JPH05154399A - Impact type air flow crusher - Google Patents

Impact type air flow crusher

Info

Publication number
JPH05154399A
JPH05154399A JP34842091A JP34842091A JPH05154399A JP H05154399 A JPH05154399 A JP H05154399A JP 34842091 A JP34842091 A JP 34842091A JP 34842091 A JP34842091 A JP 34842091A JP H05154399 A JPH05154399 A JP H05154399A
Authority
JP
Japan
Prior art keywords
collision
powder
chamber
raw material
airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34842091A
Other languages
Japanese (ja)
Other versions
JP3091289B2 (en
Inventor
Hitoshi Kanda
仁志 神田
Kazuhiko Komata
一彦 小俣
Satoshi Mitsumura
聡 三ツ村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP03348420A priority Critical patent/JP3091289B2/en
Publication of JPH05154399A publication Critical patent/JPH05154399A/en
Application granted granted Critical
Publication of JP3091289B2 publication Critical patent/JP3091289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

PURPOSE:To classify with high accuracy and crush efficiently by classifying a powdery material by means of air flow flowing in through classifying louvers, providing a rough powder feeding inlet between a throat section of a speed accelerating tube of Lavel shape and an outlet and forming the section of a crushing chamber in the scroll shape. CONSTITUTION:A ring guide chamber 5 communicating with a powder feeding cylinder 8 is provided on the upper section of a classifying chamber 4, and a plurality of louvers 7 are formed between the guide chamber 5 and the classifying chamber 4 to improve the dispersing properties of a powdery material and carry out the classification of higher accuracy. A raw material feeding inlet 30 covering the whole circumferential direction of a speed accelerating tube 23 or a plurality of raw material feeding inlets 30 are provided between a throat section 31 of the speed accelerating tube 23 of Lavel shape and an outlet, and the section shape of a crushing chamber 25 is formed in the scroll shape to disperse evenly the powdery material into high pressure air flow without generating the uneven distribution of concentration, also impact uniformly the material to an impact component 24 facing the speed accelerating tube 23 and crush efficiently the material by impact force.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気流分級機を具備した
ジェット気流(高圧気体)を用いることにより粉体原料
を微粉砕する衝突式気流粉砕装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a collision type air flow pulverizing apparatus for finely pulverizing a powder material by using a jet air stream (high pressure gas) equipped with an air stream classifier.

【0002】[0002]

【従来の技術】ジェット気流を用いた衝突式気流粉砕機
は、一般に、ジェット気流に粉体原料を乗せ粒子混合気
流とした後、加速管の出口より噴出させ、この粒子混合
気流を加速管の出口前方に設けた衝突部材の衝突面に衝
突させて、その衝撃力により粉体原料を微粉砕するもの
である。以下その詳細について、図7及び図8に示した
従来例の衝突式気流粉砕機に基づいて説明する。従来の
衝突式気流粉砕機は、高圧気体供給ノズル40を接続し
た加速管32の出口33に対向して衝突部材34を設
け、加速管32に供給した高圧気体の流動により、加速
管32の中途に一方向から連通させた粉体原料供給口3
5より加速管32の内部に粉体原料を吸引し、これを高
圧気体と共に噴出させて衝突部材24の衝突面に衝突さ
せ、その衝撃によって粉砕するようにしたものである。
2. Description of the Related Art In general, a collision type air flow pulverizer using a jet air flow is prepared by placing a powder raw material on a jet air flow to form a particle mixed air flow and then ejecting the particle air flow from the outlet of an accelerating tube. It collides with a collision surface of a collision member provided in front of the outlet, and the impact force thereof pulverizes the powder raw material. The details will be described below based on the conventional collision type airflow crusher shown in FIGS. 7 and 8. In the conventional collision-type airflow crusher, a collision member 34 is provided so as to face the outlet 33 of the accelerating pipe 32 to which the high-pressure gas supply nozzle 40 is connected, and the high-pressure gas supplied to the accelerating pipe 32 causes the middle of the accelerating pipe 32 to flow. Powder raw material supply port 3 communicating with the
5, the powder raw material is sucked into the accelerating pipe 32, and the powder raw material is jetted together with the high-pressure gas to collide with the colliding surface of the colliding member 24 and crushed by the impact.

【0003】[0003]

【発明が解決しようとしている課題】しかしながら、上
記従来例では、粉体原料の供給口35が加速管32の中
途に連通して一箇所だけに設けられている為、加速管3
2内に吸引導入された粉体原料は、粉体原料の供給口3
5を通過直後に、高圧気体供給ノズル40から噴出され
る高圧気流によって、加速管出口33の方向に向かって
流路を急激に変更しながら、高圧気流中に分散し、急加
速される。この状態において、粉体原料のうち比較的粗
粒子のものは、その慣性力の影響で加速管32の低流部
を通過し、一方、比較的微粒子のものは、加速管32の
高流部を通過する為、高圧気流中に粉体原料が十分均一
に分散されない。この為、粉体原料濃度の高い流れと低
い流れとに分離したまま加速管32を出て、対向する衝
突部材34に部分的に集中して粉体原料が衝突すること
になり、粉砕効率が低下し、処理能力の低下を引き起こ
すという問題がある。更に上記従来例では、衝突部材3
4の衝突面39に衝突して粉砕された粉砕物は、粉砕室
41の内壁に二次(あるいは三次)衝突して更に微粉砕
されるが、粉砕室41が箱型である為、効率的な二次衝
突が行われず、微粉砕処理能力の向上が図れないという
欠点があった。
However, in the above-mentioned conventional example, since the powder raw material supply port 35 is provided at only one place so as to communicate with the middle of the accelerating pipe 32, the accelerating pipe 3 is not provided.
The powder raw material sucked into the inside 2 is the powder raw material supply port 3
Immediately after passing through 5, the high-pressure gas jetted from the high-pressure gas supply nozzle 40 rapidly disperses in the high-pressure gas stream while rapidly changing the flow path toward the accelerating pipe outlet 33, and is rapidly accelerated. In this state, the relatively coarse particles of the powder raw material pass through the low flow portion of the acceleration tube 32 due to the influence of the inertial force, while the relatively fine particles of the powder raw material flow at the high flow portion of the acceleration tube 32. As a result, the powder raw material is not sufficiently uniformly dispersed in the high-pressure air stream. For this reason, the powder material comes out of the accelerating tube 32 while being separated into a flow having a high powder material concentration and a flow having a low powder material concentration, and the powder material collides with the collision member 34 partially concentrating, and the pulverization efficiency is improved. However, there is a problem in that the processing power is lowered. Further, in the above conventional example, the collision member 3
The crushed material that has been crushed by colliding with the collision surface 39 of No. 4 collides with the inner wall of the crushing chamber 41 secondary (or tertiary) and is further finely pulverized, but since the crushing chamber 41 is a box type, it is efficient. However, there is a drawback that secondary crushing does not occur and the fine pulverization processing capacity cannot be improved.

【0004】又、従来かかる粉砕機における衝突部材3
4の衝突面39は、粉体原料を乗せた粒子混合気流方
向、即ち、加速管32に対して、図7に示す様な直角の
もの、あるいは図8に示す様な45度に傾斜した平板状
のもの(特開昭57−50554号公報及び特開昭58
−143853号公報参照)が用いられているが、これ
らには次の様な欠点があった。即ち、図7の様に、加速
管32の軸方向と垂直な衝突面39を有してる場合に
は、加速管32の出口33から吹き出される粉体原料
と、衝突面39で反射される粉砕物とが衝突面39の近
傍で共存する割合が高くなり、衝突面39の近傍での粉
体(粉体原料及び粉砕物)濃度が高くなる為、粉砕効率
が劣るという問題がある。又、図8に示した様な粉砕機
においては、衝突面39が加速管32の軸方向に対して
45度に傾斜している為に、衝突面39の近傍での粉体
濃度は図7の粉砕機と比較して低くはなるが、この場合
は、図7の粉砕機と比較して高圧気流による衝突力が分
散し、低下してしまうという問題がある。更に、図8に
示した様な粉砕機においては、粉砕室壁41への二次衝
突を有効に利用しているとはいえないという問題もあ
る。例えば、図8に示した、衝突面39の角度が加速管
32に対して45度傾斜したものでは、熱可塑性樹脂の
ごとき粉体原料を微粉砕するときには問題は少ないが、
衝突する際に粉砕に要する衝撃力は小さく、更に、粉砕
室壁41との二次衝突による粉砕が少ない為、粉砕能力
は、図7の粉砕機と比較して1/2〜1/1.5程度、
粉砕能力が落ちる。
Further, the collision member 3 in the conventional crusher has been used.
The collision surface 39 of No. 4 is in the direction of the particle mixed air flow on which the powder raw material is placed, that is, at a right angle to the acceleration tube 32 as shown in FIG. 7 or a flat plate inclined at 45 degrees as shown in FIG. (See Japanese Patent Application Laid-Open Nos. 57-50554 and 58)
However, these have the following drawbacks. That is, as shown in FIG. 7, when the collision surface 39 perpendicular to the axial direction of the acceleration tube 32 is provided, the powder material blown out from the outlet 33 of the acceleration tube 32 and the collision surface 39 are reflected. The ratio of coexistence with the pulverized material near the collision surface 39 increases, and the concentration of the powder (powder raw material and pulverized material) near the collision surface 39 increases, resulting in a problem of poor pulverization efficiency. Further, in the crusher as shown in FIG. 8, since the collision surface 39 is inclined at 45 degrees with respect to the axial direction of the acceleration tube 32, the powder concentration in the vicinity of the collision surface 39 is as shown in FIG. However, in this case, there is a problem that the collision force due to the high pressure air flow is dispersed and reduced as compared with the crusher of FIG. Further, in the crusher as shown in FIG. 8, there is a problem that it cannot be said that the secondary collision with the crushing chamber wall 41 is effectively used. For example, in the case where the angle of the collision surface 39 shown in FIG. 8 is inclined 45 degrees with respect to the accelerating tube 32, there are few problems when finely pulverizing a powder raw material such as a thermoplastic resin,
Since the impact force required for crushing at the time of collision is small and the crushing due to the secondary collision with the crushing chamber wall 41 is small, the crushing capacity is 1/2 to 1/1. About 5,
The crushing ability drops.

【0005】上記の様な衝突式気流粉砕機に接続される
気流分級機としては、種々の分級機が提案されている
が、代表的なものとしては図9に示す様なディスパージ
ョンセパレーター(日本ニューマチック工業社製)が一
般に用いられている。その概略としては、搬送エアーと
共に粉体供給筒から導入される粉体材料が、その底部に
中央部が高い傾斜状の分級板100が設けられている分
級室150に導入され、該分級室150において、粉体
材料が粉体材料と共に流入される気流により旋回流動さ
れ、分級ルーバー90を介して微粉と粗粉とに遠心分離
され、微粉は分級板100の中央部に設けられた微粉排
出シュート120から排出され、粗粉は分級板100の
外周部に設けらた粗粉排出口110から排出されるもの
である。しかしながら、従来のこの様な気流分級機には
下記の様な問題がある。即ち、図9に示した様に、この
種の気流分級機の分級室150への粉体材料供給部は、
サイクロン状の形状を有しており、上部カバー60の上
面中央部に案内筒50が起立状に設けられ、案内筒50
の上部外周面に供給筒80が接続されており、且つ、該
供給筒80は、この供給筒80を介して供給されてくる
粉体材料が、案内筒54の内円周接線方向に導入されて
くる様に接続されている。従って、供給筒80より案内
筒50内に粉体材料を供給すると、粉体材料は案内筒5
0の内周面に沿って旋回しながら下落する。この場合に
粉体材料は、供給筒80から案内筒50の内周面に沿っ
て帯状に下落する為、分級室150に流入してくる粉体
材料の分布及び濃度は不均一となり(分級室150へ案
内筒50の内周面の一部からのみ粉体材料は流入す
る)、粉体材料の分散が悪いという問題がある。又、処
理量を大きくとると粉体材料の凝集がいっそう起こり易
く、更に分散が十分に行われなくなる為、高精度の分級
が行えないという問題がある。更に、粉体材料を搬送す
るエアー量が多い場合には、分級室150に流入するエ
アー量も多くなる為、分級室150において旋回する粒
子の中心向き速度が大きくなり分離粒子径が大きくなる
という問題点がある。そこで、通常、分離粒子径を小さ
くする方法として、案内筒50の上部に設けた筒140
でエアーをダンパーによりコントロールして抜いている
が、この際に抜くエアー量が多いと粉体材料の一部も排
出してしまい、損失するという実用上の問題点が生じる
場合もある。
Various classifiers have been proposed as an air classifier connected to the above-mentioned collision type air flow crusher, but a typical one is a dispersion separator (Japan) as shown in FIG. Pneumatic Industrial Co., Ltd.) is generally used. As an outline thereof, the powder material introduced from the powder supply cylinder together with the carrier air is introduced into the classification chamber 150 in which the inclined classification plate 100 having a high central portion is provided at the bottom thereof, and the classification chamber 150 is provided. In the above, the powder material is swirlingly flowed by the air flow that flows in together with the powder material, and is centrifugally separated into fine powder and coarse powder through the classification louver 90, and the fine powder is a fine powder discharge chute provided in the central portion of the classification plate 100. The coarse powder is discharged from 120 and is discharged from the coarse powder outlet 110 provided on the outer peripheral portion of the classification plate 100. However, such a conventional airflow classifier has the following problems. That is, as shown in FIG. 9, the powder material supply unit to the classification chamber 150 of this type of airflow classifier is
The guide cylinder 50 has a cyclone shape, and the guide cylinder 50 is provided upright in the center of the upper surface of the upper cover 60.
A supply cylinder 80 is connected to the upper outer peripheral surface of the, and the powder material supplied through the supply cylinder 80 is introduced in the tangential direction of the inner circumference of the guide cylinder 54. It is connected to come. Therefore, when the powder material is supplied from the supply cylinder 80 into the guide cylinder 50, the powder material is supplied to the guide cylinder 5.
While turning along the inner circumference of 0, it falls. In this case, the powder material falls in a strip shape from the supply cylinder 80 along the inner peripheral surface of the guide cylinder 50, so that the distribution and concentration of the powder material flowing into the classification chamber 150 becomes nonuniform (the classification chamber The powder material flows into the guide tube 50 only from a part of the inner peripheral surface of the guide cylinder 50), and there is a problem that the powder material is not well dispersed. Further, when the treatment amount is large, the powder material is more likely to be aggregated, and further, the dispersion is not sufficiently performed, so that there is a problem that the highly accurate classification cannot be performed. Furthermore, when the amount of air carrying the powder material is large, the amount of air flowing into the classifying chamber 150 also increases, so that the velocity of the particles swirling in the classifying chamber 150 toward the center increases and the separated particle diameter increases. There is a problem. Therefore, as a method for reducing the diameter of the separated particles, a tube 140 provided above the guide tube 50 is usually used.
The air is controlled by a damper to remove the powder, but if the amount of air removed at this time is large, a part of the powder material is also discharged, which may cause a practical problem of loss.

