JPH0515544B2 - - Google Patents

Info

Publication number
JPH0515544B2
JPH0515544B2 JP63262509A JP26250988A JPH0515544B2 JP H0515544 B2 JPH0515544 B2 JP H0515544B2 JP 63262509 A JP63262509 A JP 63262509A JP 26250988 A JP26250988 A JP 26250988A JP H0515544 B2 JPH0515544 B2 JP H0515544B2
Authority
JP
Japan
Prior art keywords
vibration
damping
resin composition
copolymer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63262509A
Other languages
Japanese (ja)
Other versions
JPH02107435A (en
Inventor
Mamoru Yanai
Takayuki Furugishi
Juki Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26250988A priority Critical patent/JPH02107435A/en
Publication of JPH02107435A publication Critical patent/JPH02107435A/en
Publication of JPH0515544B2 publication Critical patent/JPH0515544B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、制振金属用樹脂組成物に関し、詳細
には、複数の金属板とそれらを接合する中間層か
ら構成される制振金属板の中間層に用いる制振金
属用樹脂組成物に関する。 (従来の技術) 近年、各種機械及び交通機関等で振動により発
生する騒音の軽減対策が重要課題になり、該対策
として騒音発生源に振動減衰性を有する金属板、
即ち制振金属板が使用されるようになつてきた。
例えば自動車のオイルパンやダツシユパネル、ホ
ツパーのシユート部、汎用エンジンカバー、金属
加工機械の振動低減部材等に、制振金属板が使用
されてきている。 制振金属板は複数の金属板とそれらを接合する
中間層(樹脂層)から構成されるものであり、該
用途により必要特性が変わるが、何れの場合も使
用環境温度での振動減衰性能(以降、制振性能と
いう)が良い事が必要である。 かかる制振金属板の製造法即ち接合法には、ホ
ツトメルト接着剤を用いるホツトメルトラミネー
ト法、溶剤に溶かした樹脂を接着剤として用いる
乾式ラミネート法、及び熱接着性フイルムを用い
るフイルムラミネート法がある。 これらの方法の中、フイルムラミネート法によ
れば、得られる制振金属板は金属板と樹脂層との
密着性及び樹脂層の延性が優れているが、制振性
能が劣つている。乾式ラミネート法の場合は、制
振性能が比較的優れているが、上記密着性が充分
でなく、制振金属板の深紋り加工の際に樹脂層の
剥離又は破断が生じる事がある。 これらに対し、ホツトメルトラミネート法の場
合は、最も制振性能が優れている。又、該方法
は、瞬間接着であるので高速大量生産に適し、無
溶媒であるので人体の被毒や火災の心配が無く、
広範囲の金属板に接着し得、更に再接着も可能で
あるという各種利点を有している。しかも従来の
ホツトメルト接着剤のベース樹脂単独では溶融粘
度が高いので、塗工の際に特殊な塗布装置(エク
ストルージヨンコータ等)が必要であるという欠
点がある。又、比較的低い温度(20〜40℃)で使
用される場合は、制振性能が低くなるという欠点
がある。 そこで、樹脂に可塑剤を添加し、溶融粘度を低
下させて塗工性を高め、且つ、低温(0〜60℃)
での制振性能を高めようとする技術が開発されて
きた。例えば、特公昭46−17582号公報には酢酸
ビニル系樹脂に可塑剤を添加した制振金属用樹脂
組成物、特公昭54−18700号公報には低分子量ポ
リアミド樹脂に可塑剤を添加した制振金属用樹脂
組成物が提示されている。 (発明が解決しようとする課題) 上記の如く可塑剤を添加した制振金属用樹脂組
成物(以降、可塑剤添加型の制振金属用樹脂組成
物という)は、溶融粘度が低くて塗工性に優れ、
且つ制振金属の低温での制振性能(以降、低温制
振性能という)を高め得る長所、利点がある。 ところが、かかる可塑剤添加型の制振金属用樹
脂組成物には、これを溶融し金属板に塗工する際
に、可塑剤が蒸発し、そのために所定の樹脂組成
物が得られないという問題点がある。又、該蒸発
した可塑剤は一般に有害であるので、塗工作業中
の安全衛生対策を必要とする欠点がある。更に、
得られた制振金属を、直射日光の当る場所や発熱
カバーの如く、高温環境下で使用した際において
は、樹脂組成物から可塑剤が移行し易いという問
題点がある。 本発明は、この様な事情に着目してなされたも
のであつて、その目的は従来のものがもつ以上の
ような問題点を解消し、前記可塑剤添加型の制振
金属用樹脂組成物における如き溶融塗工時の可塑
剤蒸発や高温環境下での使用時の可塑剤移行など
の問題を生じない制振金属用樹脂組成物であつ
て、溶融粘度を低下させて塗工性を高め、且つ低
温制振性能を高め得る制振金属用樹脂組成物、即
ち、可塑剤移行等の新たな問題点の発生を招くこ
となく、可塑剤添加型の制振金属用樹脂組成物の
場合と同様に溶融粘度が低くて塗工性に優れ、且
つ優れた低温制振性能が得られる制振金属用樹脂
組成物を提供しようとするものである。 (課題を解決するための手段) 上記課題を達成するために、本発明に係る制振
金属用樹脂組成物は次のような構成としている。 即ち、請求項1記載のものは、下記の単量体a
及びcを重合して得られる共重合体acからなり、
共重合体acの単量体組成がa0wt%超50wt%以
下、c50wt%以上100wt%未満であることを特徴
とする制振金属用樹脂組成物である。 a ビニルエステル(分岐脂肪酸のビニルエステ
ルを除く) c 分岐脂肪酸のビニルエステル 請求項2記載のものは、下記の単量体b及びc
を重合して得られる共重合体bcからなり、共重
合体bcの単量体組成がb0wt%超5wt%以下、
c95wt%以上100wt%未満であることを特徴とす
る制振金属用樹脂組成物である。 b 不飽和カルボン酸 c 分岐脂肪酸のビニルエステル 請求項3記載のものは、前記の単量体a,b及
びcを重合して得られる共重合体abcからなり、
共重合体abcの単量体組成がa0wt%超50wt%以
下、b0wt%超5wt%以下、c50wt%以上100wt%
未満であることを特徴とする制振金属用樹脂組成
物である。 請求項4記載のものは、前記aがカルボン酸ビ
ニルである請求項1又は3記載の制振金属用樹脂
組成物である。 また請求項5記載のものは、前記bがアクリル
酸、メタクリル酸、マレイン酸、フマル酸、イタ
コン酸、クロトン酸、無水マレイン酸から選択さ
れる1種または2種以上である請求項2又は3記
載の制振金属用樹脂組成物である。 (作 用) 発明者らはビニルエステル共重合体および不飽
和カルボン酸共重合体に着目し、その性質につい
て種々検討したところ、ビニルエステル共重合
体、不飽和カルボン酸共重合体またはビニルエス
テルと不飽和カルボン酸との共重合体が、その共
重合体の成分として分岐脂肪酸のビニルエステル
を含むとき、溶融粘度が著しく低下し、又、低温
制振性能が高くなるという知見を得た。本発明
は、これらの知見に基づくものである。以下、こ
のことをより詳細に説明する。 即ち、下記の単量体a及びbを重合して得られ
る共重合体ac,b及びcを重合して得られる共
重合bc、又はa,b及びcを重合して得られる
共重合体abcからなる制振金属用樹脂組成物は、
比較的溶融粘度が低く、又、低温制振性能が高い
という新規知見を得た。 a ビニルエステル(分岐脂肪酸のビニルエステ
ルを除く) b 不飽和カルボン酸 c 分岐脂肪酸のビニルエステル そして、このとき、共重合体の単量体組成が、
共重合体acの場合はa0wt%超50wt%以下、
c50wt以上100wt%未満、共重合体bcの場合は
b0wt%超5wt%以下、c95wt%以上100wt%未満、
また、共重合体abcの場合はa0wt%超50wt%
以下、b0wt%超5wt%以下、c50wt%以上100wt
%未満になるようにしたとき、前記可塑剤添加型
の制振金属用樹脂組成物の場合と同様もしくはそ
れ以上に、溶融粘度が著しく低下して充分塗工性
に優れ、又、確実に低温制振性能が高くなり、充
分なものとなることが判つた。 そこで、本発明に係る制振金属用樹脂組成物は
上記の如き組成の共重合体ac、共重合体bc又は
共重合体abcとしているのである。即ち、共重
合体acからなり、その単量体組成がa0wt%超
50wt%以下、c50wt%以上100wt%未満のもの、
共重合体bcからなり、その単量体組成がb0wt
%超5wt%以下、c95wt%以上100wt%未満のも
の、又は、共重合体abcからなり、その単量体
組成がa0wt%超50wt%以下、b0wt%超5wt%以
下、c50wt%以上100wt%未満のものとしている
のである。 故に、前記知見よりして、本発明に係る制振金
属用樹脂組成物は、可塑剤添加型の制振金属用樹
脂組成物の場合と同様もしくはそれ以上に、溶融
粘度が低くて充分塗工性に優れ、又、低温制振性
能を充分な水準に高め得る。従つて、該樹脂組成
物をホツトメルト接着剤して使用し、制振金属を
製造すれば、塗工時の特殊な塗布装置が不必要に
なる。又、該樹脂組成物を接着剤として使用すれ
ば、低温制振性能の高い制振金属が得られるよう
になる。 このように溶融粘度が著しく低下し、低温での
制振性能が高くなるのは、分岐脂肪酸ビニルエス
テルのホモポリマーのガラス転位温度が低い(−
3℃)からである。 また、本発明に係る制振金属用樹脂組成物は、
可塑剤を含有していないので、可塑剤添加型の制
振金属用樹脂組成物における如き溶融塗工時の可
塑剤蒸発や高温環境下での使用時の可塑剤移行な
どの問題を、基本的に生じないものである。 上記本発明に係る共重合体の単量体組成に関し
ての数値限定理由を以下説明する。 共重合体acの場合、a0wt%超50wt%以下、
c50wt%以上100wt%未満としているのは、
a50wt%超、c50wt%未満では溶融粘度低下及び
低温制振性能向上の作用効果を有するc即ち分岐
脂肪酸のビニルエステルの量が少なくなり過ぎ、
溶融粘度が高くなつて塗工性が低下すると共に低
温制振性能が低下し、特には溶融粘度が高くなつ
て塗工性が不充分となり、実用性を失するように
なるからである。 共重合体bcの場合、b0wt%超5wt%以下、
c95wt%以上100wt%未満としているのは、b5wt
%超にするとb即ち不飽和カルボン酸が多くなり
過ぎ、溶融粘度が高くなり、制振金属板の制振性
能が低下し不充分となるからである。 共重合体abcの場合、a0wt%超50wt%以下、
b0wt%超5wt%以下、c50wt%以上100wt%未満
としているのは、bについては5wt%超にすると
制振金属板の制振性能が不充分となり、a及びc
についてはa50wt%超、c50wt%未満にすると、
cの量が少なくなり過ぎ、塗工性及び低温制振性
能が不充分となるからである。 尚、前記b即ち不飽和カルボン酸を、アクリル
酸、メタクリル酸、マレイン酸、フマル酸、イタ
コン酸、クロトン酸、無水マレイン酸から選択さ
れる1種または2種以上にする事が望ましい。こ
のようにすると、金属板に対する接着強度がより
向上するからである。又、共重合体中に占める不
飽和カルボン酸の場合は、1〜6モル%にする事
が望ましい。1モル%未満になると、接着強度が
低下し、6モル%を超えると制振性能が低くなる
からである。 前記aのビニルエステル(即ち、分岐脂肪酸の
ビニルエステル以外のビニルエステル)として
は、酢酸ビニル、プロピオン酸ビニル、酪酸ビニ
ルの如きカルボン酸ビニル、又はアクリル酸メチ
ル、アクリル酸エチル、アクリル酸ブチル、アク
リル酸2−エチルヘキシルの如きアクリル酸エス
テル、又はメタクリル酸メチル、メタクリル酸エ
チル、メタクリル酸ブチル、メタクリル酸2−エ
チルヘキシルの如きメタクリル酸エステル等を使
用できる。これらの中で、特にカルボン酸ビニル
の使用が望ましい。それは、カルボン酸ビニルの
ホモポリマーの制振性能が高いからである。 前記c即ち分岐脂肪酸のビニルエステルとして
は、ベオバ10又はベオバ9(いずれも商品名:シ
エル化学株式会社)を使用できる。 共重合は通常の方法、例えばメチルアルコール
やアセトン等を用いる溶液重合法、により行う事
ができる。 樹脂組成物の耐熱性や安定性の向上のため高分
子量ヒンダードフエノール等の酸化防止剤、又は
亜鉛系液状安定剤、ホスフアイト系安定剤等の安
定剤を、又、溶融粘度の調整や制振金属板の接着
強度の向上のため高純度超微粒子無水シリカ等の
粘度調整剤を、必要に応じて添加するとよい。添
加する場合の樹脂組成物に対する割合は、酸化防
止剤や安定剤の添加量では1〜4wt%、粘度調整
剤では0.5〜5wt%にするのが良い。 樹脂組成物に導電性を付与し、制振金属板の溶
接性を向上する目的で、樹脂組成物にカーボンブ
ラツク、黒鉛、金属粉等の各種導電性フイラーを
配合する事ができる。 制振金属板の金属の種類は特に限定されるもの
ではない。 本発明に係る樹脂組成物を用いて制振金属板を
製造するには、例えば120〜180℃で該組成物を溶
融し、金属板面に30〜100μm程の厚さに塗布し
た後、その上に別の金属板を重ね120〜180℃,5
〜20Kg/cm2で熱圧着すればよい。又、アセトン等
の溶媒に上記組成物を溶かし、金属板面に30〜
400μm,好ましくは60〜200μmの厚さに塗布し、
溶媒を除去した後、熱圧着すればよい。 尚、このようにして得られる制振金属板は金属
板の間に薄い制振金属用樹脂(制振樹脂)が挟み
込まれた構造を有する。かかる構造のものは拘束
型といわれるものである。一般に、このような拘
束型制振金属板は、振動が加えられると、制振金
属板が曲げ変形を生じ、その際中間層の制振樹脂
がせん断変形を受ける。そして、これらが繰り返
されることになるが、このとき制振樹脂が振動エ
ネルギを吸収することにより、制振金属板の制振
性能が発揮される。従つて、大きな制振性能を得
るには制振樹脂としては粘弾性特性の一つである
損失正接(Tanδ)の大きいものを用いる必要が
あり、又、制振性能を表す一指標である損失係数
(η)の極大温度(TηMAX)を低くすると、低温
制振性能が高められることも知られている。一
方、前述の如き塗工性に優れていることも必要で
あり、そのためには溶融粘度を低下させるとよい
ことも知られている。 かかる点に関し、プラスチツク接着用等の接着
剤用樹脂組成物(共重合体)、例えば感圧接着剤
の分野においては、その共重合体の単量体組成と
して分岐脂肪酸のビニルエステルを略5〜数
10wt%含ませると、接着力が向上するという知
見が開示されている。しかし、分岐脂肪酸のビニ
ルエステルにより、制振性能が高められること、
特に損失正接(tanδ)の向上や損失係数(η)の
極大温度(TηMAX)の低下によつて低温制振性能
が高められることについては、全く知られておら
ず、前述の如き検討により初めて得られた新規知
見である。更には、共重合体の単量体として分岐
脂肪酸のビニルエステルを必ず用いると共に本発
明に係る単量体組成(種類、組合せ、量)にする
ことにより、低温制振性能が著しく高められ、
又、溶融粘度が低下して制振金属板の製造に際し
て充分な塗工性が確保されることについても、全
く知られていない新規知見である。特に、上記単
量体組成の量に関し、分岐脂肪酸のビニルエステ
ルの量は、50wt%超又は95wt%超であり、これ
は上記接着剤用樹脂組成物において開示されてい
る量に比べて遥かに高レベルであり、本発明の目
的を達成するための本発明に係る制振金属用樹脂
組成物に特有の量である。本発明はかかる新規知
見に基づき完成されたものである。 (実施例) 本発明の実施例を以下に説明する。 実施例 1 500mlの三口フラスコにアセトン〔重合用溶
液〕;100ml、酢酸ビニル,アクリル酸n−ブチル
〔以上a、即ち分岐脂肪酸のビニルエステル以外
のビニルエステル〕、ベオバ10;115g;0.58mol
〔c、即ち分岐脂肪酸のビニルエステル〕,アクリ
ル酸;5g:0.0694mol〔b即ち不飽和カルボン
酸〕、及びアゾビスイソブチロニトリル〔重合開
始剤〕;0.5gを入れ、常圧下、湯浴温度70℃でア
セトンを還流しつつ、重合液を撹拌しながら共重
合を行い、四元共重合体を得た。 ここで、aの一種である酢酸ビニルは、10〜40
g(0.12〜0.46mol)の範囲、又、アクリル酸n
−ブチルは、13.6〜54.4g(0.11〜0.42mol)の範
囲で変化させた。得られた四元共重合体の組成を
第1表に示す。尚、第1表でNo.4は比較のため製
した三元共重合体である。 得られた重合体について、コントラバス社製高
温用粘度計(レオマツト30)を用い、180℃,剪
断速度100(1/秒)の条件で溶融粘度を測定し
た。その結果、ベオバ10〔c:分岐脂肪酸のビニ
ルエステル〕を含有していない共重合体(No.4)
の溶融粘度は極めて高く、測定不可能であつた。
これに対し、ベオバ10〔cの一種〕を含有してい
る四元共重合体(No.1〜3)の溶融粘度は低く、
29〜31ポイズであつた。 上記重合体を0.8×200×250mmの冷延鋼板の面
上に100μmの厚さに塗布し、減圧乾燥器により
脱溶媒した後、その上に別の鋼板を重ね160℃,
20Kg/cm2で5分間熱圧着し、制振鋼板(制振金属
板の一種)を得た。この塗布は特殊な塗布装置を
要する事なく出来、極めて容易なものであつた。 この制振鋼板から短冊型試料を製し、B&K社
製複素弾性係数測定装置を用い、共振法により測
定周波数250Hzで振動減衰試験を行い、試験時の
零囲気温度と制振鋼板の損失係数との関数を求め
た。この結果を第1図に示す。図様〇はNo.1、●
はNo.2、△はNo.3、×はNo.4の場合の結果を示す
ものである。第1図から判るように、No.4の場合
に比較し、No.1〜3の場合は比較的低い温度での
制振性能が優れている。No.1〜3の場合について
みると、アクリル酸n−ブチルの添加量が多い
程、上記極大温度が低温側に移行しているので、
該添加量の調整により低い温度でも制振性能が優
れたものにし得る事が判る。 又、短冊型試料を用い、接着力の測定を
JISK6854の方法に準じて行つた。その結果、T
方向剥離強度は0.9〜1.2Kgf/mmであつた。これ
は、この程度の強度があればシヤーリング加工等
の加工は剥離を生じる事なく行い得るので、本発
明に係る制振金属用樹脂組成物は充分な接着力が
得られる事を示している。 尚、上記本発明の実施例1に係る共重合体、即
ち制振金属用樹脂(No.1〜3)は、単量体組成量
が、ビニルエステル(分岐脂肪酸のビニルエステ
ルを除く)aとしての酢酸ビニル及びアクリル酸
n−ブチル:31〜35wt%、不飽和カルボン酸b
としてのアクリル酸:3wt%、分岐脂肪酸のビニ
ルエステルcとしてのベオバ10:62〜66wt%で
あり、本発明の樹脂組成物(請求項3記載のも
の)に係る単量体組成であるa0wt%超50wt%以
下、b0wt%超5wt%以下、c50wt%以上100wt%
未満の範囲内にある。そして、上記の如く、溶融
粘度は29〜31ポイズと低いために特殊塗布装置を
要する事なく極めて容易に塗布し得て塗工性に優
れ、又、低温制振性能に優れている。以上のこと
は、本発明の樹脂組成物(請求項3記載のもの)
に係る単量体組成にすること、即ちa0wt%超
50wt%以下、b0wt%超5wt%以下、c50wt%以上
100wt%未満にすることにより、可塑剤添加型の
制振金属用樹脂組成物の場合と同様もしくはそれ
以上に、溶融粘度が低くて塗工性に優れ、そのた
め制振金属製造に際して金属板への塗布が容易に
行え、又、低温制振性能に優れた制振金属が得ら
れるようになるということを、裏付けている。 実施例 2 実施例1と同様の方法により、酢酸ビニル〔a
のビニルエステル〕、ベオバ10〔c〕、アクリル酸
〔b〕;5g:0.0694molの三元共重合体を得た。
ここで酢酸ビニルは10〜40g(0.12〜0.46mol)
の範囲、ベオバ10は119〜206g(0.60〜1.04mol)
の範囲で変化させた。得られた三元共重合体の組
成を第2表に示す。 得られた重合体について、実施例1と同様の方
法により、制振鋼板を作り、振動減衰試験および
接着力測定を行つた。 実施例1と同様、重合体の塗布は極めて容易に
出来た。接着力(剥離強度)も実施例1の場合と
同様であつた。 雰囲気温度と制振鋼板の損失係数との関係を第
2図に示す。図中〇はNo.5、●はNo.6、△はNo.7
の場合の結果を示すものである。第2図よりいづ
れの場合も損失係数の極大温度が低く、又、酢酸
ビニルの添加量が減少すると、上記極大温度が低
温側に移行するので、該添加量の調整により低い
温度でも優れた制振性能が得られる事が判る。 尚、上記実施例2に係る樹脂(No.5〜7)は、
単量体組成量が、酢酸ビニル(aの一種):4.5〜
24.4wt%、アクリル酸(bの一種):2.3〜3.0wt
%、ベオバ10(cの一種):72.6〜93.2wt%であ
り、本発明(請求項3記載のもの)に係る単量体
組成の範囲内にあり、そして、上記の如く塗工性
及び低温制振性能を高める。これもまた、本発明
の樹脂組成物(請求項3記載のもの)に係る単量
体組成にすることにより、前記の如く塗工性及び
低温制振性能を高め得るようになるということ
を、裏付けている。 実施例 3 実施例1と同様の方法により、酢酸ビニル;30
g:0.35mol、アクリル酸n−ブチル;27.2g:
0.21mol、ベオバ10;115g:0.58molの三元共重
合体を得た。得られた重合体について、実施例1
と同様の方法により、制振鋼板を作り、振動減衰
試験を行つた。 実施例1と同様、重合体の塗布は極めて容易に
出来た。接着力(剥離強度)も実施例1の場合と
同様であつた。 雰囲気温度と制振鋼板の損失係数との関係を第
3図に示す。第3図より損失係数の極大温度が低
く、比較的低温でも優れた制振性能が得られる事
が判る。 尚、上記本発明の実施例3に係る共重合体は、
単量体組成量が、aとしての酢酸ビニル及びアク
リル酸n−ブチル:33.2wt%、cとしてのベオバ
10:66.8wt%であり、本発明の樹脂組成物(請求
項1記載のもの)に係る単量体組成であるa50wt
%以下、c50wt%超100wt%未満の範囲内にあり、
そして、上記の如く鋼板へ塗布し易く、又、優れ
た低温制振性能が得られる。以上のことは、本発
明の樹脂組成物(請求項1記載のもの)に係る単
量体組成、即ちa0wt%超50wt%以下、c50wt%
以上100wt%未満にすることにより、可塑剤添加
型の制振金属用樹脂組成物の場合と同様もしくは
それ以上に、塗工性に優れ、又、低温制振性能に
優れた制振金属が得られるようになるということ
を、裏付けている。 実施例 4 実施例1と同様の方法により、ベオバ10及び/
又はベオバ9、アクリル酸〔b:不飽和カルボン
酸の一種〕;5g:0.0694molの三元共重合体、
或いは二元共重合体を得た。ここでベオバ10は
115〜206g(0.58〜1.04mol)の範囲、ベオバ9
は43〜107g(0.234〜0.58mol)の範囲で変化さ
せた。得られた共重合体の組成を第3表に示す。 得られた重合体について、実施例1と同様の方
法により、制振鋼板を作り、振動減減衰試験を行
つた。 実施例1と同様、重合体の塗布は極めて容易に
出来た。 雰囲気温度と制振鋼板の損失係数との関係を第
4図に示す。図中□はNo.8、●はNo.9、△はNo.
10、〇はNo.11の場合の結果を示すものである。
(Industrial Application Field) The present invention relates to a vibration-damping metal resin composition, and more particularly, to a vibration-damping resin composition for use in an intermediate layer of a vibration-damping metal plate, which is composed of a plurality of metal plates and an intermediate layer joining them together. The present invention relates to a resin composition for metals. (Prior Art) In recent years, measures to reduce noise generated by vibrations in various machines and transportation systems have become an important issue, and as a countermeasure, metal plates with vibration damping properties,
That is, vibration damping metal plates have come to be used.
For example, vibration-damping metal plates have been used in automobile oil pans, dash panels, hopper chute parts, general-purpose engine covers, vibration reduction members of metal processing machines, and the like. A vibration-damping metal plate is composed of multiple metal plates and an intermediate layer (resin layer) that joins them together, and the required characteristics vary depending on the application, but in any case, the vibration damping performance ( It is necessary that the damping performance (hereinafter referred to as vibration damping performance) be good. Methods for producing such vibration-damping metal plates, that is, bonding methods, include a hot melt lamination method using a hot melt adhesive, a dry lamination method using a resin dissolved in a solvent as an adhesive, and a film lamination method using a thermally adhesive film. . Among these methods, according to the film lamination method, the resulting vibration-damping metal plate has excellent adhesion between the metal plate and the resin layer and ductility of the resin layer, but has poor vibration-damping performance. In the case of the dry lamination method, the vibration damping performance is relatively excellent, but the adhesion is not sufficient, and the resin layer may peel or break during deep patterning of the vibration damping metal plate. On the other hand, the hot melt lamination method has the best vibration damping performance. In addition, this method is suitable for high-speed mass production because it is instant adhesive, and since it is solvent-free, there is no risk of poisoning the human body or fire.
It has various advantages in that it can be bonded to a wide range of metal plates and can be re-bonded. Moreover, since the base resin of conventional hot melt adhesives alone has a high melt viscosity, there is a drawback that special coating equipment (such as an extrusion coater) is required during coating. Furthermore, when used at relatively low temperatures (20 to 40°C), there is a drawback that the vibration damping performance becomes low. Therefore, a plasticizer is added to the resin to lower the melt viscosity and improve the coating properties, and also to reduce the melt viscosity at low temperatures (0 to 60℃).
Technologies have been developed to improve vibration damping performance. For example, Japanese Patent Publication No. 46-17582 discloses a vibration-damping resin composition for metals made of vinyl acetate resin with a plasticizer added, and Japanese Patent Publication No. 18700-1970 discloses a vibration-damping resin composition made of a low-molecular-weight polyamide resin with a plasticizer added. A resin composition for metals is presented. (Problems to be Solved by the Invention) The vibration-damping metal resin composition to which a plasticizer has been added as described above (hereinafter referred to as a plasticizer-added vibration-damping metal resin composition) has a low melt viscosity and is easy to coat. Excellent in sex,
In addition, it has the advantage of being able to enhance the damping performance of damping metals at low temperatures (hereinafter referred to as low-temperature damping performance). However, such plasticizer-added vibration-damping metal resin compositions have the problem that the plasticizer evaporates when they are melted and applied to a metal plate, making it impossible to obtain a desired resin composition. There is a point. Furthermore, since the evaporated plasticizer is generally harmful, there is a drawback that safety and hygiene measures are required during the coating operation. Furthermore,
When the obtained damping metal is used in a high-temperature environment such as in a place exposed to direct sunlight or in a heat-generating cover, there is a problem in that the plasticizer tends to migrate from the resin composition. The present invention has been made in view of these circumstances, and its purpose is to solve the above-mentioned problems of the conventional ones, and to provide a plasticizer-added vibration-damping metal resin composition. A vibration-damping resin composition for metals that does not cause problems such as plasticizer evaporation during melt coating or plasticizer migration when used in high-temperature environments, as in , and a vibration-damping metal resin composition that can improve low-temperature vibration damping performance, that is, a plasticizer-added vibration-damping metal resin composition without causing new problems such as plasticizer migration. Similarly, it is an object of the present invention to provide a vibration-damping metal resin composition that has a low melt viscosity, has excellent coatability, and provides excellent low-temperature vibration damping performance. (Means for Solving the Problems) In order to achieve the above problems, the damping metal resin composition according to the present invention has the following configuration. That is, the product according to claim 1 comprises the following monomer a.
and a copolymer ac obtained by polymerizing c,
This is a vibration-damping metal resin composition characterized in that the monomer composition of the copolymer ac is more than 0 wt% a and less than 50 wt%, and c more than 50 wt% and less than 100 wt%. a vinyl ester (excluding vinyl esters of branched fatty acids); c vinyl esters of branched fatty acids.
consisting of a copolymer bc obtained by polymerizing bc, the monomer composition of the copolymer bc is more than b0wt% and 5wt% or less,
A vibration-damping metal resin composition characterized in that the c content is 95 wt% or more and less than 100 wt%. b unsaturated carboxylic acid c vinyl ester of branched fatty acid The product according to claim 3 consists of a copolymer abc obtained by polymerizing the monomers a, b and c,
Monomer composition of copolymer ABC is more than 0wt% and less than 50wt%, b more than 0wt% and less than 5wt%, c more than 50wt% and 100wt%
This is a vibration-damping metal resin composition characterized in that the vibration-damping resin composition is less than A fourth aspect of the present invention is the vibration-damping metal resin composition according to the first or third aspect, wherein the a is vinyl carboxylate. Further, in the product according to claim 5, the b is one or more selected from acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, and maleic anhydride. This is the vibration-damping metal resin composition described above. (Function) The inventors focused on vinyl ester copolymers and unsaturated carboxylic acid copolymers and conducted various studies on their properties. It has been found that when a copolymer with an unsaturated carboxylic acid contains a branched fatty acid vinyl ester as a component of the copolymer, the melt viscosity is significantly reduced and the low-temperature vibration damping performance is enhanced. The present invention is based on these findings. This will be explained in more detail below. That is, a copolymer ac obtained by polymerizing the following monomers a and b, a copolymer bc obtained by polymerizing b and c, or a copolymer abc obtained by polymerizing a, b and c. A vibration-damping metal resin composition consisting of
New findings were obtained that the melt viscosity is relatively low and the low-temperature vibration damping performance is high. a Vinyl ester (excluding vinyl esters of branched fatty acids) b Unsaturated carboxylic acid c Vinyl esters of branched fatty acids And at this time, the monomer composition of the copolymer is
For copolymer ac, more than 0wt% and less than 50wt%,
For c50wt or more and less than 100wt%, copolymer bc
b0wt% more than 5wt% or less, c95wt% or more and less than 100wt%,
In addition, in the case of copolymer ABC, a0wt% or more than 50wt%
Below, b0wt% over 5wt%, c50wt% or more 100wt
%, the melt viscosity is significantly lowered to a level similar to or even higher than that of the plasticizer-added vibration-damping metal resin composition, and the coating property is sufficiently excellent, and it is reliably coated at low temperatures. It was found that the vibration damping performance was improved and was sufficient. Therefore, the damping metal resin composition according to the present invention is a copolymer ac, a copolymer bc, or a copolymer abc having the composition as described above. That is, it consists of a copolymer ac, whose monomer composition exceeds a0wt%.
50wt% or less, c50wt% or more and less than 100wt%,
Consists of copolymer bc, whose monomer composition is b0wt
% but not more than 5wt%, c95wt% or more and less than 100wt%, or consisting of a copolymer ABC whose monomer composition is more than a0wt% and not more than 50wt%, b0wt% and not more than 5wt%, c50wt% or more and less than 100wt% It is considered to be the property of Therefore, based on the above findings, the resin composition for vibration damping metal according to the present invention has a melt viscosity as low as or lower than that of the plasticizer-added resin composition for vibration damping metal, and can be coated satisfactorily. It has excellent properties and can improve low-temperature vibration damping performance to a sufficient level. Therefore, if the resin composition is used as a hot melt adhesive to produce a damping metal, a special coating device is not required during coating. Further, if the resin composition is used as an adhesive, a vibration damping metal with high low temperature vibration damping performance can be obtained. This remarkable decrease in melt viscosity and high vibration damping performance at low temperatures is due to the low glass transition temperature of the branched fatty acid vinyl ester homopolymer (-
3°C). Furthermore, the vibration-damping metal resin composition according to the present invention includes:
Since it does not contain a plasticizer, it basically eliminates problems such as plasticizer evaporation during melt coating and plasticizer migration during use in high-temperature environments, such as in plasticizer-added vibration damping metal resin compositions. It does not occur in The reason for the numerical limitation regarding the monomer composition of the copolymer according to the present invention will be explained below. For copolymer ac, more than 0wt% and less than 50wt%,
c50wt% or more and less than 100wt%
If a is more than 50wt% and c is less than 50wt%, the amount of c, that is, vinyl ester of branched fatty acid, which has the effect of reducing melt viscosity and improving low-temperature vibration damping performance, becomes too small.
This is because as the melt viscosity increases, the coatability decreases, and the low-temperature vibration damping performance also decreases.In particular, as the melt viscosity increases, the coatability becomes insufficient, and practicality is lost. In the case of copolymer bc, more than b0wt% and less than or equal to 5wt%,
b5wt is defined as c95wt% or more and less than 100wt%.
This is because if it exceeds %, b, that is, unsaturated carboxylic acid, becomes too large, the melt viscosity becomes high, and the vibration damping performance of the vibration damping metal plate decreases and becomes insufficient. In the case of copolymer ABC, more than 0wt% and less than 50wt%,
The reason for setting b to be more than 5wt% and less than 5wt% and c to be more than 50wt% and less than 100wt% is because if it exceeds 5wt% for b, the damping performance of the vibration damping metal plate will be insufficient, and for a and c.
For more than a50wt% and less than c50wt%,
This is because the amount of c becomes too small, resulting in insufficient coatability and low-temperature vibration damping performance. It is preferable that the unsaturated carboxylic acid b is one or more selected from acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, and maleic anhydride. This is because by doing so, the adhesive strength to the metal plate is further improved. Moreover, in the case of unsaturated carboxylic acid occupying in the copolymer, it is desirable to make it 1 to 6 mol%. This is because if it is less than 1 mol %, the adhesive strength will decrease, and if it exceeds 6 mol %, the vibration damping performance will be lowered. The vinyl esters (i.e., vinyl esters other than vinyl esters of branched fatty acids) mentioned in a above include vinyl carboxylates such as vinyl acetate, vinyl propionate, vinyl butyrate, or methyl acrylate, ethyl acrylate, butyl acrylate, and acrylic acid. Acrylic esters such as 2-ethylhexyl methacrylate, methacrylic esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, and 2-ethylhexyl methacrylate can be used. Among these, it is particularly desirable to use vinyl carboxylate. This is because the homopolymer of vinyl carboxylate has high vibration damping performance. As the vinyl ester of c, that is, the branched fatty acid, Beoba 10 or Beoba 9 (both trade names: Ciel Chemical Co., Ltd.) can be used. Copolymerization can be carried out by a conventional method, for example, a solution polymerization method using methyl alcohol, acetone, or the like. In order to improve the heat resistance and stability of the resin composition, antioxidants such as high molecular weight hindered phenols, stabilizers such as zinc-based liquid stabilizers and phosphite-based stabilizers are added, as well as to adjust the melt viscosity and damp vibration. In order to improve the adhesive strength of the metal plate, a viscosity modifier such as high-purity ultrafine anhydrous silica may be added as necessary. When added, the proportion to the resin composition is preferably 1 to 4 wt% for antioxidants and stabilizers, and 0.5 to 5 wt% for viscosity modifiers. Various conductive fillers such as carbon black, graphite, and metal powder can be blended into the resin composition for the purpose of imparting conductivity to the resin composition and improving the weldability of the vibration-damping metal plate. The type of metal of the damping metal plate is not particularly limited. In order to produce a damping metal plate using the resin composition according to the present invention, the composition is melted at, for example, 120 to 180°C and applied to the metal plate surface to a thickness of about 30 to 100 μm. Layer another metal plate on top at 120-180℃, 5
Heat compression bonding at ~20Kg/cm 2 is sufficient. Alternatively, dissolve the above composition in a solvent such as acetone and apply it on the metal plate surface for 30 to 30 minutes.
Apply to a thickness of 400 μm, preferably 60 to 200 μm,
After removing the solvent, thermocompression bonding may be performed. The damping metal plate thus obtained has a structure in which a thin damping metal resin (damping resin) is sandwiched between the metal plates. Such a structure is called a constrained type. Generally, when vibration is applied to such a constraint-type vibration-damping metal plate, the vibration-damping metal plate undergoes bending deformation, and at this time, the vibration-damping resin in the intermediate layer undergoes shearing deformation. These steps are repeated, and the damping resin absorbs the vibration energy, thereby demonstrating the damping performance of the damping metal plate. Therefore, in order to obtain great damping performance, it is necessary to use a damping resin with a large loss tangent (Tanδ), which is one of the viscoelastic properties, and loss tangent, which is an index of damping performance. It is also known that low-temperature vibration damping performance can be improved by lowering the maximum temperature (Tη MAX ) of the coefficient (η). On the other hand, it is also necessary to have excellent coating properties as described above, and it is known that for this purpose it is good to lower the melt viscosity. Regarding this point, in the field of resin compositions (copolymers) for adhesives such as plastic adhesives, for example, pressure-sensitive adhesives, the monomer composition of the copolymers is approximately 5 to 50% vinyl ester of branched fatty acids. number
It has been disclosed that when 10 wt% is included, the adhesive strength is improved. However, the vibration damping performance is improved by branched fatty acid vinyl ester.
In particular, it was not known at all that low-temperature vibration damping performance could be improved by improving the loss tangent (tanδ) or lowering the maximum temperature (Tη MAX ) of the loss coefficient (η), and it was not known for the first time through the study described above. This is a new finding. Furthermore, by always using a vinyl ester of a branched fatty acid as the monomer of the copolymer and by using the monomer composition (type, combination, amount) according to the present invention, the low-temperature vibration damping performance is significantly improved.
Furthermore, it is a completely unknown and new finding that the melt viscosity is lowered to ensure sufficient coatability in the production of vibration-damping metal plates. In particular, with respect to the amount of the monomer composition, the amount of vinyl ester of branched fatty acid is more than 50wt% or more than 95wt%, which is much more than the amount disclosed in the adhesive resin composition. This is a high level and is an amount specific to the damping metal resin composition according to the present invention to achieve the object of the present invention. The present invention has been completed based on this new knowledge. (Example) Examples of the present invention will be described below. Example 1 In a 500 ml three-necked flask, add acetone [polymerization solution]; 100 ml, vinyl acetate, n-butyl acrylate [above a, i.e., vinyl ester other than branched fatty acid vinyl ester], Beoba 10; 115 g; 0.58 mol
Add [c, i.e., vinyl ester of branched fatty acid], acrylic acid; 5 g: 0.0694 mol [b, i.e., unsaturated carboxylic acid], and 0.5 g of azobisisobutyronitrile [polymerization initiator], and place in a hot water bath under normal pressure. Copolymerization was carried out at a temperature of 70° C. while refluxing acetone and stirring the polymerization solution to obtain a quaternary copolymer. Here, vinyl acetate, which is a type of a, is 10 to 40
g (0.12 to 0.46 mol), and acrylic acid n
-Butyl was varied in the range of 13.6 to 54.4 g (0.11 to 0.42 mol). The composition of the obtained quaternary copolymer is shown in Table 1. In Table 1, No. 4 is a terpolymer prepared for comparison. The melt viscosity of the obtained polymer was measured using a high-temperature viscometer (Rheomatsu 30) manufactured by Contrabas under conditions of 180° C. and a shear rate of 100 (1/sec). As a result, a copolymer (No. 4) that did not contain Beoba 10 [c: branched fatty acid vinyl ester]
The melt viscosity of was extremely high and could not be measured.
On the other hand, the melt viscosity of the quaternary copolymers (Nos. 1 to 3) containing Beoba 10 [a type of c] is low;
It was 29-31 poise. The above polymer was applied to a thickness of 100 μm on the surface of a 0.8 x 200 x 250 mm cold-rolled steel plate, and after the solvent was removed in a vacuum dryer, another steel plate was placed on top of it and heated at 160°C.
A vibration damping steel plate (a type of vibration damping metal plate) was obtained by thermocompression bonding at 20 kg/cm 2 for 5 minutes. This application was extremely easy and did not require any special application equipment. A rectangular sample was made from this damping steel plate, and a vibration damping test was conducted using a complex elastic modulus measuring device manufactured by B&K at a measurement frequency of 250 Hz using the resonance method. We found the function of The results are shown in FIG. Illustration 〇 is No.1, ●
indicates the results for No. 2, △ for No. 3, and × for No. 4. As can be seen from FIG. 1, compared to No. 4, Nos. 1 to 3 have superior vibration damping performance at relatively low temperatures. Looking at cases No. 1 to 3, the higher the amount of n-butyl acrylate added, the more the maximum temperature shifts to the lower temperature side.
It can be seen that by adjusting the amount added, excellent vibration damping performance can be achieved even at low temperatures. In addition, the adhesive strength was measured using a strip sample.
It was carried out according to the method of JISK6854. As a result, T
The directional peel strength was 0.9 to 1.2 Kgf/mm. This shows that with this level of strength, processing such as shearing processing can be performed without causing peeling, and therefore the vibration-damping resin composition for metals according to the present invention can obtain sufficient adhesive strength. In addition, the copolymers according to Example 1 of the present invention, that is, the vibration-damping metal resins (No. 1 to 3), have a monomer composition of vinyl ester (excluding vinyl ester of branched fatty acid) a. Vinyl acetate and n-butyl acrylate: 31-35 wt%, unsaturated carboxylic acid b
Acrylic acid as: 3 wt%, Beoba as branched fatty acid vinyl ester c: 62-66 wt%, and a0 wt% which is the monomer composition according to the resin composition of the present invention (those according to claim 3). More than 50wt%, b0wt% more than 5wt%, c50wt% or more 100wt%
Within the range less than or equal to As mentioned above, since the melt viscosity is as low as 29 to 31 poise, it can be applied very easily without the need for special coating equipment, and has excellent coating properties and excellent low-temperature vibration damping performance. The above describes the resin composition of the present invention (those according to claim 3).
, i.e. more than a0wt%
50wt% or less, b0wt% over 5wt% or less, c50wt% or more
By reducing the content to less than 100wt%, the melt viscosity is as low as or better than that of a plasticizer-added vibration-damping metal resin composition, and the coating properties are excellent. This proves that it is possible to obtain a damping metal that is easy to apply and has excellent low-temperature damping performance. Example 2 Vinyl acetate [a
A terpolymer was obtained containing 5 g (0.0694 mol) of vinyl ester], Beoba 10 [c], and acrylic acid [b].
Here, vinyl acetate is 10-40g (0.12-0.46mol)
range, Beoba 10 is 119-206g (0.60-1.04mol)
It was varied within the range of. The composition of the obtained terpolymer is shown in Table 2. A vibration damping steel plate was made using the obtained polymer in the same manner as in Example 1, and a vibration damping test and adhesive strength measurement were performed. As in Example 1, the application of the polymer was extremely easy. The adhesive strength (peel strength) was also the same as in Example 1. Figure 2 shows the relationship between the ambient temperature and the loss coefficient of the damping steel plate. In the figure, ○ is No.5, ● is No.6, △ is No.7
This shows the results for the case. As shown in Figure 2, the maximum temperature of the loss coefficient is low in all cases, and as the amount of vinyl acetate added decreases, the maximum temperature shifts to the lower temperature side, so by adjusting the amount added, excellent control can be achieved even at low temperatures. It can be seen that vibration performance can be obtained. In addition, the resins (Nos. 5 to 7) according to the above Example 2 are as follows:
Monomer composition: vinyl acetate (type a): 4.5~
24.4wt%, acrylic acid (type b): 2.3-3.0wt
%, Beoba 10 (a type of c): 72.6 to 93.2 wt%, which is within the range of the monomer composition according to the present invention (claim 3), and has excellent coating properties and low temperature properties as described above. Improve vibration damping performance. This also means that by using the monomer composition according to the resin composition of the present invention (as described in claim 3), the coatability and low-temperature vibration damping performance can be improved as described above. It is supported. Example 3 Vinyl acetate; 30
g: 0.35mol, n-butyl acrylate; 27.2g:
A terpolymer of 0.21 mol and 115 g of Beoba 10 and 0.58 mol was obtained. Regarding the obtained polymer, Example 1
A vibration damping steel plate was made using the same method as above, and a vibration damping test was conducted. As in Example 1, the application of the polymer was extremely easy. The adhesive strength (peel strength) was also the same as in Example 1. Figure 3 shows the relationship between the ambient temperature and the loss coefficient of the damping steel plate. From FIG. 3, it can be seen that the maximum temperature of the loss coefficient is low, and excellent vibration damping performance can be obtained even at relatively low temperatures. In addition, the copolymer according to Example 3 of the present invention is as follows:
The monomer composition is 33.2 wt% vinyl acetate and n-butyl acrylate as a, and beoba as c.
10:66.8wt%, which is the monomer composition of the resin composition of the present invention (as described in claim 1), a50wt
% or less, more than c50wt% and less than 100wt%,
As mentioned above, it is easy to apply to steel plates, and excellent low-temperature vibration damping performance can be obtained. The above describes the monomer composition of the resin composition of the present invention (as claimed in claim 1), that is, more than 0 wt% and 50 wt% or less, and c50 wt%.
By reducing the amount to less than 100wt%, a damping metal with excellent coatability and low-temperature vibration damping performance can be obtained, which is as good as or better than a plasticizer-added resin composition for damping metals. This confirms that it will become possible to do so. Example 4 By the same method as in Example 1, Beoba 10 and/or
or Beoba 9, acrylic acid [b: a type of unsaturated carboxylic acid]; 5 g: 0.0694 mol terpolymer,
Alternatively, a binary copolymer was obtained. Here Beoba 10 is
Range of 115-206g (0.58-1.04mol), Beoba 9
was varied in the range of 43 to 107 g (0.234 to 0.58 mol). The composition of the obtained copolymer is shown in Table 3. A vibration-damping steel plate was made using the obtained polymer in the same manner as in Example 1, and a vibration attenuation test was conducted. As in Example 1, the application of the polymer was extremely easy. Figure 4 shows the relationship between the ambient temperature and the loss coefficient of the damping steel plate. In the figure, □ is No. 8, ● is No. 9, and △ is No.
10, 〇 indicates the result in case No. 11.

【表】【table】

【表】【table】

【表】【table】

【表】 第4図よりいづれも損失係数の極大温度が低
く、30〜80℃の温度範囲では0.1以上の高制振性
能を示す事が判る。 尚、上記本発明の実施例4に係る共重合体は、
単量体組成量が、bとしてのアクリル酸:2.2〜
2.4wt%、cとしてのベオバ10及び9:97.8〜
97.6wt%であり、本発明の樹脂組成物(請求項2
記載のもの)に係る単量体組成であるb0wt%超
5wt%以下、c95wt%以上100wt%未満の範囲内
にあり、そして、上記の如く、制振金属用金属板
へ塗布し易く、又、優れた低温制振性能が得られ
る。以上のことは、本発明の樹脂組成物(請求項
2記載のもの)に係る単量体組成、即ちb0wt%
超5wt%以下、c95wt%以上100wt%未満という
単量体組成にすることにより、可塑剤添加型の制
振金属用樹脂組成物の場合と同様もしくはそれ以
上に、塗布性に優れ、又、低温制振制能に優れた
制振金属が得られるようになるということを、裏
付けている。 (発明の効果) 本発明に係る制振金属用樹脂組成物は、以上の
如き構成の共重合体からなり、共重合体の単量体
組成を制振金属用樹脂特有の組成、特に塗工性及
び低温制振性能を向上するための組成としている
ので、優れた塗工性及び低温制振性能が得られる
可塑剤添加型の制振金属用樹脂組成物の有する可
塑剤移行等の問題点を解決し得、しかもその可塑
剤添加型の樹脂組成物の場合と同様もしくはそれ
以上に、溶融粘度が低くて塗工性に優れると共
に、低温での制振性能を向上し得る。 従つて、本発明に係る制振金属用樹脂組成物に
よれば、可塑剤添加型樹脂組成物における如き溶
融塗工時の可塑剤蒸発などの問題を生じることな
く塗工し得、しかも溶融粘度が低くて塗工性に優
れるため、特殊な塗布装置を要する事なく、容易
に制振金属板を製造し得るようになる。 又、低温での制振性能を高め得るようになるの
で、広範囲の温度域で制振性能が優れた制振金属
板が得られるようになる。 更に、可塑剤添加型樹脂組成物における如き溶
融塗工時の可塑剤蒸発や高温環境下使用時の可塑
剤移行などの問題を生じないので、塗工作業中の
安全衛生の確保、及び、制振性能の長期安定化が
図れるようにもなる。
[Table] From Figure 4, it can be seen that the maximum temperature of the loss coefficient is low in all cases, and exhibits high vibration damping performance of 0.1 or higher in the temperature range of 30 to 80°C. In addition, the copolymer according to Example 4 of the present invention is as follows:
Acrylic acid with a monomer composition amount of b: 2.2~
Beoba 10 and 9 as 2.4wt%, c: 97.8~
97.6wt%, and the resin composition of the present invention (Claim 2
The monomer composition of
It is within the range of 5wt% or less, c95wt% or more and less than 100wt%, and as mentioned above, it is easy to apply to a metal plate for vibration damping metal, and excellent low-temperature vibration damping performance can be obtained. The above describes the monomer composition of the resin composition of the present invention (as claimed in claim 2), that is, b0wt%.
By using a monomer composition of ultra-5wt% or less, c95wt% or more and less than 100wt%, it has excellent coating properties similar to or better than that of plasticizer-added vibration-damping metal resin compositions, and can be used at low temperatures. This proves that a damping metal with excellent vibration damping ability can be obtained. (Effects of the Invention) The vibration-damping resin composition for metals according to the present invention is composed of a copolymer having the above-mentioned structure, and the monomer composition of the copolymer is changed to a composition specific to vibration-damping metals resin, especially by coating. Since the composition is designed to improve properties and low-temperature vibration damping performance, there are problems such as plasticizer migration in a plasticizer-added vibration-damping metal resin composition that provides excellent coating properties and low-temperature vibration damping performance. In addition, the melt viscosity is low and the coating properties are excellent, and the vibration damping performance at low temperatures can be improved as well as or better than the case of the plasticizer-added resin composition. Therefore, according to the damping metal resin composition according to the present invention, it can be applied without causing problems such as plasticizer evaporation during melt coating as in plasticizer-added resin compositions, and the melt viscosity is also low. Since it has low coating properties and excellent coating properties, vibration-damping metal plates can be easily produced without the need for special coating equipment. Furthermore, since damping performance at low temperatures can be improved, a damping metal plate with excellent damping performance over a wide temperature range can be obtained. Furthermore, problems such as plasticizer evaporation during melt coating and plasticizer migration during use in high-temperature environments, which occur with plasticizer-added resin compositions, do not occur, so safety and health during coating operations can be ensured and controlled. It also becomes possible to stabilize the vibration performance over the long term.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1に係る雰囲気温度と制振鋼板
の損失係数との関係を示す図、第2図は実施例2
に係る雰囲気温度と制振鋼板の損失係数との関係
を示す図、第3図は実施例3に係る雰囲気温度と
制振鋼板の損失係数との関係を示す図、第4図は
実施例4に係る雰囲気温度と制振鋼板の損失係数
との関係を示す図である。
Figure 1 is a diagram showing the relationship between the ambient temperature and the loss coefficient of the damping steel plate according to Example 1, and Figure 2 is Example 2.
FIG. 3 is a diagram showing the relationship between the ambient temperature and the loss coefficient of the damping steel plate according to Example 3, and FIG. 4 is a diagram showing the relationship between the ambient temperature and the loss coefficient of the vibration damping steel plate according to Example 4. FIG. 3 is a diagram showing the relationship between the ambient temperature and the loss coefficient of a damping steel plate.

Claims (1)

【特許請求の範囲】 1 下記の単量体a及びcを重合して得られる共
重合体からなり、共重合体の単量体組成がa0wt
%超50wt%以下、c50wt%以上100wt%未満であ
ることを特徴とする制振金属用樹脂組成物。 a ビニルエステル(分岐脂肪酸のビニルエステ
ルを除く) c 分岐脂肪酸のビニルエステル 2 下記の単量体b及びcを重合して得られる共
重合体からなり、共重合体の単量体組成がb0wt
%超5wt%以下、c95wt%以上100wt%未満であ
ることを特徴とする制振金属用樹脂組成物。 b 不飽和カルボン酸 c 分岐脂肪酸のビニルエステル 3 下記の単量体a,bおよびcを重合して得ら
れる共重合体からなり、共重合体の単量体組成が
a0wt%超50wt%以下、b0wt%超5wt%以下、
c50wt%以上100wt%未満であることを特徴とす
る制振金属用樹脂組成物。 a ビニルエステル(分岐脂肪酸のビニルエステ
ルを除く) b 不飽和カルボン酸 c 分岐脂肪酸のビニルエステル 4 前記aのビニルエステル(分岐脂肪酸のビニ
ルエステルを除く)がカルボン酸ビニルである請
求項1又は3記載の制振金属用樹脂組成物。 5 前記bの不飽和カルボン酸がアクリル酸、メ
タクリル酸、マレイン酸、フマル酸、イタコン
酸、クロトン酸、無水マレイン酸から選択される
1種または2種以上である請求項2又は3記載の
制振金属用樹脂組成物。
[Scope of Claims] 1 Consisting of a copolymer obtained by polymerizing the following monomers a and c, the monomer composition of the copolymer is a0wt.
% more than 50wt%, and c50wt% or more and less than 100wt%. a Vinyl ester (excluding vinyl esters of branched fatty acids) c Vinyl esters of branched fatty acids 2 Consists of a copolymer obtained by polymerizing monomers b and c below, and the monomer composition of the copolymer is b0wt
% more than 5wt%, c95wt% or more and less than 100wt%. b Unsaturated carboxylic acid c Vinyl ester of branched fatty acid 3 Consists of a copolymer obtained by polymerizing the following monomers a, b, and c, and the monomer composition of the copolymer is
a0wt% over 50wt% or less, b0wt% over 5wt% or less,
A vibration-damping metal resin composition characterized by having c50wt% or more and less than 100wt%. a Vinyl ester (excluding vinyl esters of branched fatty acids) b Unsaturated carboxylic acid c Vinyl esters of branched fatty acids 4 The vinyl ester (a) (excluding vinyl esters of branched fatty acids) is a vinyl carboxylate, according to claim 1 or 3. Vibration-damping resin composition for metals. 5. The control according to claim 2 or 3, wherein the unsaturated carboxylic acid b is one or more selected from acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, and maleic anhydride. Resin composition for shaking metals.
JP26250988A 1988-10-17 1988-10-17 Resin composition for vibration damping metal Granted JPH02107435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26250988A JPH02107435A (en) 1988-10-17 1988-10-17 Resin composition for vibration damping metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26250988A JPH02107435A (en) 1988-10-17 1988-10-17 Resin composition for vibration damping metal

Publications (2)

Publication Number Publication Date
JPH02107435A JPH02107435A (en) 1990-04-19
JPH0515544B2 true JPH0515544B2 (en) 1993-03-01

Family

ID=17376789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26250988A Granted JPH02107435A (en) 1988-10-17 1988-10-17 Resin composition for vibration damping metal

Country Status (1)

Country Link
JP (1) JPH02107435A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345385A (en) * 1992-06-16 1993-12-27 Kobe Steel Ltd Resin composition for composite damping material and composite damping material
KR100412279B1 (en) * 1997-12-29 2004-09-04 주식회사 만도 Device and method for automatically assembling cap of shock absorber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189274A (en) * 1982-04-28 1983-11-04 Kanzaki Paper Mfg Co Ltd Pressure-sensitive adhesive composition
JPS5948047A (en) * 1982-09-14 1984-03-19 Yoshio Sekiya Preparation of powder cheese
JPS626595A (en) * 1985-07-02 1987-01-13 Nec Corp System for calling multiple connection terminal
JPS6246639A (en) * 1985-08-27 1987-02-28 住友化学工業株式会社 Vibration-damping composite material
JPS6374634A (en) * 1986-09-19 1988-04-05 新日鐵化学株式会社 Spot weldable composite type vibration-damping material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189274A (en) * 1982-04-28 1983-11-04 Kanzaki Paper Mfg Co Ltd Pressure-sensitive adhesive composition
JPS5948047A (en) * 1982-09-14 1984-03-19 Yoshio Sekiya Preparation of powder cheese
JPS626595A (en) * 1985-07-02 1987-01-13 Nec Corp System for calling multiple connection terminal
JPS6246639A (en) * 1985-08-27 1987-02-28 住友化学工業株式会社 Vibration-damping composite material
JPS6374634A (en) * 1986-09-19 1988-04-05 新日鐵化学株式会社 Spot weldable composite type vibration-damping material

Also Published As

Publication number Publication date
JPH02107435A (en) 1990-04-19

Similar Documents

Publication Publication Date Title
US5474840A (en) Silica-containing vibration damper and method
WO2011007861A1 (en) Pressure-sensitive adhesive tape, laminate, and image display device
Gower et al. The effect of varied monomer composition on adhesive performance and peeling master curves for acrylic pressure‐sensitive adhesives
US20130004695A1 (en) Adhesive composition, adhesive sheet, and touch panel
JPH02502653A (en) high performance pressure sensitive adhesive polymer
JP7197662B2 (en) PSA COMPOSITION, ADHESIVE TAPE, METHOD FOR FIXING ELECTRONIC DEVICE PARTS OR VEHICLE PARTS, AND METHOD FOR MANUFACTURING ELECTRONIC DEVICE PARTS OR VEHICLE PARTS
JPS6110446A (en) Composite laminate
JP2009096851A (en) Nonconductive adhesive composition, nonconductive adhesive film, and methods for production and use thereof
JPH0515544B2 (en)
KR100895562B1 (en) Electrically insulating material in tape form, insulated article and aqueous dispersion type acrylic pressure sensitive adhesive agent for insulating material
JP2806592B2 (en) Acrylic adhesive composition, adhesive tape, adhesive label or adhesive sheet
EP1602701B1 (en) Emulsion-type pressure sensitive adhesive and process for producing the same
JP5837966B2 (en) Adhesive tape
KR20230005857A (en) Adhesive composition and cured product thereof
JPS63112675A (en) Adhesive
JPH02150445A (en) Resin composition for vibration-damping vibration-controlling metal plate
JP2867366B2 (en) Acrylic pressure-sensitive adhesive composition
JP3305913B2 (en) Alkali-soluble protective coating-coated stainless steel sheet with excellent galling resistance
JPH06128543A (en) Production of water-dispersed acrylic pressure-sensitive adhesive, water-dispersed acrylic pressure-sensitive adhesive, and pressure-sensitive adhesive tape or sheet
Taniuchi et al. Development of vibration-damping resins for room-temperature application
JP4351080B2 (en) Resin laminated metal plate
EP1117529B1 (en) Adhesives with improved properties on a riveted surface
JPS63238180A (en) Water dispersion type pressure-sensitive adhesive composition
JPH05345385A (en) Resin composition for composite damping material and composite damping material
JPH0639142B2 (en) Composite type vibration control metal plate