JPH05153703A - Power distributor for series hybrid vehicle - Google Patents

Power distributor for series hybrid vehicle

Info

Publication number
JPH05153703A
JPH05153703A JP31101591A JP31101591A JPH05153703A JP H05153703 A JPH05153703 A JP H05153703A JP 31101591 A JP31101591 A JP 31101591A JP 31101591 A JP31101591 A JP 31101591A JP H05153703 A JPH05153703 A JP H05153703A
Authority
JP
Japan
Prior art keywords
main battery
generator
power
output
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31101591A
Other languages
Japanese (ja)
Other versions
JP2973657B2 (en
Inventor
Koji Nakamura
好志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP31101591A priority Critical patent/JP2973657B2/en
Publication of JPH05153703A publication Critical patent/JPH05153703A/en
Application granted granted Critical
Publication of JP2973657B2 publication Critical patent/JP2973657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1415Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with a generator driven by a prime mover other than the motor of a vehicle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Eletrric Generators (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Abstract

PURPOSE:To prevent deterioration of characteristics by stopping charging operation of main battery when power demand is low. CONSTITUTION:When power demand (P) of vehicle is lower than the minimum output power (pGmin) of 8 generator 12, maximum charging charging current (pCHGmax) of a main battery 16 is determined based on SOC of the main battery 16. If PGmin-P>=PCHGmax, a vehicle ECU 30 delivers commands to an engine ECU 32 and a field controller 34 to stop or bring the engine 10 into idling state thus bringing the field current of the generator 12 to zero. Consequently, output power from the generator 12 is interrupted and a motor 20 is driven with the output from the main battery 16 thus interruting charging operation of the main battery 16. Since the main battery 16 is charged under a state where SOC is high, production of gas or heating of the main battery 16 is prevented and the characteristics of the main battery 16 are prevented from deterioration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリーズハイブリッド
車に搭載する各コンポーネントに対する電力配分を制御
する電力配分装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power distribution device for controlling power distribution to each component mounted on a series hybrid vehicle.

【0002】[0002]

【従来の技術】ハイブリッド車は、車両の駆動源として
エンジン及びモータを共に搭載する車両である。ハイブ
リッド車にはパラレルハイブリッド車とシリーズハイブ
リッド車があり、シリーズハイブリッド車においては、
エンジンによって発電機が駆動され、発電機の出力及び
/または主電池の出力がモータに供給され、このモータ
によって車輪が駆動される。
2. Description of the Related Art A hybrid vehicle is a vehicle equipped with both an engine and a motor as a drive source for the vehicle. Hybrid vehicles include parallel hybrid vehicles and series hybrid vehicles.
The engine drives the generator, and the output of the generator and / or the output of the main battery is supplied to the motor, which drives the wheels.

【0003】主電池は、鉛電池等の充放電可能な電池で
あり、発電機の出力、モータの回生制動によって得られ
る回生電力等によって充電される。シリーズハイブリッ
ド車においては、特開昭59−37804号公報に示さ
れるように、発電機の出力の残余電力を主電池に蓄える
ことができ、また、モータから要求される電力が発電機
の出力のみでは足りない場合に主電池の出力電力を供給
することができる。これにより、燃費が向上し、騒音、
排気ガスが低減する。
The main battery is a chargeable / dischargeable battery such as a lead battery, and is charged by the output of a generator, regenerative electric power obtained by regenerative braking of a motor, or the like. In a series hybrid vehicle, as shown in Japanese Patent Laid-Open No. 59-37804, the residual electric power of the output of the generator can be stored in the main battery, and the electric power required from the motor is only the output of the generator. If it is not enough, the output power of the main battery can be supplied. This improves fuel economy, reduces noise,
Exhaust gas is reduced.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
シリーズハイブリッド車においては、モータ側から要求
される電力が発電機の最小出力電力を下回っている場合
に、その差の電力が主電池に供給され続ける。SOC
(state ofcharge)が100%に近づい
ている状態で充電しようとすると、主電池の内部におけ
るガス発生が増大し、また、SOCが100%となると
発電機から供給される電力は主電池に蓄えられることな
く全てガス発生や主電池の発熱に使われることとなる。
従って、従来のシリーズハイブリッド車においては、上
述のような場合に電池の特性劣化等の問題点が生じてし
まう。
However, in the conventional series hybrid vehicle, when the electric power required from the motor side is lower than the minimum output electric power of the generator, the difference electric power is supplied to the main battery. to continue. SOC
When trying to charge while the (state of charge) approaches 100%, gas generation inside the main battery increases, and when the SOC reaches 100%, the power supplied from the generator is stored in the main battery. Without being used, it will be used for gas generation and main battery heat generation.
Therefore, in the conventional series hybrid vehicle, problems such as deterioration of battery characteristics occur in the above cases.

【0005】本発明は、このような問題点を解決するこ
とを課題としてなされたものであり、モータ側から要求
される電力が小さく発電機の最小出力電力を下回ってい
る場合に、主電池のSOCに応じて当該主電池の充電動
作を制御することにより、主電池の特性劣化等を防止す
ることを目的とする。
The present invention has been made to solve the above problems, and when the electric power required from the motor side is small and is below the minimum output electric power of the generator, the main battery By controlling the charging operation of the main battery according to the SOC, it is an object to prevent characteristic deterioration of the main battery.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るために、本発明の電力配分装置は、主電池のSOCを
検出する手段と、検出されたSOCに基づき主電池に供
給して良い最大充電電力を決定する手段と、モータに供
給すべき要求電力と発電機の最小出力電力の差が主電池
の最大充電電力以上であるか否かを判定する手段と、要
求電力と発電機の最小出力電力の差が主電池の最大充電
電力以上である場合に、エンジンを停止またはアイドル
状態とすると共に発電機の界磁電流を零として主電池の
充電を中止させる手段と、を備えることを特徴とする。
In order to achieve such an object, the power distribution apparatus of the present invention may supply the main battery with a means for detecting the SOC of the main battery and the detected SOC. A means for determining the maximum charging power, a means for determining whether the difference between the required power to be supplied to the motor and the minimum output power of the generator is greater than or equal to the maximum charging power of the main battery, and the required power and the generator And a means for stopping the charging of the main battery by setting the field current of the generator to zero and stopping the charging of the main battery when the difference between the minimum output powers is equal to or more than the maximum charging power of the main battery. Characterize.

【0007】[0007]

【作用】本発明においては、主電池のSOCが検出さ
れ、検出結果に基づき最大充電電力が決定される。最大
充電電力が決定されると、要求電力と発電機の最小出力
電力の差が当該最大充電電力と比較される。この比較の
結果、要求電力と発電機の最小出力電力の差が主電池の
最大充電電力以上である場合、充電動作により主電池の
特性劣化の可能性があるとみなし、エンジンを停止また
はアイドル状態とすると共に発電機の界磁電流を零とす
る。この結果、発電機からの出力電力が零となり、主電
池の充電が中止される。従って、本発明においては、モ
ータ側からの要求電力が小さく発電機の最小出力電力を
下回っている場合に、両者の差が主電池の最大充電電力
以上でなければ主電池への充電が行われ得るが、逆に、
両者の差が主電池の最大充電電力以上である場合には特
性劣化の原因となる充電が中止されることとなり、電池
の特性劣化が防止される。
In the present invention, the SOC of the main battery is detected, and the maximum charging power is determined based on the detection result. When the maximum charging power is determined, the difference between the required power and the minimum output power of the generator is compared with the maximum charging power. As a result of this comparison, if the difference between the required power and the minimum output power of the generator is more than the maximum charging power of the main battery, it is considered that the characteristics of the main battery may deteriorate due to the charging operation, and the engine is stopped or idle. And the field current of the generator is set to zero. As a result, the output power from the generator becomes zero and charging of the main battery is stopped. Therefore, in the present invention, when the required power from the motor side is small and is below the minimum output power of the generator, the main battery is charged unless the difference between them is greater than the maximum charging power of the main battery. But on the contrary,
When the difference between the two is greater than the maximum charging power of the main battery, the charging that causes the deterioration of the characteristics is stopped, and the deterioration of the characteristics of the battery is prevented.

【0008】[0008]

【実施例】以下、本発明の好適な実施例について図面に
基づき説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings.

【0009】図1には、本発明の一実施例に係る電力配
分機能を備えるシリーズハイブリッド車の構成が示され
ている。本実施例のシリーズハイブリッド車は、エンジ
ン10、エンジン10によって駆動される発電機12、
発電機12の出力を整流する整流器14を備えている。
整流器14の出力端には、例えば6セルモジュールの鉛
電池である主電池16が並列接続されている。
FIG. 1 shows the configuration of a series hybrid vehicle having a power distribution function according to an embodiment of the present invention. The series hybrid vehicle of this embodiment includes an engine 10, a generator 12 driven by the engine 10,
The rectifier 14 which rectifies the output of the generator 12 is provided.
A main battery 16 which is a lead battery of a 6-cell module, for example, is connected in parallel to the output terminal of the rectifier 14.

【0010】整流器14及び主電池16は、インバータ
18を介して三相交流モータ20に接続されている。従
って、整流器14及び主電池16の出力電力は、インバ
ータ18によって三相交流電流に変換されモータ20を
駆動する電力に用いられる。モータ20は、トランスミ
ッション(T/M)22、ディファレンシャルギア(デ
フ)24等を介して車輪26に連結されており、従っ
て、モータ側20の機械出力は車両の推進力となる。
The rectifier 14 and the main battery 16 are connected to a three-phase AC motor 20 via an inverter 18. Therefore, the output power of the rectifier 14 and the main battery 16 is converted into a three-phase alternating current by the inverter 18 and used as power for driving the motor 20. The motor 20 is connected to the wheels 26 via a transmission (T / M) 22, a differential gear (differential gear) 24, etc. Therefore, the mechanical output on the motor side 20 becomes the propulsive force of the vehicle.

【0011】尚、この図においてはDC/DCコンバー
タ28が示されており、このDC/DCコンバータ28
は整流器14及び主電池16の出力電圧を車両に搭載す
る電気的補機(後述するECU等を含む)の動作電圧に
変換し出力する。
A DC / DC converter 28 is shown in this drawing, and this DC / DC converter 28 is shown.
Converts the output voltage of the rectifier 14 and the main battery 16 into an operating voltage of an electric auxiliary device (including an ECU described later) mounted on the vehicle and outputs the operating voltage.

【0012】この実施例のシリーズハイブリッド車は、
車両ECU30、エンジンECU32、界磁コントロー
ラ34によって制御される。車両ECU30は、操縦者
のアクセル踏込み量及びブレーキ踏込み量を表わす信号
を入力し、またモータ20の回転数を入力して、これら
の入力に基づきインバータ18をPWM制御する。ま
た、車両ECU30及びエンジンECU32は、要求さ
れる出力に応じエンジン10の燃料噴射量等を制御する
ことによりエンジン10の出力を制御する。また、車両
ECU30は、界磁コントローラ34に対し励磁指令を
与え、発電機12の界磁電流を制御する。
The series hybrid vehicle of this embodiment is
It is controlled by the vehicle ECU 30, the engine ECU 32, and the field controller 34. The vehicle ECU 30 inputs signals representing the accelerator depression amount and the brake depression amount of the operator, and also inputs the rotation speed of the motor 20, and PWM-controls the inverter 18 based on these inputs. Further, the vehicle ECU 30 and the engine ECU 32 control the output of the engine 10 by controlling the fuel injection amount of the engine 10 according to the required output. Further, the vehicle ECU 30 gives an excitation command to the field controller 34 to control the field current of the generator 12.

【0013】この実施例において特徴とする点は、車両
ECU30が主電池16のSOCを検出し、検出された
SOC、発電機12の出力範囲、モータに要求される電
力Pに基づき、主電池16の充電動作を制御する点にあ
る。
A feature of this embodiment is that the vehicle ECU 30 detects the SOC of the main battery 16, and the main battery 16 is detected based on the detected SOC, the output range of the generator 12, and the electric power P required for the motor. The point is to control the charging operation of.

【0014】図2には、本実施例における充電動作の概
要が従来技術との対比で示されている。この図に示され
るように、時間tの経過に従い最初は要求電力Pが直線
的に増加しその後減少する走行パターンを考えた場合、
この走行パターンは、3つの領域〜に区分される。
領域は、要求電力Pが発電機12の最小出力電力P
Gmin以下の領域であり、領域は要求電力Pが発電機1
2の出力電力範囲内にある領域であり、領域は要求電
力Pが発電機の最大出力電力を越える領域である。
FIG. 2 shows an outline of the charging operation in this embodiment in comparison with the prior art. As shown in this figure, when considering a traveling pattern in which the required power P increases linearly at first as time elapses and then decreases,
This traveling pattern is divided into three areas.
In the region, the required power P is the minimum output power P of the generator 12.
It is an area below Gmin , where the required power P is the generator 1
2 is an area within the output power range, and the area is an area where the required power P exceeds the maximum output power of the generator.

【0015】これらの領域のうち、については、従
来、発電機12から整流器14を介して出力される電力
と主電池16から出力される電力とが共にインバータ1
8を介してモータ20に供給され、当該モータ20の駆
動に用いられていた。従って、この領域では主電池16
の充電は行われていなかった。本実施例でも、この動作
は同様である。
Regarding these regions, conventionally, the power output from the generator 12 via the rectifier 14 and the power output from the main battery 16 are both in the inverter 1.
It was supplied to the motor 20 via 8 and used to drive the motor 20. Therefore, in this area, the main battery 16
Was not charged. This operation is the same in this embodiment as well.

【0016】次に、領域においては、要求電力Pが発
電機12の出力範囲内に留まるため、発電機12の出力
電力のみで要求電力Pを供給し得る。従って、この領域
では、領域と異なり主電池16を放電させる必要はな
く、必要に応じ、主電池16の充電を行うことが可能で
ある。主電池16は、例えば6セルモジュール鉛電池と
して構成した場合、図3に示されるような電圧電流特性
となり、図示される等充電電力線に従って主電池16を
充電することができる。
Next, in the area, the required power P remains within the output range of the generator 12, so that the required power P can be supplied only by the output power of the generator 12. Therefore, unlike this area, it is not necessary to discharge the main battery 16 in this area, and the main battery 16 can be charged as needed. When the main battery 16 is configured as a 6-cell module lead battery, for example, it has a voltage-current characteristic as shown in FIG. 3, and the main battery 16 can be charged according to the equal charging power line shown in the figure.

【0017】領域においては、従来であれば、主電池
16のSOCに拘らず常に充電動作が行われていた。し
かし、本実施例においては、主電池16のSOC等に応
じ充電するか否かが決定される。この領域における動
作が特に本実施例における特徴的な動作である。
In the region, conventionally, the charging operation was always performed regardless of the SOC of the main battery 16. However, in this embodiment, whether or not to charge the main battery 16 is determined according to the SOC and the like. The operation in this area is a characteristic operation particularly in this embodiment.

【0018】図4には、本実施例における主電池16の
充電制御動作の流れが概略図示されている。
FIG. 4 schematically shows the flow of the charging control operation of the main battery 16 in this embodiment.

【0019】この図に示されるように、車両ECU30
は、まずアクセル量、モータ20の回転数等から要求電
力Pを決定し(100)、要求電力Pが〜のいずれ
の領域にあるかを発電機12の出力範囲との比較により
判定する(102)。
As shown in this figure, the vehicle ECU 30
First determines the required power P from the accelerator amount, the rotation speed of the motor 20, etc. (100), and determines which region of the required power P is in the range of to by comparing with the output range of the generator 12 (102). ).

【0020】この判定の結果、領域と判定された場
合、車両ECU30は、主電池16に組込まれているS
OCセンサ(例えばAh計、電解液比重計等)により主
電池16のSOCを検出し(104)、検出したSOC
に基づき主電池16の最大充電電力PCHGmaxを演算する
(106)。この最大充電電力PCHGmaxは、例えば図3
に示されるような主電池16の特性に基づき決定する。
鉛電池であれば、通常、2.2V/セルの充電電圧制限
が設定されており、これに基づきステップ106を実行
する。
If the result of this determination is that it is in the region, the vehicle ECU 30 has the S built in the main battery 16.
The SOC of the main battery 16 is detected by an OC sensor (for example, Ah meter, electrolyte specific gravity meter, etc.) (104), and the detected SOC is detected.
Based on the above, the maximum charging power P CHGmax of the main battery 16 is calculated (106). This maximum charging power P CHGmax is, for example, as shown in FIG.
It is determined based on the characteristics of the main battery 16 as shown in.
In the case of a lead battery, a charging voltage limit of 2.2V / cell is usually set, and step 106 is executed based on this.

【0021】最大充電電力PCHGmaxが求められると、こ
れとPGmin−Pが比較される(108)。比較の結果、
Gmin−P<PCHGmaxである場合には、主電池16を充
電する動作に移行しても当該主電池16におけるガス発
生や発熱等が生じないと見なせるため充電動作に移行す
る(110)。この状態では、発電機12は、モータ2
0に対して要求電力Pを供給すると共に、主電池16を
Gmin−Pで充電する(ここでは各部の損失を無視して
いる)。尚、発電機12の出力電力の制御は、エンジン
10における燃料噴射量の制御や発電機12の界磁電流
f の制御で実行可能である。
When the maximum charging power P CHGmax is obtained, it is compared with P Gmin -P (108). The result of the comparison,
When P Gmin −P <P CHGmax , it can be considered that gas generation or heat generation does not occur in the main battery 16 even if the operation of charging the main battery 16 is performed (110). In this state, the generator 12 is the motor 2
The required power P is supplied to 0, and the main battery 16 is charged with P Gmin −P (here, the loss of each part is ignored). The control of the output power of the generator 12 can be performed in the control of the field current I f of the fuel injection amount control and the generator 12 in the engine 10.

【0022】ステップ108において、PGmin−P≧P
CHGmaxであると判定された場合には、車両ECU30は
エンジンECU32に指令を発し、エンジン10を停止
またはアイドル状態とする(112)。これと共に、界
磁コントローラ34に対し指令を与え、発電機12の界
磁電流If を0とする(114)。すると、発電機12
の出力電力は零となり、モータ20への電力供給は専ら
主電池16のみによって行われる状態となる。従って、
この状態では、発電機12の出力電力による主電池16
の充電は行われず、主電池16は放電状態となる(11
6)。
In step 108, P Gmin −P ≧ P
If it is determined to be CHGmax , the vehicle ECU 30 issues a command to the engine ECU 32 to stop or idle the engine 10 (112). At the same time, it gives the command to the field controller 34, the field current I f of the generator 12 and 0 (114). Then, the generator 12
Output power becomes zero, and power is supplied to the motor 20 exclusively by the main battery 16. Therefore,
In this state, the main battery 16 generated by the output power of the generator 12
Is not charged, and the main battery 16 is in a discharged state (11
6).

【0023】ステップ102において、領域であると
判定された場合には、車両ECU30はエンジECU3
2及び界磁コントローラ34に指令を与え、発電機12
により要求電力Pが得られるようにする。この場合、発
電機12からの出力電力によって要求電力Pが賄われ
る。ただし、領域と判定された場合と同様に、主電地
16のSOCに応じ、主電池16の充電を行っても構わ
ない(118)。
When it is determined in step 102 that the area is the area, the vehicle ECU 30 determines that the engine ECU 3
2 and the field controller 34 to give a command to the generator 12
So that the required power P can be obtained. In this case, the required power P is covered by the output power from the generator 12. However, the main battery 16 may be charged according to the SOC of the main battery 16 as in the case of being determined as the area (118).

【0024】そして、領域と判定された場合には、車
両ECU30はエンジンECU32及び界磁コントロー
ラ34に対し指令を与えることにより、発電機12の出
力電力を例えばその最大出力電力となるように制御し、
主電池16の出力を用いてモータ20を駆動するように
する。この状態では、従って、主電池16の充電は行わ
れない(120)。
When it is determined to be in the region, the vehicle ECU 30 gives a command to the engine ECU 32 and the field controller 34 to control the output power of the generator 12 to, for example, its maximum output power. ,
The output of the main battery 16 is used to drive the motor 20. In this state, therefore, the main battery 16 is not charged (120).

【0025】この様に、本実施例によれば、要求電力P
が領域である場合に、主電池16のSOCに基づきそ
の最大充電電力PCHGmaxを求め、これをPGmin−Pと比
較して主電池16におけるガス発生、発熱等を起こすこ
となく充電可能な場合にのみ主電池16を充電するよう
にしたため、主電池16の破損、寿命短縮、液減り等を
防止することができ、主電池16の特性の劣化等が生じ
ないシリーズハイブリッド車を実現することができる。
Thus, according to this embodiment, the required power P
In the case where is a region, when the maximum charging power P CHGmax is obtained based on the SOC of the main battery 16 and compared with P Gmin −P, charging can be performed without causing gas generation or heat generation in the main battery 16. Since the main battery 16 is charged only in the battery, it is possible to prevent the main battery 16 from being damaged, shortened in life, and drained, thereby realizing a series hybrid vehicle in which the characteristics of the main battery 16 are not deteriorated. it can.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
主電池のSOCを検出し、要求電力が小さくSOCが高
い場合に主電池の充電動作に移行しないようエンジン及
び発電機を制御するようにしたため、主電池の特性劣化
を防止することができる。また、主電池の充電を中止さ
せる際エンジンをアイドル状態とするようにした場合に
は、更に、次の運転開始時にコールドスタートを避ける
ことができ、エミッションの増大を防止しかつ燃費を高
めることができる。
As described above, according to the present invention,
Since the SOC of the main battery is detected and the engine and the generator are controlled so as not to shift to the charging operation of the main battery when the required power is small and the SOC is high, it is possible to prevent characteristic deterioration of the main battery. Also, if the engine is set to the idle state when the charging of the main battery is stopped, it is possible to avoid a cold start at the start of the next operation, prevent an increase in emissions, and improve fuel efficiency. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るシリーズハイブリッド
車の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a series hybrid vehicle according to an embodiment of the present invention.

【図2】主電池の充電動作を本発明と従来技術とで対比
した図である。
FIG. 2 is a diagram comparing the charging operation of the main battery between the present invention and the prior art.

【図3】主電池の特性の一例を示す図である。FIG. 3 is a diagram showing an example of characteristics of a main battery.

【図4】この実施例における主電池充電制御動作の流れ
を示す図である。
FIG. 4 is a diagram showing a flow of main battery charge control operation in this embodiment.

【符号の説明】[Explanation of symbols]

10 エンジン 12 発電機 16 主電池 20 モータ 30 車両ECU 32 エンジンECU 34 界磁コントローラ SOC 主電池の充電状態 P 要求電力 PCHGmax 主電池の最大充電電力 PGmin 発電機の最小出力電力 If 発電機の界磁電流10 engine 12 generator 16 main battery 20 motor 30 vehicle ECU 32 engine ECU 34 field controller SOC state of charge of main battery P required power P CHGmax maximum charge power of main battery P Gmin minimum output power If generator of generator Field current

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H02P 9/14 G 6728−5H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H02P 9/14 G 6728-5H

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エンジンによって駆動される発電機と、
充放電可能な主電池と、発電機及び主電池の出力電力に
よって駆動されるモータと、を搭載するシリーズハイブ
リッド車において、 主電池の充電状態を検出する手段と、 検出された充電状態に基づき主電池に供給してよい最大
充電電力を決定する手段と、 モータに供給すべき要求電力と発電機の最小出力電力の
差が主電池の最大充電電力以上であるか否かを判定する
手段と、 要求電力と発電機の最小出力電力の差が主電池の最大充
電電力以上である場合に、エンジンを停止又はアイドル
状態とすると共に発電機の界磁電流を零として主電池の
充電を中止させる手段と、 を備えることを特徴とする電力配分装置。
1. A generator driven by an engine,
In a series hybrid vehicle equipped with a main battery that can be charged and discharged and a motor that is driven by the output power of the generator and the main battery, a means for detecting the state of charge of the main battery, and a main unit based on the detected state of charge Means for determining the maximum charging power that may be supplied to the battery, and means for determining whether the difference between the required power to be supplied to the motor and the minimum output power of the generator is greater than or equal to the maximum charging power of the main battery, A means for stopping the engine by setting the field current of the generator to zero and stopping the charging of the main battery when the difference between the required power and the minimum output power of the generator is more than the maximum charging power of the main battery. An electric power distribution apparatus comprising:
JP31101591A 1991-11-26 1991-11-26 Power distribution system for series hybrid vehicles Expired - Lifetime JP2973657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31101591A JP2973657B2 (en) 1991-11-26 1991-11-26 Power distribution system for series hybrid vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31101591A JP2973657B2 (en) 1991-11-26 1991-11-26 Power distribution system for series hybrid vehicles

Publications (2)

Publication Number Publication Date
JPH05153703A true JPH05153703A (en) 1993-06-18
JP2973657B2 JP2973657B2 (en) 1999-11-08

Family

ID=18012097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31101591A Expired - Lifetime JP2973657B2 (en) 1991-11-26 1991-11-26 Power distribution system for series hybrid vehicles

Country Status (1)

Country Link
JP (1) JP2973657B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718950A3 (en) * 1994-12-22 1997-03-05 Toyota Motor Co Ltd Generator controller used in hybrid electric vehicle
US5786640A (en) * 1995-02-13 1998-07-28 Nippon Soken, Inc. Generator control system for a hybrid vehicle driven by an electric motor and an internal combustion engine
JPH1127804A (en) * 1997-07-04 1999-01-29 Nissan Motor Co Ltd Generator controller for series hybrid vehicle
JPH11103503A (en) * 1997-09-29 1999-04-13 Nissan Motor Co Ltd Control device of hybrid vehicle
JPH11136808A (en) * 1997-10-31 1999-05-21 Nissan Motor Co Ltd Power generation controller for hybrid vehicle
US5969624A (en) * 1995-04-07 1999-10-19 Nippon Soken, Inc, Battery charge control system for a hybrid vehicle driven by an electric motor and an internal combustion engine
KR20020058895A (en) * 2000-12-30 2002-07-12 이계안 A generator power limitation method in the hybrid electric vehicle
KR101157413B1 (en) * 2011-12-27 2012-06-21 국방과학연구소 Series hybrid electric vehicle and method for controlling power of the same
JP2012228005A (en) * 2011-04-15 2012-11-15 Denso Corp Vehicle charge control apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112319248B (en) * 2020-11-17 2022-04-26 睿驰电装(大连)电动系统有限公司 Method and device for controlling starting of engine of extended range electric vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718950A3 (en) * 1994-12-22 1997-03-05 Toyota Motor Co Ltd Generator controller used in hybrid electric vehicle
US5804947A (en) * 1994-12-22 1998-09-08 Toyota Jidosha Kabushiki Kaisha Generator controller used in hybrid electric vehicle
US5786640A (en) * 1995-02-13 1998-07-28 Nippon Soken, Inc. Generator control system for a hybrid vehicle driven by an electric motor and an internal combustion engine
US5969624A (en) * 1995-04-07 1999-10-19 Nippon Soken, Inc, Battery charge control system for a hybrid vehicle driven by an electric motor and an internal combustion engine
JPH1127804A (en) * 1997-07-04 1999-01-29 Nissan Motor Co Ltd Generator controller for series hybrid vehicle
JPH11103503A (en) * 1997-09-29 1999-04-13 Nissan Motor Co Ltd Control device of hybrid vehicle
JPH11136808A (en) * 1997-10-31 1999-05-21 Nissan Motor Co Ltd Power generation controller for hybrid vehicle
KR20020058895A (en) * 2000-12-30 2002-07-12 이계안 A generator power limitation method in the hybrid electric vehicle
JP2012228005A (en) * 2011-04-15 2012-11-15 Denso Corp Vehicle charge control apparatus
KR101157413B1 (en) * 2011-12-27 2012-06-21 국방과학연구소 Series hybrid electric vehicle and method for controlling power of the same

Also Published As

Publication number Publication date
JP2973657B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
EP0543390B1 (en) Drive control apparatus of series hybrid vehicle
US5945808A (en) Hybrid electric vehicle with battery management
US7267191B2 (en) System and method for battery protection strategy for hybrid electric vehicles
US6630810B2 (en) Hybrid vehicle and control method therefor
US6573675B2 (en) Method and apparatus for adaptive energy control of hybrid electric vehicle propulsion
JP3180304B2 (en) Power circuit of hybrid car
US5786640A (en) Generator control system for a hybrid vehicle driven by an electric motor and an internal combustion engine
US6488107B1 (en) Control device for a hybrid vehicle
CN102387932B (en) Automobile and method for controlling said automobile
JPH0795703A (en) Generation controller for hybrid vehicle
CN102883934A (en) Hybrid vehicle control device and hybrid vehicle provided with same
JPH11252710A (en) Hybrid electric car by auxiliary power for supplying reduced battery in course of regenerative braking
CN107985302B (en) Vehicle with a steering wheel
CN102883933A (en) Hybrid-vehicle control device and hybrid vehicle provided therewith
US7308958B2 (en) Method for controlling a series hybrid electric vehicle
KR101927180B1 (en) Method and apparatus for charging auxiliary battery of vehicle including driving motor
JPH11289607A (en) Controller for hybrid vehicle
JP2973657B2 (en) Power distribution system for series hybrid vehicles
JPH07236203A (en) Controller for electric automobile
JP3094701B2 (en) Control device for engine drive generator for electric vehicle
JP3718962B2 (en) Hybrid vehicle
JP3013764B2 (en) Charge and discharge control device for hybrid electric vehicles
JP2003102133A (en) Apparatus for controlling temperature rise of secondary battery
JP2012045996A (en) Power generation control device of hybrid vehicle
JP3044962B2 (en) Motor control device for electric vehicle with engine-driven generator