【0006】本発明の目的は、上記の様な従来技術の問
題点を解決し、高精度の気流分級機部を具備し、且つ、
粉体原料を効率よく粉砕出来る衝突式気流粉砕機部とを
具備する新規な衝突式気流粉砕装置を提供することであ
る。
An object of the present invention is to solve the above-mentioned problems of the prior art, to provide a highly accurate air flow classifier section, and
It is an object of the present invention to provide a novel collision-type airflow crushing device including a collision-type airflow crusher unit capable of efficiently pulverizing powder raw materials.

【0007】[0007]

【課題を解決するための手段】上記の目的は、下記の本
発明により達成される。即ち、本発明は、搬送エアーと
共に粉体供給筒から導入された粉体材料が、分級ルーバ
ーを介して流入する気流により旋回流動され微粉と粗粉
とに遠心分離される分級室を有する気流分級機部と、高
圧気体により粉体原料を搬送加速する為の加速管と、該
加速管から噴出する粉体を衝突力により粉砕する為の衝
突面を具備する粉砕室とを有し、且つ該衝突部材が加速
管出口に対向して設けられている衝突式気流粉砕機部と
を具備した衝突式気流粉砕装置において、気流分級機部
が、分級室の底部に設けられた傾斜状の分級板の中央部
に設けられた排出口に接続した微粉排出シュートから微
粉を排出させ、分級板の外周部に形成された粗粉排出口
から粗粉を排出させる構造を有し、且つ、分級室の上部
に粉体供給筒と連通された環状の案内室を設け、該案内
室と分級室との間に案内室の内円周方向の接線方向に先
端を向けた複数のルーバーが設けられていることを特徴
とし、衝突式気流粉砕機部が、ラバール形状を有する加
速管のスロート部と加速管出口との間に、加速管の全円
周方向におよぶ粉体原料供給口、又は複数個(n≧2)
の孔を有する粉体原料供給口が設けられ、且つ、粉砕室
の断面形状がスクロール形状であり、更に、衝突部材の
後方に粉砕物排出口が設けられていることを特徴とし、
且つ、上記気流分級機部の粗粉排出口が上記衝突式気流
粉砕機部の粉体原料供給シュートに連通され、更に、衝
突式気流粉砕機部の粉砕物排出口が気流分級機部の粉体
供給筒に連通されていることを特徴とする衝突式気流粉
砕装置である。
The above objects can be achieved by the present invention described below. That is, the present invention is an air flow classification having a classification chamber in which the powder material introduced from the powder supply cylinder together with the carrier air is swirled by the air flow flowing through the classification louver and centrifugally separated into fine powder and coarse powder. A machine part, an accelerating tube for accelerating the powder raw material by high-pressure gas, and a crushing chamber having a collision surface for crushing the powder ejected from the accelerating tube with a collision force, and In a collision-type airflow crushing device having a collision-type airflow crusher unit in which a collision member is provided facing the accelerating pipe outlet, the airflow classifier unit is an inclined classifying plate provided at the bottom of the classification chamber. Has a structure for discharging fine powder from the fine powder discharge chute connected to the discharge port provided in the central part of the classifying plate, and discharging the coarse powder from the coarse powder discharging port formed on the outer peripheral portion of the classifying plate, and An annular guide chamber communicating with the powder supply cylinder A plurality of louvers having a tip directed in a tangential direction of an inner circumferential direction of the guide chamber is provided between the guide chamber and the classifying chamber, and the collision type airflow crusher unit has a Laval shape. Between the throat portion of the accelerating tube and the accelerating tube outlet, the powder raw material supply port extending in the entire circumferential direction of the accelerating tube, or a plurality (n ≧ 2)
Is provided with a powder raw material supply port having a hole, and the cross-sectional shape of the crushing chamber is a scroll shape, and further, a crushed material discharge port is provided behind the collision member,
Further, the coarse powder discharge port of the airflow classifier section is communicated with the powder raw material supply chute of the collision type airflow crusher section, and the pulverized material discharge port of the collision type airflow crusher section is the powder of the airflow classifier section. The collision type airflow crushing device is characterized by being communicated with a body supply cylinder.

【0008】[0008]

【作用】本発明の衝突式気流粉砕装置は、気流分級機部
と衝突式気流粉砕機部とからなり、両部分を特定の構造
とし、且つ、気流分級機部で精度よく遠心分離された粗
粉の排出口が、粉砕効率に優れた衝突式気流粉砕機部の
粉体原料供給口に連通され、更に、衝突式気流粉砕機部
の粉砕物排出口が気流分級機部の粉体供給筒に連通され
ている為、従来の衝突式気流粉砕装置に比し、非常に効
率よく、且つ高精度に粉体材料を粉砕出来る。即ち、本
発明者らは、従来の気流分級機の問題点を解決すべく鋭
意研究した結果、分級室の上部に粉体供給筒と連通する
環状の案内室を設け、該案内室と該分級室との間に案内
室の内円周方向の接線方向に先端を向けた複数のルーバ
ーを設ければ、粉体材料の分散性を向上出来、更に、高
精度の分級が行えることを見出した。又、本発明者ら
は、従来の衝突式気流粉砕機の問題点を解決すべく鋭意
研究した結果、ラバール形状を有する加速管のスロート
部と加速管出口との間に、加速管の全円周方向におよぶ
粉体原料供給口、又は複数個(n≧2)の粉体原料供給
口を設け、且つ、粉砕室断面形状をスクロール形状と
し、更に好ましくは、加速管の中心軸が鉛直方向を有す
るものとすれば、粉体材料を濃度の偏りを発生しない様
に均一に高圧気流中に分散させることが出来、且つ、加
速管に対向する衝突部材の衝突面に均一に衝突させるこ
とが出来る為、衝突の際の衝撃力により効率よく粉体材
料を粉砕出来ることを見出した。
The collision type airflow crushing apparatus of the present invention comprises an airflow classifier section and a collision type airflow crusher section, both parts having a specific structure, and a coarse classifier which is accurately centrifuged in the airflow classifier section. The powder discharge port communicates with the powder raw material supply port of the collision-type airflow crusher section with excellent crushing efficiency, and the crushed material discharge port of the collision-type airflow crusher section is the powder supply tube of the airflow classifier section. The powder material can be pulverized very efficiently and highly accurately as compared with the conventional collision type air flow pulverizing device. That is, as a result of intensive studies to solve the problems of the conventional airflow classifier, the present inventors have provided an annular guide chamber communicating with the powder supply cylinder on the upper part of the classification chamber, and the guide chamber and the classification chamber. It was found that the dispersibility of the powder material can be improved and further highly accurate classification can be performed by providing a plurality of louvers with the tip directed in the tangential direction of the inner circumferential direction of the guide chamber between the chamber and the chamber. .. In addition, as a result of intensive studies to solve the problems of the conventional collision type air flow crusher, the present inventors have found that the entire circle of the acceleration pipe is between the throat portion and the outlet of the acceleration pipe having a Laval shape. A powder raw material supply port extending in the circumferential direction or a plurality of (n ≧ 2) powder raw material supply ports are provided, and the cross-sectional shape of the crushing chamber is a scroll shape. More preferably, the central axis of the acceleration tube is in the vertical direction. The powder material can be uniformly dispersed in the high-pressure air stream so as not to cause uneven concentration, and can evenly collide with the collision surface of the collision member facing the acceleration tube. Therefore, it was found that the powder material can be efficiently crushed by the impact force at the time of collision.

【0009】[0009]

【好ましい実施態様】以下に、本発明を添付図面に基づ
いて更に詳細に説明する。図1は、本発明の衝突式気流
粉砕装置の一実施例を示す概略断面図であり、図2は、
図1のA−A´線における断面図であり、図3は図1の
D−D´線における断面図であり、同様に図4は図1の
B−B´線における断面図であり、図5は図1のC−C
´線における断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view showing an embodiment of the collision type airflow crushing device of the present invention, and FIG.
1. It is sectional drawing in the AA 'line of FIG. 1, FIG. 3 is sectional drawing in the DD' line of FIG. 1, Similarly, FIG. 4 is sectional drawing in the BB 'line of FIG. FIG. 5 is CC of FIG.
It is a cross-sectional view taken along the line '.

【0010】本発明の衝突式気流粉砕装置は、以下に述
べる特定の構造を有する気流分級機部と衝突式気流粉砕
機部とからなることを特徴とする。先ず、本発明の衝突
式気流粉砕装置の衝突式気流粉砕機部について図1に基
づき説明する。本発明装置の衝突式気流粉砕機部は、図
1に示す様に、原料供給シュート21、高圧気体貯槽2
2、加速管23、衝突部材24、粉砕室25、二次衝突
板26及び原料供給口30とから構成される。衝突式気
流粉砕機部における高圧気体の作用を説明すると、高圧
気体は、先ず高圧気体貯槽22の左右にある入口28か
ら入り、圧力の変動等、脈動が均一にされた後、加速管
のスロート部31から加速管23に流入される(図4図
示)。加速管23は末広がりのラバル形状を有する為、
加速管23に流入された高圧気体は、膨張しながら超音
速領域まで加速される。その過程で高圧気体は減圧さ
れ、加速管23を出たところで気体の圧力は粉砕室25
の圧力と略同一になる。一方、スクロール形状の粉砕室
25では、図3に示した図 1のD−D´線における断面
図から明らかな様に、出口部27で粉砕室25内の気体
を吸引すると、粉砕室25の内部に気流渦が発生する。
そして、この気流渦の作用により、衝突部材24の表面
は減圧状態になる。そして、この様な衝突部材24の表
面の減圧作用により、加速管23より出た噴流は更に加
速され、衝突部材24の表面に衝突する。この時、衝突
部材24の衝突面は、頂角が110〜175度の範囲の
錐体形状を有している為、衝突部材24に衝突した噴流
は、この円錐状部材の頂点を中心として、衝突部材24
と二次衝突板26との間に放射状に拡散される。この拡
散された気流は、前述した粉砕室25内部の気流渦に乗
る形で、粉砕室25の出口部27に導かれ、気流分級機
に導入される。
The collision type airflow crushing apparatus of the present invention is characterized by comprising an airflow classifier section having a specific structure described below and a collision type airflow crusher section. First, the collision-type airflow crusher unit of the collision-type airflow crusher of the present invention will be described with reference to FIG. As shown in FIG. 1, the collision type airflow pulverizer section of the device of the present invention includes a raw material supply chute 21 and a high-pressure gas storage tank 2.
2, an acceleration tube 23, a collision member 24, a crushing chamber 25, a secondary collision plate 26, and a raw material supply port 30. Explaining the action of the high pressure gas in the collision type air flow pulverizer section, the high pressure gas first enters from the inlets 28 on the left and right sides of the high pressure gas storage tank 22, and after the pulsation such as pressure fluctuation is made uniform, the throat of the accelerating pipe. It flows into the accelerating pipe 23 from the portion 31 (shown in FIG. 4). Since the accelerating tube 23 has a Laval shape that widens toward the end,
The high-pressure gas flowing into the accelerating tube 23 is accelerated to the supersonic region while expanding. In the process, the high pressure gas is decompressed, and the pressure of the gas at the exit of the accelerating pipe 23 is the crushing chamber 25.
Is almost the same as the pressure. On the other hand, in the scroll-shaped crushing chamber 25, when the gas in the crushing chamber 25 is sucked at the outlet portion 27, as is clear from the cross-sectional view taken along the line DD ′ of FIG. Airflow vortices are generated inside.
Then, due to the action of this air flow vortex, the surface of the collision member 24 is in a reduced pressure state. Then, due to the depressurizing action of the surface of the collision member 24, the jet flow emitted from the acceleration pipe 23 is further accelerated and collides with the surface of the collision member 24. At this time, since the collision surface of the collision member 24 has a cone shape with an apex angle in the range of 110 to 175 degrees, the jet flow that collides with the collision member 24 is centered on the apex of this conical member. Collision member 24
And the secondary collision plate 26 are radially diffused. The diffused airflow is guided to the outlet 27 of the crushing chamber 25 and introduced into the airflow classifier while riding on the airflow vortex inside the crushing chamber 25 described above.

【0011】次に、供給される粉体原料が、衝突式気流
粉砕機部で受ける作用について説明する。被粉砕物であ
る粉体原料は、原料供給シュート21の上部から供給さ
れる。そして、供給された粉体原料は、原料供給シュー
ト21の下部から原料供給口30を介して加速管23へ
と吸引排出される。この際の原料の吸引排出の原理は、
前述した高圧気体の加速管における膨脹減圧によるエゼ
クター効果による。この時、本発明の衝突式気流粉砕機
装置の衝突式気流粉砕機部では、粉体原料を十分に分散
させて加速管23内部に吸引させる様にする為に、ラバ
ール形状を有する加速管23のスロート部と加速管23
の出口との間に、図5に示した様な加速管23の全円周
方向におよぶ粉体原料供給口30を、又は、図6に示し
た様な複数個(n≧2)の孔を有する粉体原料供給口3
0を設けてあり(図6ではn=4)、更に、加速管23
の中心軸が鉛直方向にある為、粉体原料は高圧気流によ
り十分に分散され加速が促進される。これに対し、図7
及び図8に示した様な従来の衝突式気流粉砕機では、加
速管32への原料供給口35は、加速管32の途中に連
通されて一箇所だけに設けられており、加速管32内に
吸引導入された粉体原料は、原料供給口35を通過直後
に、高圧気体供給ノズル40にから噴出してくる高圧気
流によって、加速管出口33の方向に向かって流路を急
激に変更されながら、高圧気流中に分散し、急加速され
るものである為、粉体原料濃度の高い流れと低い流れと
に分離されてしまい十分に分散されて加速されなかっ
た。上記の様にして本発明装置の衝突式気流粉砕機部の
加速管23内部に分散されて吸引された粉体原料は、加
速管スロート部31から放射される高速気流により充分
に分散される。
Next, the operation of the supplied powder raw material in the collision type airflow pulverizer section will be described. The powder raw material that is the object to be crushed is supplied from above the raw material supply chute 21. Then, the supplied powder raw material is sucked and discharged from the lower portion of the raw material supply chute 21 through the raw material supply port 30 to the acceleration pipe 23. The principle of suction and discharge of the raw material at this time is
This is due to the ejector effect due to the expansion and decompression of the high-pressure gas in the accelerating tube. At this time, in the collision-type airflow crusher unit of the collision-type airflow crusher device of the present invention, in order to sufficiently disperse the powder raw material and suck it into the acceleration tube 23, the acceleration tube 23 having a Laval shape is formed. Throat and accelerator tube 23
5, the powder raw material supply port 30 extending in the entire circumferential direction of the acceleration tube 23 as shown in FIG. 5, or a plurality of (n ≧ 2) holes as shown in FIG. Powder material supply port 3 having
0 is provided (n = 4 in FIG. 6), and the acceleration tube 23
Since the central axis of is in the vertical direction, the powder raw material is sufficiently dispersed by the high-pressure air flow and acceleration is accelerated. On the other hand, FIG.
In the conventional collision type airflow crusher as shown in FIG. 8, the raw material supply port 35 to the accelerating pipe 32 is connected to the middle of the accelerating pipe 32 and is provided at only one place. Immediately after passing through the raw material supply port 35, the powder raw material sucked and introduced is rapidly changed in flow path toward the accelerating pipe outlet 33 by the high-pressure airflow ejected from the high-pressure gas supply nozzle 40. However, since it is dispersed in the high-pressure air stream and is rapidly accelerated, it is separated into a flow having a high concentration of the powder raw material and a flow having a low concentration of the powder raw material, and is not sufficiently dispersed and accelerated. As described above, the powder raw material dispersed and sucked in the acceleration tube 23 of the collision type airflow crusher section of the apparatus of the present invention is sufficiently dispersed by the high-speed airflow emitted from the acceleration tube throat section 31.

【0012】次に、以上の様にして分散された粉体原料
は、加速管23の内部を流れる高速気流に乗って加速さ
れ、超音速固気混合流れとなる。この固気混合流れは加
速管23を出た後、固気混合噴流となり、前述の噴流と
同様の作用を受け衝突部材24に衝突する。この衝突に
より原料粗粉は微粉砕される。粉砕物は細粉と未だ砕き
きれていない粗粉に分かれる。細粉は、放射状に拡散し
た前述した気流に乗って、粉砕室25内部の気流渦に乗
る形で粉砕室出口部27に導かれる。一方、未だ砕けき
れていない粗粉は、衝突時の反作用がその質量に作用す
る度合いが大きく、放射状に拡散した気流に乗りきれ
ず、拡散気流から飛び出して二次衝突を起こす。この二
次衝突により未だ砕き切れていなかった粗粉は細粉とな
り、先に粉砕された細粉を含んだ固気混合拡散気流に乗
って粉砕室25に入り、前述の気流渦により粉砕室出口
27に導かれる。本発明装置の衝突式気流粉砕機部によ
れば、粉体原料を濃度の偏りを発生しない様に均一に高
圧気流中に分散させることが出来、且つ加速管に対向す
る衝突部材24の衝突面に均一に衝突させることが出来
る為、衝突の際の衝撃力により効率よく粉体原料が粉砕
される。本発明装置の衝突式気流粉砕機部においては、
衝突部材24の衝突面に対向した二次衝突板26を設け
ることがより好ましく、この結果、二次(又は三次)衝
突を効率的に行うことが出来、更に粉砕効率が向上す
る。又、本発明装置の衝突式気流粉砕機部は、粉砕室の
形状がスクロール形状を有している為、加速管23の出
口から粉砕室25の出口に至るまでに発生する、粉体原
料と高圧気流とからなる固気混合流の圧力損失を最小限
に抑えることが出来る。この為、加速管23内部での高
圧気流の膨脹速度が大きくなる為、粉体原料粒子の高圧
気流中における速度も大きくなり、より大きな衝撃力が
粉体原料に付与される。又、本発明装置の衝突式気流粉
砕機部の衝突部材4の衝突面の先端部分は、頂角が11
0〜175度の範囲にある錐体形状である為、例えば、
原料が樹脂や粘着性のあるものを含有する粉体である場
合にも、融着、凝集物及び粗粒子等の問題も発生しな
い。更に、本発明装置の衝突式気流粉砕機部は、粉体原
料を高速気流中に均一に分散出来る為、摩耗性のある物
質を含有した粉体原料を粉砕する場合においても、加速
管3の内壁や衝突部材4の衝突面の局部的な摩耗の発生
を防止出来、より安定した運転が可能となる。
Next, the powder raw material dispersed as described above is accelerated by riding on the high-speed air current flowing inside the accelerating tube 23, and becomes a supersonic solid-gas mixture flow. After this solid-gas mixture flow exits the accelerating tube 23, it becomes a solid-gas mixture jet flow, which collides with the collision member 24 under the same action as the aforementioned jet flow. The raw material coarse powder is finely pulverized by this collision. The crushed product is divided into fine powder and coarse powder that has not been crushed yet. The fine powder is guided to the crushing chamber outlet 27 by riding on the above-mentioned radially diffused airflow and riding on the vortex in the crushing chamber 25. On the other hand, the coarse powder that has not yet been crushed has a large effect on the mass of the reaction at the time of collision, cannot fully ride the radially diffused airflow, and jumps out of the diffused airflow to cause a secondary collision. Due to this secondary collision, the coarse powder which has not been crushed yet becomes fine powder, enters the crushing chamber 25 along with the solid-gas mixed diffusion air flow containing the finely crushed powder, and the vortex vortex described above causes the crushing chamber exit. Guided to 27. According to the collision type airflow pulverizer section of the device of the present invention, the powder raw material can be uniformly dispersed in the high-pressure airflow so as not to cause concentration unevenness, and the collision surface of the collision member 24 facing the acceleration tube. Since the particles can be uniformly collided with each other, the powder raw material is efficiently crushed by the impact force at the time of the collision. In the collision type airflow crusher section of the device of the present invention,
It is more preferable to provide the secondary collision plate 26 facing the collision surface of the collision member 24. As a result, the secondary (or tertiary) collision can be efficiently performed, and the grinding efficiency is further improved. Further, in the collision type airflow crusher section of the device of the present invention, since the shape of the crushing chamber has a scroll shape, the powder raw material generated from the outlet of the acceleration tube 23 to the outlet of the crushing chamber 25 It is possible to minimize the pressure loss of the solid-gas mixture flow composed of the high-pressure air flow. For this reason, the expansion speed of the high-pressure airflow inside the acceleration tube 23 increases, so that the speed of the powder raw material particles in the high-pressure airflow also increases, and a larger impact force is applied to the powder raw material. Further, the apex angle of the tip of the collision surface of the collision member 4 of the collision type airflow crusher section of the device of the present invention is 11
Since it is a cone shape in the range of 0 to 175 degrees, for example,
Even when the raw material is a powder containing a resin or an adhesive material, problems such as fusion, agglomerates and coarse particles do not occur. Further, since the collision type air flow pulverizer section of the device of the present invention can uniformly disperse the powder raw material in the high-speed air flow, even in the case of pulverizing the powder raw material containing the abradable substance, It is possible to prevent the local wear of the inner wall and the collision surface of the collision member 4 from occurring, and more stable operation becomes possible.

【0013】次に、本発明装置のもう一つの構成部分で
ある気流分級機部について、図1に従って説明する。図
1において、1は筒状の本体ケーシング、2は下部ケー
シングを示し、2の下部には粗粉排出用のホッパー3が
接続されている。又、本体ケーシング1の内部には分級
室4が設けられている。この分級室4の上部は、本体ケ
ーシング1の上部に取付けられた環状の案内室5と、中
央部が高くなっている円錐状(傘状)の上部カバー6と
によって閉鎖されている。分級室4と案内室5との間の
仕切壁に、円周方向に配列する複数のルーバー7(図2
に例示)を設けておき、案内室5に、供給塔8から送り
込まれてくる粉体材料とエアーとが、該ルーバー7の間
から分級室4に旋回されて流入される様にする。尚、案
内室5の中を流動するエアーと粉体材料とを、各ルーバ
ー7間に均一に分配させることが、精度よく分級させる
為には必要である。又、ルーバー7へ到達するまでの流
路としては、遠心力による濃縮が起こりにくい形状にす
る必要がある。図1の例では分級室4の水平面に対して
垂直な上方向に供給筒8を接続させているが、これに限
定されるものではない。この様にして、本発明装置に用
いる気流分級機部では、ルーバー7を介してエアーと粉
体材料とが分級室4へ供給される為、分級室4へ供給さ
れる際にエアーと粉体材料とは従来の方式より著しい分
散の向上が達成される。又、ルーバー間隔は任意に調整
出来る。
Next, the air flow classifier section which is another component of the apparatus of the present invention will be described with reference to FIG. In FIG. 1, 1 is a cylindrical main body casing, 2 is a lower casing, and a hopper 3 for discharging coarse powder is connected to the lower portion of 2. A classification chamber 4 is provided inside the main body casing 1. The upper portion of the classification chamber 4 is closed by an annular guide chamber 5 attached to the upper portion of the main body casing 1 and a conical (umbrella) upper cover 6 having a raised central portion. A plurality of louvers 7 arranged in the circumferential direction are provided on a partition wall between the classification chamber 4 and the guide chamber 5 (see FIG. 2).
Is provided) so that the powder material and the air sent from the supply tower 8 are swirled into the classification chamber 4 from between the louvers 7 into the guide chamber 5. It should be noted that it is necessary to evenly distribute the air flowing in the guide chamber 5 and the powder material among the louvers 7 in order to perform accurate classification. Further, the flow path to reach the louver 7 needs to be shaped so that concentration due to centrifugal force does not easily occur. In the example of FIG. 1, the supply cylinder 8 is connected in the upward direction perpendicular to the horizontal plane of the classification chamber 4, but the present invention is not limited to this. In this way, in the air flow classifier unit used in the device of the present invention, since air and powder material are supplied to the classification chamber 4 via the louver 7, air and powder are supplied to the classification chamber 4 at the same time. Significant dispersion improvements are achieved with the material over conventional methods. The louver spacing can be adjusted arbitrarily.

【0014】又、本発明装置に用いる気流分級機部で
は、本体ケーシング1の下部にも円周方向に配列する分
級ルーバー9を設け、外部から分級室4へ旋回流を起こ
す為の分級エアーを分級ルーバー9を介して取り入れて
いる。分級室4の底部には、中央部が高くなった円錐状
(傘状)の分級板10を設け、該分級板10の外周囲に
粗粉排出口11を形成する。又、分級板10の中央部に
は微粉排出口に接続した微粉排出シュート12を設け、
該微粉排出シュート12の下端部をL字形に屈曲させ、
この屈曲端部を下部ケーシング2の側壁より外部に位置
させる様にする。更に、微粉排出シュート12はサイク
ロンや集塵機の様な微粉回収手段を介して吸引ファンに
接続されており(図示なし)、該吸引ファンにより分級
室4に吸引力を作用させて、該ルーバー9の間より分級
室4に流入する吸引エアーによって、分級に要する旋回
流を起こしている。本発明装置に用いられる気流分級機
部は、上記の様な構造を有する為、粉体材料を供給筒8
から案内筒5にエアーと供に供給すると、この粉体材料
を含むエアーは、案内室5から各ルーバー7の間を通過
して、分級室4へと旋回しながら均一の濃度で分散しな
がら流入される。分級室4内に旋回しながら流入された
粉体材料は、次に、微粉排出シュート12に接続した吸
引ファンにより発生する、分級室4の下部にある分級ル
ーバー9の間より流入する吸引エアー流に乗って更に旋
回を増し、各粒子に作用する遠心力によって粗粉と微粉
とに効率よく遠心分離される。この時、分級室4内の外
周部を旋回する粗粉は、粗粉排出口11より排出され
て、下部のホッパー3から排出される。又、分級板10
の上部傾斜面に沿って中心部へと移行する微粉は、微粉
排出シュート12から微粉回収手段(図示なし)へと排
出される。本発明装置に用いられる気流分級機部では、
分級室4に粉体材料と共に流入されるエアーが、全て旋
回流となって流入する為、分級室4内で旋回する粒子の
中心向きの速度は、遠心力に比べ相対的に小さくなり、
分級室4において分離粒子径の小さな分級が行われ、粒
子径の非常に小さな微粉を微粉排出シュート12に排出
させることが出来る。しかも、粉体材料が、略均一な濃
度で分級室4に流入されてくる為、精緻な分布の微粉体
を得ることが出来る。
Further, in the airflow classifier used in the apparatus of the present invention, a classification louver 9 arranged in the circumferential direction is also provided in the lower part of the main body casing 1, and classification air for generating a swirling flow from the outside to the classification chamber 4 is provided. It is introduced through the classification louver 9. At the bottom of the classifying chamber 4, a conical (umbrella) classifying plate 10 having a raised central portion is provided, and a coarse powder discharge port 11 is formed on the outer periphery of the classifying plate 10. Further, a fine powder discharge chute 12 connected to a fine powder discharge port is provided at the center of the classifying plate 10.
Bending the lower end of the fine powder discharge chute 12 into an L-shape,
The bent end is positioned outside the side wall of the lower casing 2. Further, the fine powder discharging chute 12 is connected to a suction fan (not shown) through a fine powder collecting means such as a cyclone or a dust collector, and a suction force is applied to the classification chamber 4 by the suction fan to cause the louver 9 to move. The swirling flow required for classification is caused by the suction air flowing into the classification chamber 4 from the interval. Since the air flow classifier section used in the device of the present invention has the structure as described above, the powder material supply cylinder 8
When it is supplied together with air from the guide cylinder 5 to the guide cylinder 5, the air containing the powder material passes from the guide chamber 5 to each louver 7 and swirls into the classification chamber 4 to be dispersed at a uniform concentration. Be flowed in. The powder material flown into the classifying chamber 4 while swirling is then generated by a suction fan connected to the fine powder discharging chute 12 and sucking air flow that flows in between the classifying louvers 9 at the lower part of the classifying chamber 4. The particles are further swirled, and the centrifugal force acting on each particle efficiently separates into coarse powder and fine powder. At this time, the coarse powder swirling around the outer peripheral portion of the classification chamber 4 is discharged from the coarse powder discharge port 11 and then discharged from the lower hopper 3. Also, the classification plate 10
The fine powder that moves to the center along the upper inclined surface of is discharged from the fine powder discharge chute 12 to the fine powder collecting means (not shown). In the airflow classifier section used in the device of the present invention,
Since all the air flowing into the classification chamber 4 together with the powder material flows as a swirl flow, the velocity of the particles swirling in the classification chamber 4 toward the center becomes relatively smaller than the centrifugal force.
Classification with a small particle size is performed in the classifying chamber 4, and fine powder with a very small particle size can be discharged to the fine powder discharge chute 12. Moreover, since the powder material flows into the classification chamber 4 at a substantially uniform concentration, a fine powder having a fine distribution can be obtained.

【0015】本発明の衝突式気流粉砕装置は、以上説明
した様な衝突式気流粉砕機部と気流分級機部とを図1に
示す様に連結させたものである。即ち、気流分級機部の
粗粉排出口11を衝突式気流粉砕機部の粉体原料供給シ
ュート1に連結させ、且つ、衝突式気流粉砕機部の粉砕
物排出口27を気流分級機部の粉体供給筒8に連結させ
ることにより、衝突式気流粉砕機部で効率よく粉砕され
た粉砕物が気流分級機部に導入され、粒子径の非常に小
さな、しかも精緻な分布の微粉体のみが微粉排出シュー
ト12から回収され、それ以外の粗粉は、衝突式気流粉
砕機部に再度導入されて再粉砕され、粒子径の非常に小
さな、しかも精緻な分布の微粉体となるまで繰り返し粉
砕が続けられる。尚、本発明の衝突式気流粉砕装置にお
いて、粉砕用原料は、適宜の導入手段により図1の原料
導入口13から導入される。
The collision type airflow crushing apparatus of the present invention is such that the collision type airflow crushing machine section and the airflow classifying machine section as described above are connected as shown in FIG. That is, the coarse powder discharge port 11 of the airflow classifier unit is connected to the powder raw material supply chute 1 of the collision type airflow crusher unit, and the crushed material discharge port 27 of the collision type airflow crusher unit is connected to the airflow classifier unit. By connecting to the powder supply cylinder 8, the pulverized material efficiently pulverized by the collision type air flow pulverizer section is introduced into the air stream classifier section, and only fine powder having a very small particle size and a fine distribution is obtained. The other coarse powders collected from the fine powder discharge chute 12 are re-introduced into the collision type airflow pulverizer section and re-pulverized, and repeatedly pulverized until a fine powder having a very small particle size and a fine distribution is obtained. I can continue. In the collision-type airflow crushing device of the present invention, the crushing raw material is introduced from the raw material introducing port 13 of FIG. 1 by an appropriate introducing means.

【0016】[0016]

【発明の効果】以上の様に、本発明の衝突式気流粉砕装
置の衝突式気流粉砕機部は、従来のそれに比べ、加速管
への原料供給方法が工夫されている為、被粉砕物はより
強く分散され、加速されて粉砕室へと導入される。更
に、粉砕室の背圧が低いことから、被粉砕物をより速く
衝突部材に衝突させることが可能である。これらの結
果、粉砕効率を向上させることが可能となる。又、本発
明の衝突式気流粉砕装置の衝突式気流粉砕機部は、粉砕
室形状の工夫や被粉砕物の強分散による粉塵濃度の低下
により、衝突部材ならびに加速管と粉砕室における被粉
砕室の融着や磨耗も、従来の衝突式気流粉砕機に比べ大
幅に低減されて、安定稼働させることが出来る。又、本
発明の衝突式気流粉砕装置の気流分級機部では、分級室
において分離粒子径の小さな分級が行われ、粒子径の非
常に小さな、しかも精緻な分布の微粉体を得ることが出
来る。従って、本発明の衝突式気流粉砕装置は、効率よ
く粉体原料の粉砕が出来、粉砕された微粉体の回収も精
度よく出来る。
As described above, in the collision type airflow crusher section of the collision type airflow crushing device of the present invention, the material to be fed to the accelerating tube is devised in comparison with the conventional one, so that the object to be crushed is It is more strongly dispersed, accelerated and introduced into the grinding chamber. Further, since the back pressure of the crushing chamber is low, it is possible to cause the crushed object to collide with the collision member more quickly. As a result, it becomes possible to improve the pulverization efficiency. Further, the collision type airflow crusher section of the collision type airflow crushing device of the present invention has a collision member and an accelerating pipe and a crushed chamber in the crushing chamber due to a reduction in the dust concentration due to the devise of the crushing chamber shape and the strong dispersion of the crushed object The fusion and wear of the are also significantly reduced compared to the conventional collision type airflow crusher, and stable operation can be achieved. Further, in the airflow classifier section of the collision type airflow crushing apparatus of the present invention, classification with a small separation particle size is performed in the classification chamber, and it is possible to obtain a fine powder having a very small particle size and a fine distribution. Therefore, the collision type airflow pulverizing apparatus of the present invention can efficiently pulverize the powder raw material, and can also accurately collect the pulverized fine powder.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の衝突式気流粉砕装置の概略断面図。FIG. 1 is a schematic cross-sectional view of a collision type airflow crushing device of the present invention.

【図2】図1のA−A´断面図である。FIG. 2 is a sectional view taken along the line AA ′ of FIG.

【図3】図1のD−D´断面図である。3 is a cross-sectional view taken along the line DD ′ of FIG.

【図4】図1のB−B´断面図である。FIG. 4 is a sectional view taken along line BB ′ of FIG.

【図5】原料供給口が加速管の全円周方向におよぶ場合
の例の、図1におけるC−C´線の断面図である。
5 is a cross-sectional view taken along the line CC 'in FIG. 1, showing an example in which the raw material supply port extends in the entire circumferential direction of the acceleration tube.

【図6】原料供給口がn=4個の孔からなる場合の例
の、図1におけるC−C´線の断面図である。
FIG. 6 is a cross-sectional view taken along the line CC ′ in FIG. 1, showing an example in which the raw material supply port has n = 4 holes.

【図7】従来の衝突式気流粉砕機を示す概略図である。FIG. 7 is a schematic view showing a conventional collision type airflow crusher.

【図8】従来の衝突式気流粉砕機を示す概略図である。FIG. 8 is a schematic view showing a conventional collision type airflow crusher.

【図9】従来の気流分級機を示す概略図である。FIG. 9 is a schematic view showing a conventional airflow classifier.

【符号の説明】[Explanation of symbols]

1、101:分級機本体ケーシング 2、70:分級機下部ケーシング 3、130:粗粉排出ホッパー 4、150:分級室 5:案内室 6、60:上部カバー 7、9、90:ルーバー 8、80:供給筒 10、100:分級板 11、110:粗粉排出口 12、120:微粉排出シュート 13:原料導入部 21:粉体原料供給シュート 22:高圧気体貯槽 23:加速管 24:衝突部材 25:粉砕室 26:二次衝突板 27:粉砕室出口 28:高圧気体入口 29:高圧気体連絡通路 30:原料供給口 31:加速管スロート部 50:案内筒 1, 101: Main body casing of classifier 2, 70: Lower casing of classifier 3, 130: Coarse powder discharge hopper 4, 150: Classifying chamber 5: Guide chamber 6, 60: Upper cover 7, 9, 90: Louver 8, 80 : Supply cylinder 10, 100: Classifying plate 11, 110: Coarse powder discharge port 12, 120: Fine powder discharge chute 13: Raw material introduction part 21: Powder raw material supply chute 22: High pressure gas storage tank 23: Accelerator tube 24: Collision member 25 : Grinding chamber 26: Secondary collision plate 27: Grinding chamber outlet 28: High pressure gas inlet 29: High pressure gas communication passage 30: Raw material supply port 31: Accelerator throat 50: Guide cylinder

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 搬送エアーと共に粉体供給筒から導入さ
れた粉体材料が、分級ルーバーを介して流入する気流に
より旋回流動され微粉と粗粉とに遠心分離される分級室
を有する気流分級機部と、高圧気体により粉体原料を搬
送加速する為の加速管と、該加速管から噴出する粉体を
衝突力により粉砕する為の衝突面を具備する粉砕室とを
有し、且つ該衝突部材が加速管出口に対向して設けられ
ている衝突式気流粉砕機部とを具備した衝突式気流粉砕
装置において、気流分級機部が、分級室の底部に設けら
れた傾斜状の分級板の中央部に設けられた排出口に接続
した微粉排出シュートから微粉を排出させ、分級板の外
周部に形成された粗粉排出口から粗粉を排出させる構造
を有し、且つ、分級室の上部に粉体供給筒と連通された
環状の案内室を設け、該案内室と分級室との間に案内室
の内円周方向の接線方向に先端を向けた複数のルーバー
が設けられていることを特徴とし、衝突式気流粉砕機部
が、ラバール形状を有する加速管のスロート部と加速管
出口との間に、加速管の全円周方向におよぶ粉体原料供
給口、又は複数個(n≧2)の孔を有する粉体原料供給
口が設けられ、且つ、粉砕室の断面形状がスクロール形
状であり、更に、衝突部材の後方に粉砕物排出口が設け
られていることを特徴とし、且つ、上記気流分級機部の
粗粉排出口が上記衝突式気流粉砕機部の粉体原料供給シ
ュートに連通され、更に、衝突式気流粉砕機部の粉砕物
排出口が気流分級機部の粉体供給筒に連通されているこ
とを特徴とする衝突式気流粉砕装置。
1. An airflow classifier having a classification chamber in which a powder material introduced from a powder supply cylinder together with carrier air is swirlingly flowed by an airflow flowing through a classification louver and centrifugally separated into fine powder and coarse powder. Section, an accelerating tube for accelerating the powder raw material by high-pressure gas, and a crushing chamber having a collision surface for crushing the powder ejected from the accelerating tube with a collision force, and the collision In a collision-type airflow crushing device having a collision-type airflow crusher unit in which a member is provided facing the accelerating pipe outlet, the airflow classifier unit includes an inclined classifying plate provided at the bottom of the classification chamber. It has a structure that discharges fine powder from a fine powder discharge chute connected to the discharge port provided in the central part and discharges coarse powder from the coarse powder discharge port formed on the outer periphery of the classification plate, and the upper part of the classification chamber. Provided with an annular guide chamber communicating with the powder supply cylinder , A plurality of louvers having a tip directed in a tangential direction of an inner circumferential direction of the guide chamber is provided between the guide chamber and the classification chamber, and the collision type airflow crusher unit has a Laval shape. Between the throat portion of the accelerating pipe and the accelerating pipe outlet, a powder raw material supply port extending over the entire circumferential direction of the accelerating pipe or a powder raw material supply port having a plurality of (n ≧ 2) holes is provided. The cross-sectional shape of the crushing chamber is a scroll shape, and further, a crushed material discharge port is provided behind the collision member, and the coarse powder discharge port of the airflow classifier section collides with the collision. Collision type characterized in that it is connected to the powder raw material supply chute of the air flow crusher section, and further the pulverized material discharge port of the collision type air flow crusher section is connected to the powder supply cylinder of the air flow classifier section. Airflow crushing device.
【請求項2】 加速管の中心軸が鉛直方向である請求項
1に記載の衝突式気流粉砕装置。
2. The collision type airflow crushing apparatus according to claim 1, wherein the central axis of the accelerating tube is vertical.
【請求項3】 衝突部材の衝突面の先端部分の形状が、
頂角が110〜175度の範囲にある錐体形状である請
求項1に記載の衝突式気流粉砕装置。
3. The shape of the tip portion of the collision surface of the collision member is
The collision type airflow crushing device according to claim 1, which is a cone shape having an apex angle in the range of 110 to 175 degrees.
JP03348420A 1991-12-05 1991-12-05 Collision type air crusher Expired - Fee Related JP3091289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03348420A JP3091289B2 (en) 1991-12-05 1991-12-05 Collision type air crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03348420A JP3091289B2 (en) 1991-12-05 1991-12-05 Collision type air crusher

Publications (2)

Publication Number Publication Date
JPH05154399A true JPH05154399A (en) 1993-06-22
JP3091289B2 JP3091289B2 (en) 2000-09-25

Family

ID=18396892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03348420A Expired - Fee Related JP3091289B2 (en) 1991-12-05 1991-12-05 Collision type air crusher

Country Status (1)

Country Link
JP (1) JP3091289B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094574A (en) * 2008-10-14 2010-04-30 Earth Technica:Kk Jet mill
CN108393137A (en) * 2018-03-01 2018-08-14 西南大学 A kind of mono-roller type micronized pulverization roller stone roller device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094574A (en) * 2008-10-14 2010-04-30 Earth Technica:Kk Jet mill
CN108393137A (en) * 2018-03-01 2018-08-14 西南大学 A kind of mono-roller type micronized pulverization roller stone roller device
CN108393137B (en) * 2018-03-01 2024-05-07 西南大学 Single-roller type superfine crushing roller mill

Also Published As

Publication number Publication date
JP3091289B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
JP4785802B2 (en) Powder classifier
EP1494812B1 (en) Vortex mill for milling solids
WO2007145207A1 (en) Air flow classifier, and classifying plant
JP3845214B2 (en) Classifier and rectifier
JP3185065B2 (en) Collision type air crusher
JP3091289B2 (en) Collision type air crusher
JP3091281B2 (en) Collision type air crusher
JPS6316981B2 (en)
JP2967304B2 (en) Classification crusher
JP3108820B2 (en) Collision type air crusher
JPH07132241A (en) Pulverizer
JPH0523611A (en) Collision type pneumatic grander
JPH0667492B2 (en) Jet airflow crusher
JP2008272627A (en) Powder classification apparatus
JP2942405B2 (en) Collision type air crusher
JPH01207152A (en) Gaseous flow classifier
JPH07185383A (en) Circulation type pulverizing and classifying machine
JP2811621B2 (en) Method and apparatus for supplying raw material powder to airflow classifier
JPH01207178A (en) Pneumatic classifying machine
JP3016402B2 (en) Collision type air crusher
JPH04326953A (en) Impact type pneumatic grinder
JP2733488B2 (en) Jet air flow type powder crusher
JPS6242753A (en) Method and apparatus for producing fine powder
JPH02303559A (en) Gas flow classifier
JP2819459B2 (en) Air classifier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees