことから仮焼によ
って層厚の高い混合物ほど粒子近傍の雰囲気が変化する
ために反応表面積が影響を受け、その結果、安定化剤と
の固溶性が変化するものと推察される。
It is observed from an electron microscope that the fine structure of the hydrated zirconia sol obtained by hydrolysis of the aqueous solution of zirconium salt is composed of aggregated particles of ultrafine particles having good crystallinity. It is considered that the smaller the size of the ultrafine particles, the larger the reaction surface area with the stabilizer and the better the uniformity with the stabilizer. From this, it is speculated that the higher the layer thickness of the mixture due to calcination, the more the atmosphere in the vicinity of the particles changes, so that the reaction surface area is affected, and as a result, the solid solubility with the stabilizer changes.

【0015】[0015]

【発明の効果】以上、説明したとおり、本発明によれ
ば、安定化剤のよく固溶した分散性のよい緻密な粒子、
従って、成形性のよいジルコニア粉末を簡易なプロセス
により製造することができる。
As described above, according to the present invention, dense particles having a good solid solution of a stabilizer and good dispersibility,
Therefore, zirconia powder having good moldability can be manufactured by a simple process.

【0016】[0016]

【実施例】以下、実施例により本発明を具体的に説明す
る。例中、水和ジルコニアゾルの結晶構造は単斜晶系で
あり、その結晶子径は(11−1)の回折線の半価幅に
シェーラーの式を適用して算出した。ここで、シェーラ
ー定数は0.9とした。ジルコニア微粉末の成形は、金
型プレスにより成形圧700kg/cmで行い、その
成形体は1500℃,2時間の焼成条件で焼結させた。
EXAMPLES The present invention will be specifically described below with reference to examples. In the examples, the crystal structure of the hydrated zirconia sol is a monoclinic system, and its crystallite size was calculated by applying the Scherrer's formula to the half width of the diffraction line of (11-1). Here, the Scherrer constant is 0.9. The zirconia fine powder was compacted by a die press at a compacting pressure of 700 kg / cm 2 , and the compact was sintered at 1500 ° C. for 2 hours.

【0017】実施例1 2mol/lのオキシ塩化ジルコニウム水溶液2.5リ
ットルに1規定のアンモニア水2リットル,酸化イット
リウム36gおよび塩化ナトリウム7.5gを添加し、
さらに蒸留水を加えて0.5mol/lのオキシ塩化ジ
ルコニウム水溶液10リットルを調製した。この原料液
を攪拌しながら加水分解反応を煮沸温度で120時間お
こなった。得られた水和ジルコニアゾルの光子相関法に
よる平均粒径は0.1μmであり、結晶子径は2.4n
mであった。この水和ジルコニアゾル含有液を加熱濃縮
して、さらにスプレー乾燥させて嵩密度1.3g/cm
,塩素含有量15%(ジルコニアに対する重量比、以
下同じ)の水和ジルコニア乾燥粉末を調製した。この乾
燥粉を6cmの層厚で仮焼炉に仕込み、水蒸気分圧10
0mmHgの空気中、850℃の温度で2時間仮焼した
(120×60.5+500=794)。得られた仮焼
粉の粉末X線回折を測定した結果、正方晶の回折パター
ンであり、固溶反応率は97%であった。
Example 1 To 2.5 liters of a 2 mol / l zirconium oxychloride aqueous solution, 2 liters of 1N ammonia water, 36 g of yttrium oxide and 7.5 g of sodium chloride were added,
Further, distilled water was added to prepare 10 liters of a 0.5 mol / l zirconium oxychloride aqueous solution. The hydrolysis reaction was carried out at the boiling temperature for 120 hours while stirring this raw material liquid. The obtained hydrated zirconia sol had an average particle size of 0.1 μm and a crystallite size of 2.4 n according to the photon correlation method.
It was m. The hydrated zirconia sol-containing liquid is concentrated by heating and further spray-dried to have a bulk density of 1.3 g / cm.
3. A hydrated zirconia dry powder having a chlorine content of 15% (weight ratio to zirconia, the same applies hereinafter) was prepared. This dry powder was charged into a calcining furnace with a layer thickness of 6 cm, and the steam partial pressure was 10
It was calcined at a temperature of 850 ° C. for 2 hours in air of 0 mmHg (120 × 6 0.5 + 500 = 794). As a result of measuring the powder X-ray diffraction of the obtained calcined powder, it was found to be a tetragonal diffraction pattern, and the solid solution reaction rate was 97%.

【0018】次いで、上記で得られた仮焼粉を水洗処理
したあと、ボールミルで50時間粉砕した。得られたジ
ルコニア微粉末のBET比表面積は、15m/gであ
った。この粉末を用いて、成形体を作製したところ、成
形体密度は2.67g/cmであり、この成形体を焼
成して得られた焼結体の密度は、6.07g/cm
曲げ強度は115kgf/mmであった。
Next, the calcined powder obtained above was washed with water and then pulverized with a ball mill for 50 hours. The BET specific surface area of the obtained zirconia fine powder was 15 m 2 / g. When a molded body was produced using this powder, the molded body had a density of 2.67 g / cm 3 , and the sintered body obtained by firing this molded body had a density of 6.07 g / cm 3 ,
The bending strength was 115 kgf / mm 2 .

【0019】実施例2 仮焼温度700℃,乾燥粉の層厚2.5cmに設定した
以外は実施例1と同様におこなった(120×2.5
0.5+500=690)。
Example 2 The same procedure was carried out as in Example 1 except that the calcination temperature was 700 ° C. and the dry powder layer thickness was 2.5 cm (120 × 2.5).
0.5 + 500 = 690).

【0020】得られた仮焼粉の固溶反応率は92%であ
り、水洗,粉砕したあとのジルコニア微粉末のBET比
表面積は、23m/gであった。この粉末を用いて、
成形体を作製したところ、成形体密度は2.75g/c
であり、この成形体を焼成して得られた焼結体の密
度は、6.08g/cm、曲げ強度は120kgf/
mmであった。
The solid solution reaction rate of the obtained calcined powder was 92%, and the BET specific surface area of the zirconia fine powder after washing with water and pulverization was 23 m 2 / g. With this powder,
When a molded product was produced, the density of the molded product was 2.75 g / c.
m 3 , the sintered body obtained by firing this molded body had a density of 6.08 g / cm 3 and a bending strength of 120 kgf /
It was mm 2 .

【0021】実施例3 2mol/lのオキシ塩化ジルコニウム水溶液2リット
ルに1規定のアンモニア水1.9リットルおよび酸化イ
ットリウム36gを添加し、さらに蒸留水を加えて0.
4mol/lのオキシ塩化ジルコニウム水溶液10リッ
トルを調製した。この原料液を攪拌しながら加水分解反
応を煮沸温度で120時間おこなった。得られた水和ジ
ルコニアゾルの光子相関法による平均粒径は0.15μ
mであり、結晶子径は2.6nmであった。この水和ジ
ルコニアゾル含有液を加熱濃縮して、さらにスプレー乾
燥させて嵩密度1.2g/cm,塩素含有量14%の
水和ジルコニア乾燥粉末を調製した。この乾燥粉を8c
mの層厚で仮焼炉に仕込み、水蒸気分圧100mmHg
の空気中、900℃の温度で2時間仮焼した(120×
0.5+500=839)。得られた仮焼粉について
粉末X線回折を測定したところ、正方晶の回折パターン
のみが得られ、固溶反応率は98%であった。
Example 3 To 2 liters of a 2 mol / l zirconium oxychloride aqueous solution, 1.9 liters of 1N ammonia water and 36 g of yttrium oxide were added, and distilled water was further added to the mixture.
10 l of a 4 mol / l zirconium oxychloride aqueous solution was prepared. The hydrolysis reaction was carried out at the boiling temperature for 120 hours while stirring this raw material liquid. The average particle size of the obtained hydrated zirconia sol measured by the photon correlation method is 0.15μ.
m, and the crystallite diameter was 2.6 nm. The hydrated zirconia sol-containing solution was concentrated by heating and further spray-dried to prepare a hydrated zirconia dry powder having a bulk density of 1.2 g / cm 3 and a chlorine content of 14%. 8c of this dry powder
Charged in a calcining furnace with a layer thickness of m, steam partial pressure 100 mmHg
In air for 2 hours at 900 ℃ (120 ×
8 0.5 + 500 = 839). When powder X-ray diffraction was measured on the obtained calcined powder, only a tetragonal diffraction pattern was obtained, and the solid solution reaction rate was 98%.

【0022】次いで、上記で得られた仮焼粉を水洗処理
したあと、ボールミルで50時間粉砕した。得られたジ
ルコニア微粉末のBET比表面積は、15m/gであ
った。この粉末を用いて、成形体を作製したところ、成
形体密度は2.75g/cmであり、この成形体を焼
成して得られた焼結体の密度は、6.09g/cm
曲げ強度は125kgf/mmであった。
Next, the calcined powder obtained above was washed with water and then pulverized with a ball mill for 50 hours. The BET specific surface area of the obtained zirconia fine powder was 15 m 2 / g. When a molded body was produced using this powder, the molded body had a density of 2.75 g / cm 3 , and the sintered body obtained by firing this molded body had a density of 6.09 g / cm 3 ,
The bending strength was 125 kgf / mm 2 .

【0023】実施例4 2mol/lのオキシ塩化ジルコニウム水溶液2リット
ルに1規定のアンモニア水3.6リットルおよび酸化イ
ットリウム28.5gを添加し、さらに蒸留水を加えて
0.4mol/lのオキシ塩化ジルコニウム水溶液10
リットルを調製した。この原料液を攪拌しながら加水分
解反応を煮沸温度で120時間おこなった。得られた水
和ジルコニアゾルの光子相関法による平均粒径は0.2
6μmであり、結晶子径は2.9nmであった。この水
和ジルコニアゾル含有液を加熱濃縮して、さらにスプレ
ー乾燥させて嵩密度1.0g/cm3,塩素含有量13
%の水和ジルコニア乾燥粉末を調製した。この乾燥粉を
10cmの層厚で仮焼炉に仕込み、水蒸気分圧40mm
Hgの空気中、1000℃の温度で2時間仮焼した(1
20×100.5+500=879)。得られた仮焼粉
について粉末X線回折を測定したところ、正方晶の回折
パターンのみが得られ、固溶反応率は97%であった。
Example 4 To 2 liters of a 2 mol / l zirconium oxychloride aqueous solution, 3.6 liters of 1N ammonia water and 28.5 g of yttrium oxide were added, and distilled water was further added to the mixture to give 0.4 mol / l oxychloride. Zirconium solution 10
1 liter was prepared. The hydrolysis reaction was carried out at the boiling temperature for 120 hours while stirring this raw material liquid. The average particle size of the obtained hydrated zirconia sol is 0.2 by the photon correlation method.
It was 6 μm and the crystallite size was 2.9 nm. The hydrated zirconia sol-containing liquid is heated and concentrated, and further spray-dried to obtain a bulk density of 1.0 g / cm3 and a chlorine content of 13
% Dry zirconia dry powder was prepared. The dry powder was charged into a calcining furnace with a layer thickness of 10 cm, and the steam partial pressure was 40 mm.
Calcination in Hg air at a temperature of 1000 ° C. for 2 hours (1
20 × 10 0.5 + 500 = 879). When powder X-ray diffraction was measured on the obtained calcined powder, only a tetragonal diffraction pattern was obtained, and the solid solution reaction rate was 97%.

【0024】次いで、上記で得られた仮焼粉を水洗処理
したあと、ボールミルで50時間粉砕した。得られたジ
ルコニア微粉末のBET比表面積は、8m/gであっ
た。この粉末を用いて、成形体を作製したところ、成形
体密度は2.70g/cmであり、この成形体を焼成
して得られた焼結体の密度は、6.08g/cm、曲
げ強度は120kgf/mmであった。
Next, the calcined powder obtained above was washed with water and then pulverized with a ball mill for 50 hours. The BET specific surface area of the obtained zirconia fine powder was 8 m 2 / g. When a molded body was produced using this powder, the molded body had a density of 2.70 g / cm 3 , and the sintered body obtained by firing this molded body had a density of 6.08 g / cm 3 . The bending strength was 120 kgf / mm 2 .

【0025】実施例5 2mol/lのオキシ塩化ジルコニウム水溶液3リット
ルに1規定のアンモニア水4リットル,酸化イットリウ
ム36gを添加し、さらに蒸留水を加えて0.6mol
/lのオキシ塩化ジルコニウム水溶液10リットルを調
製した。この原料液を攪拌しながら加水分解反応を煮沸
温度で120時間おこなった。得られた水和ジルコニア
ゾルの光子相関法による平均粒径は0.1μmであり、
結晶子径は2.5nmであった。この水和ジルコニアゾ
ル含有液を加熱濃縮して、さらにスプレー乾燥させて嵩
密度1.3g/cm,塩素含有量15%の水和ジルコ
ニア乾燥粉末を調製した。この乾燥粉を6cmの層厚で
仮焼炉に仕込み、水蒸気分圧30mmHgの空気中、9
00℃の温度で2時間仮焼した(120×60.5+5
00=794)。得られた仮焼粉の粉末X線回折を測定
した結果、正方晶の回折パターンであり、固溶反応率は
98%であった。
Example 5 To 3 liters of a 2 mol / l zirconium oxychloride aqueous solution, 4 liters of 1N ammonia water and 36 g of yttrium oxide were added, and distilled water was further added to obtain 0.6 mol.
10 liter of an aqueous solution of zirconium oxychloride of 1 / l was prepared. The hydrolysis reaction was carried out at the boiling temperature for 120 hours while stirring this raw material liquid. The average particle size of the obtained hydrated zirconia sol by the photon correlation method is 0.1 μm,
The crystallite size was 2.5 nm. The hydrated zirconia sol-containing liquid was heated and concentrated, and further spray-dried to prepare a hydrated zirconia dry powder having a bulk density of 1.3 g / cm 3 and a chlorine content of 15%. This dry powder was charged into a calcining furnace with a layer thickness of 6 cm, and the dry powder was mixed with air in a steam partial pressure of 30 mmHg for 9
It was calcined at a temperature of 00 ° C. for 2 hours (120 × 6 0.5 +5
00 = 794). As a result of measuring the powder X-ray diffraction of the obtained calcined powder, it was found to be a tetragonal diffraction pattern, and the solid solution reaction rate was 98%.

【0026】次いで、上記で得られた仮焼粉を水洗処理
したあと、ボールミルで50時間粉砕した。得られたジ
ルコニア微粉末のBET比表面積は、20m/gであ
った。この粉末を用いて、成形体を作製したところ、成
形体密度は2.88g/cmであり、この成形体を焼
成して得られた焼結体の密度は、6.08g/cm
曲げ強度は125kgf/mmであった。
Next, the calcined powder obtained above was washed with water and then pulverized with a ball mill for 50 hours. The BET specific surface area of the obtained zirconia fine powder was 20 m 2 / g. When a molded body was produced using this powder, the density of the molded body was 2.88 g / cm 3 , and the density of the sintered body obtained by firing this molded body was 6.08 g / cm 3 ,
The bending strength was 125 kgf / mm 2 .

【0027】比較例1 仮焼温度700℃,乾燥粉の層厚6cmに設定した以外
は実施例1と同様におこなった(120×60.5+5
00=794)。
Comparative Example 1 The same procedure as in Example 1 was carried out (120 × 6 0.5 +5) except that the calcining temperature was 700 ° C. and the layer thickness of the dry powder was 6 cm.
00 = 794).

【0028】得られた仮焼粉の固溶反応率は80%であ
り、水洗,粉砕したあとのジルコニア微粉末のBET比
表面積は、23m/gであった。この粉末を用いて、
成形体を作製したところ、成形体密度は2.59g/c
であり、この成形体を焼成して得られた焼結体の密
度は、5.95g/cm、曲げ強度は96kgf/m
であった。
The solid solution reaction rate of the obtained calcined powder was 80%, and the BET specific surface area of the zirconia fine powder after washing with water and pulverization was 23 m 2 / g. With this powder,
When a molded product was produced, the density of the molded product was 2.59 g / c.
m 3, the density of the sintered body obtained by firing the molded body, 5.95 g / cm 3, flexural strength 96Kgf / m
It was m 2 .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水和ジルコニアゾルとY,Ca,Mg,C
eのうち少なくとも1種の化合物を含む混合物を仮焼し
てジルコニア微粉末を製造する方法において、層厚H
(cm)の該混合物を120H0.5+500≦T≦1
200の条件を満たす温度T(℃)で仮焼することを特
徴とするジルコニア微粉末の製造法。
1. A hydrated zirconia sol and Y, Ca, Mg, C
In the method for producing fine zirconia powder by calcining a mixture containing at least one compound of e, the layer thickness H
(Cm) of the mixture 120H 0.5 + 500 ≦ T ≦ 1
A method for producing zirconia fine powder, which comprises calcining at a temperature T (° C.) satisfying the condition of 200.
JP34771491A 1991-12-04 1991-12-04 Manufacturing method of zirconia fine powder Expired - Fee Related JP3146578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34771491A JP3146578B2 (en) 1991-12-04 1991-12-04 Manufacturing method of zirconia fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34771491A JP3146578B2 (en) 1991-12-04 1991-12-04 Manufacturing method of zirconia fine powder

Publications (2)

Publication Number Publication Date
JPH05155622A true JPH05155622A (en) 1993-06-22
JP3146578B2 JP3146578B2 (en) 2001-03-19

Family

ID=18392093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34771491A Expired - Fee Related JP3146578B2 (en) 1991-12-04 1991-12-04 Manufacturing method of zirconia fine powder

Country Status (1)

Country Link
JP (1) JP3146578B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017173018A1 (en) 2016-04-01 2017-10-05 Pacific Industrial Development Corporation Method of making mesoporous zirconium-based mixed oxides
WO2019136340A1 (en) 2018-01-08 2019-07-11 Pacific Industrial Development Corporation Catalyst comprising ceria-zirconia-oxygen storage material and process for its production
WO2019136343A1 (en) 2018-01-08 2019-07-11 Pacific Industrial Development Corporation Method of making mesoporous oxygen storage materials for exhaust gas treatment; said oxygen storage materials and their use
WO2023145766A1 (en) * 2022-01-27 2023-08-03 東ソー株式会社 Powder and production method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017173018A1 (en) 2016-04-01 2017-10-05 Pacific Industrial Development Corporation Method of making mesoporous zirconium-based mixed oxides
WO2019136340A1 (en) 2018-01-08 2019-07-11 Pacific Industrial Development Corporation Catalyst comprising ceria-zirconia-oxygen storage material and process for its production
WO2019136343A1 (en) 2018-01-08 2019-07-11 Pacific Industrial Development Corporation Method of making mesoporous oxygen storage materials for exhaust gas treatment; said oxygen storage materials and their use
US11224863B2 (en) 2018-01-08 2022-01-18 Pacific Industrial Development Corporation Catalyst comprising ceria-zirconia-oxygen storage material and process for its production
US11635009B2 (en) 2018-01-08 2023-04-25 Pacific Industrial Development Corporation Method of making mesoporous oxygen storage materials for exhaust gas treatment; said oxygen storage materials and their use
WO2023145766A1 (en) * 2022-01-27 2023-08-03 東ソー株式会社 Powder and production method therefor
JP2023109721A (en) * 2022-01-27 2023-08-08 東ソー株式会社 Powder and manufacturing method thereof

Also Published As

Publication number Publication date
JP3146578B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
JP3284413B2 (en) Method for producing hydrated zirconia sol and zirconia powder
JP2008081325A (en) Zirconia fine powder and its manufacturing method
JP3793802B2 (en) Production method of ceria powder with individual particles separated into nano size
JP3959762B2 (en) Zirconia fine powder for solid electrolyte and method for producing the same
JP3146578B2 (en) Manufacturing method of zirconia fine powder
JP2000185919A (en) Zirconia fine powder and its production
JP3265597B2 (en) Method for producing zirconia fine powder
JP3355655B2 (en) Method for producing hydrated zirconia gel and zirconia powder
JP3339076B2 (en) Zirconia fine powder
JP2003212546A (en) Zirconia fine powder and manufacturing method therefor
JP3896614B2 (en) Zirconia powder and method for producing the same
JP4696338B2 (en) Method for producing fine zirconia powder
JPH07118016A (en) Uniform-composition zirconia solid solution monodisperse fine globular powder and its production
KR100473399B1 (en) Process for the preparation of fine ceramic powders
JP3254693B2 (en) Preparation of hydrated zirconia sol and zirconia powder
JP3257095B2 (en) Method for producing zirconia powder
JP3331634B2 (en) Method for producing hydrated zirconia sol and zirconia powder
JP3265368B2 (en) Method for producing zirconium oxide powder
JP3254694B2 (en) Hydrated zirconia sol and method for producing the same
JP4141744B2 (en) Method for producing zirconia sol and method for producing fine zirconia powder
JP3237140B2 (en) Method for producing hydrated zirconia sol and zirconia powder
JPH06171944A (en) Production of zirconium oxide powder
JPH06171943A (en) Production of zirconium oxide powder
JP3331633B2 (en) Method for producing hydrated zirconia sol and zirconia powder
JPH0431359A (en) Production of yttria-stabilized zirconia-based raw material powder

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees