JPH05152B2 - - Google Patents
Info
- Publication number
- JPH05152B2 JPH05152B2 JP4542088A JP4542088A JPH05152B2 JP H05152 B2 JPH05152 B2 JP H05152B2 JP 4542088 A JP4542088 A JP 4542088A JP 4542088 A JP4542088 A JP 4542088A JP H05152 B2 JPH05152 B2 JP H05152B2
- Authority
- JP
- Japan
- Prior art keywords
- chromium
- electrode wire
- copper
- welding
- plating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003466 welding Methods 0.000 claims description 62
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 56
- 229910052804 chromium Inorganic materials 0.000 claims description 56
- 239000011651 chromium Substances 0.000 claims description 56
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 51
- 238000007747 plating Methods 0.000 claims description 51
- 229910052802 copper Inorganic materials 0.000 claims description 31
- 239000010949 copper Substances 0.000 claims description 31
- 238000004519 manufacturing process Methods 0.000 claims description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 18
- 229910045601 alloy Inorganic materials 0.000 claims description 17
- 239000000956 alloy Substances 0.000 claims description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 16
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910000599 Cr alloy Inorganic materials 0.000 claims description 6
- 239000000788 chromium alloy Substances 0.000 claims description 6
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 claims description 2
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 description 41
- 229910000831 Steel Inorganic materials 0.000 description 25
- 239000010959 steel Substances 0.000 description 25
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 23
- 230000000694 effects Effects 0.000 description 14
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 13
- 238000000034 method Methods 0.000 description 9
- 229910000679 solder Inorganic materials 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 238000005868 electrolysis reaction Methods 0.000 description 6
- 238000005498 polishing Methods 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010301 surface-oxidation reaction Methods 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000005028 tinplate Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- GXDVEXJTVGRLNW-UHFFFAOYSA-N [Cr].[Cu] Chemical compound [Cr].[Cu] GXDVEXJTVGRLNW-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- BIJOYKCOMBZXAE-UHFFFAOYSA-N chromium iron nickel Chemical compound [Cr].[Fe].[Ni] BIJOYKCOMBZXAE-UHFFFAOYSA-N 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- UOUJSJZBMCDAEU-UHFFFAOYSA-N chromium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Cr+3].[Cr+3] UOUJSJZBMCDAEU-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical class [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- CMMUKUYEPRGBFB-UHFFFAOYSA-L dichromic acid Chemical compound O[Cr](=O)(=O)O[Cr](O)(=O)=O CMMUKUYEPRGBFB-UHFFFAOYSA-L 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Electroplating Methods And Accessories (AREA)
Description
〔従来の技術〕
ぶりき等の缶用素材を円筒状に成型し、その両
縁端接合部をハンダ、接着剤等を用いてラツプシ
ーム、ロツクシーム或はこれらの組み合わせシー
ムに接合し、缶を製缶することが行われている。
しかしながら、この製缶方法では、接合部にかな
りの面積が必要であり、資源節約の点で問題があ
るとともに、また接着缶(接着剤による接合缶)
の場合には、継ぎ目の強度および耐久性の点で問
題がある。さらに、ハンダ缶(ハンダによる接合
缶)及び接着缶は、接合された接合部にかなりの
段差があるため缶蓋との二重巻き締めに際して、
段差部分での漏洩を生じ易いという問題がある。
従来、ハンダ缶に代わる製缶法の缶として、絞
りしごき加工によるシームレス缶(継ぎ目無し
缶)がある分野では用いられているが、シームレ
ス缶は、圧力による缶胴変形が大きいため、バキ
ユーム缶、即ち内容物をレトルト殺菌する缶に用
いることは到底不可能である。
ハンダ缶に代わる製缶法の缶の他の例として、
円筒状に成型した缶用素材の両縁端接合部を溶接
によりラツプ(重ね合わせ)接合した溶接シーム
缶も既に知られている。このような溶接シーム缶
は、ラツプ接合部の面積が、ハンダ缶等に比べて
著しく小であり、また接合された接合部分の厚み
も比較的小さいため前述した段差に伴う問題が緩
和され、さらに、ハンダのような格別な接合剤を
必要としないという利点を有しているが、後述す
るように、缶用素材の種類によつてはその製造操
作が面倒であり、また接合された接合部の耐食
性、塗料密着性および外観特性においても未だ十
分満足しうるものではなかつた。
上記溶接シーム缶の製造は、円筒状に成型した
缶用素材の両縁端接合部を重ね合わせ、その重ね
合せた接合部を、上下一対の電極ローラ間に通過
せしめるか、或は、電極ワイヤーを介して上下一
対の電極ローラ間に通過せしめるかして、接合部
を電気抵抗溶接することにより一般的に行われて
いる。
〔発明が解決しようとする課題〕
ところで、缶用素材のうち、鋼板を電解クロメ
ート処理して得られる電解クロメート処理鋼板
(テインフリーステイール、以下TFSという)
は、ぶりき等の他の缶用材料と比較して安価にし
かも容易に入手でき、また耐食性および塗料密着
性にも優れているという利点を有している。とこ
ろが、このTFSは、その外表面に高い電気抵抗
のクロム水和酸化物層が必ず存在し、現状の銅も
しくは銅基質合金の電極ワイヤーを使用して電気
抵抗溶接する場合、その通電を阻害するという問
題があり、この溶接操作に先立つてTFS鉄面上
のクロム水和酸化物層を含むクロメート皮膜を除
去しなければならないという煩わしさがある。か
くして、従来のTFS溶接缶(TFSを用いた溶接
缶)の製造方法は、工程数が多くなるという問題
点を有するとともに、接合部のクロメート皮膜を
除去して鉄面を露出させることに伴つて、この部
分の耐食性及び塗料密着性が必然的に低下すると
いう欠点がある。更にこれらのクロメート皮膜の
除去は、TFS素材の重ね合わすべき接合部分を
機械的研磨を賦することにより一般に行つている
がこの研磨の際、素材から剥離された破片や粒子
により、素材の他の部分のクロメート皮膜や塗料
が損傷を受け、またこれらの破片や粒子が缶詰の
内容物中に混合するという問題を生じる。
これに対して、近時、この研磨による前処理を
必要としない無研磨シーム溶接用のTFS素材や、
無研磨TFS溶接方法が研究検討されている。
無研磨シーム溶接用のTFS素材としては、従
来のTFSのクロム水和酸化物層を薄くし、重ね
合せた接合部のクロメート皮膜間の電気抵抗を低
減しようとしたものや、クロメート皮膜下層の金
属クロム層を微細な粒状化したものを含むものに
することで、クロム水和酸化物層を溶接加圧時に
破壊し、クロメート皮膜間の電気抵抗を低減しよ
うとしたものなどが提案されている。これらの方
法は、重ね合わされたクロメート皮膜間の抵抗加
熱による均一発熱をねらつたもので、溶接接合界
面でのスプラツシユ(溶融鉄が接合部外にはみ出
す現象)の発生を抑えながら、溶接接合部分の気
密性や接合強度の改善を図つている。しかし、こ
のような方法を講じても、TFS素材と電極ワイ
ヤーとの間の接触部分の電気抵抗は低減出来ず、
重ね合わせた接合部の内外表面部の温度が高温と
なつて、スプラツシユの発生を生じて、溶接可能
な電流値が得られなかつたり、得られても非常に
狭い範囲に限定され、工業的な高速溶接製缶には
適用が出来ない問題をもつている。一方、無研磨
TFS溶接方法としては、電極ワイヤーに錫めつ
きを施すことで、この電極ワイヤーとTFS素材
クロメート皮膜間の接触抵抗を低減させて、溶接
性を改善しようとする方法がある。錫は、低い融
点を持ち柔らかい金属のため、素材との接触抵抗
を下げて溶接を可能に出来る。しかし、錫の持つ
固体潤滑性により、1対の電極ワイヤー間での素
材保持の際に、すべりを生じ、安定した一定幅の
重ね合わせが困難となる欠点を有する。さらに、
電極ローラーや電極ワイヤーは、銅若しくは銅合
金でできていることから、溶接時に銅錫合金が成
長し、長時間の運転によつて、電極ワイヤーを保
持する電極ローラーが汚染されて操業に支障を与
えることもある。
一方、一般に使用されている錫メツキ鋼板即ち
製缶用ぶりきを缶用素材として使用する場合に
は、前述した通電阻害という問題は生じないとし
ても、錫は世界的にその資源の枯渇が問題となつ
ている高価な金属であり、製缶の分野においても
錫メツキ量の減少が真剣に検討されている。しか
しながら、錫メツキ量の減少は必然的に缶の耐食
性の低下をもたらすばかりか、溶接缶の製造時
に、素材と電極ローラないしは電極ワイヤーとの
接触抵抗の著しい増大をもたらして、溶接可能な
電流値が非常に狭い範囲に制限される。このた
め、電流が不足すると、完全な接合ができず、電
流が過剰になると、これにより重ね合わせた接合
部の内外表面部の温度が高温になつて、スプラツ
シユを生じたり、或は錫メツキ層のヒユーム飛散
による保護効果の喪失ないしは高温による酸化促
進等によつて、接合部の外観不良、耐食性の低下
および塗料密着性不良等の欠点を生じる。
従つて、この発明の目的は、製缶用素材の電解
クロメート処理鋼板のクロメート皮膜を除去する
ことなく、重ね合せた接合部を電気抵抗シーム溶
接して、良好に接合した接合部を得ることを可能
とし、更に、最近製缶用素材として開発されつつ
ある極薄錫メツキ鋼板やニツケルメツキ鋼板にも
適用して、重ね合わせた接合部を電気抵抗シーム
溶接し、同様に良好に接合した接合部を得ること
を可能とした、製缶用電気抵抗シーム溶接電極ワ
イヤーを提供することにある。
〔課題を解決するための手段〕
本発明者等は、上記目的を達成するために、電
気抵抗シーム溶接における溶接特性を、特に発熱
特性に重きを置いて研究を重ねた。その結果、溶
接特性は、TFS(電解クロメート処理鋼板)等の
缶用素材の表面特性に大きく依存することは勿論
であるが、同時に溶接の際接触する電極ワイヤー
の表面と素材表面の電気界面の電気特性にも大き
く依存することを見いだした。
即ち、電気抵抗シーム溶接に使用されている銅
電極ワイヤー、銅基質合金電極ワイヤーは、素材
的に柔らかなために、溶接時に加圧された際に
も、クロム水和酸化物層を最表面に有する缶用素
材との界面の接触抵抗が元々高い。そして、電極
ワイヤー表面がごく薄い銅酸化物皮膜で覆われ易
いために、この界面の接触抵抗はより高くなつて
しまう。また、銅若しくは銅基質合金上に錫めつ
きを施した電極ワイヤーは、この界面の接触抵抗
は低下できるものの、錫の持つ高い固体潤滑性に
よつて、溶接時に缶用素材の接合部の正確な保持
が困難なために、抵抗シーム溶接を高速で行なう
と、スベリによつて一定幅の溶接ができない。
そこで、本発明者等は、更に電極ワイヤー表
面、この表面と缶用素材表面との界面接触抵抗、
表面の潤滑特性等について研究を重ねたところ、
銅若しくは銅基質合金電極ワイヤーの表面を、表
面酸化防止と、缶用素材との接触抵抗低下と、缶
用素材とのスベリ防止の諸効果を持つ、クロム等
の皮膜で被覆してやれば、前記の目的を達成でき
ることを見いだした。
この発明は、上記知見に基づいてなされたもの
で、この発明の電極ワイヤーは、銅または銅基質
合金の電極ワイヤーの表面に、表面酸化防止と、
缶用素材との接触抵抗低下と缶用素材との滑り防
止の諸効果をもつ、クロム等のメツキ金属からな
るメツキ層を形成したことを特徴とするものであ
る。
この発明でメツキ層を形成する銅または銅基質
合金の電極ワイヤーとは、製缶用の電気抵抗シー
ム溶接で使用されている、直径1.5mm前後の銅ま
たは銅基質合金の、公知の電極ワイヤーをいう。
この発明で使用する、上記の諸効果を併せ持つ
メツキ金属としては、クロムの他に、ニツケルお
よび鉄を用いることができる。これらクロム、ニ
ツケルおよび鉄は、銅または銅基質合金の電極ワ
イヤーの表面に単独の形でメツキ層を形成して
も、2種以上を組合せて合金の形でメツキ層を形
成してもよい。更にクロムは水和、非水和のクロ
ム酸化物の形でメツキ層を形成することもでき、
更にまた、金属クロム層を下層とし、クロム酸化
物層薄層を上層とした形でメツキ層を形成するこ
ともできる。金属クロムからなるメツキ層、それ
と、金属クロム層とその上のクロム酸化物層薄層
からなるメツキ層の該金属クロム層には、粒状金
属クロムを含有させることもできる。
これらのメツキ層は、メツキ金属たるクロム、
ニツケル、鉄およびクロムの酸化物が持つ特性に
より、いずれも優れた耐食性、表面酸化防止特性
を持ち、保管中および使用中の電極ワイヤーの表
面酸化を防止する。また、これらのメツキ層は、
それ自身加工性に乏しく、溶接加圧時に容易に破
壊されて、電極ワイヤーの下地銅の新生面を露出
させる。そして、同時に、缶用素材の最表面にあ
る皮膜のクロム水和酸化物層を破壊する。このた
め、クロム水和酸化物層自体は接触電気抵抗が高
いにも拘わらず、溶接時に電極ワイヤーと缶用素
材の溶接部の界面の接触電気抵抗を著しく低下せ
しめることができる。特に、メツキ層が金属クロ
ム層からなる場合または金属クロム層を有する場
合、その固い金属クロムがクロム水和酸化物の皮
膜破壊を助長するため、極めて低い界面の接触抵
抗を実現できる。金属クロム層が粒状金属クロム
を有する場合には、皮膜破壊をより助長するた
め、界面の接触抵抗は一段と低くなる。さらに、
メツキ層の持つ大きな表面摩擦によつて、電極ワ
イヤーと缶用素材の滑りが生じにくく、正確な重
ね合わせ幅での接合部の保持も可能となる。
このため、缶用素材がTFS等の場合でも、そ
の表面のクロメート皮膜等を除去することなく、
良好な溶接をすることが可能となる。
上記メツキ層は、金属クロムからなるメツキ
層、金属クロム層とその上のクロム酸化物層薄層
からなるメツキ層の場合には、銅または銅基質合
金の電極ワイヤーの表面にクロム換算で0.005〜
1g/m2のメツキ量で形成することが好ましい。
メツキ量が0.005g/m2未満では本発明の目的と
する効果が充分に得られない。より安定した効果
を得るためには、0.01g/m2以上が好ましい。一
方、メツキ量が1g/m2を超えてもそれに応じた
効果の向上がなく、コストの面から不利になるだ
けである。クロム酸化物からなるメツキ層の場合
には、電極ワイヤーの表面にクロム換算で0.005
〜0.1g/m2のメツキ量で形成することが好まし
い。メツキ量が0.005g/m2未満では、上記と同
様に、本発明の目的とする効果が充分に得られ
ず、一方、0.1g/m2を超えてもそれに応じた効
果向上がなく、コスト的に不利になる。より安定
した効果を得るためには、0.01g/m2以上あれば
よい。
ニツケル、鉄、ニツケル−鉄合金、ニツケル−
クロム合金、鉄−クロム合金またはニツケル−鉄
−クロム合金のいずれか1つからなるメツキ層の
場合には、電極ワイヤーの表面に0.01〜2.0μmの
厚みで形成することが好ましい。厚みが0.01μm
未満では本発明の目的とする効果が充分に得られ
ない。より安定した効果を得るためには、0.02μ
m以上が好ましい。一方、厚みが2.0μmを超えて
もそれに応じた効果の向上がなく、コストの面か
ら不利になる。
銅または銅基質合金の電極ワイヤーの表面に上
記のメツキ層を形成するには、ブリキやTFSな
ど表面処理鋼板の製造等で一般に行われていた
り、知られていたりする電気メツキ法を、用いれ
ばよい。さらにこれに限らず、浸漬化学メツキ、
蒸着メツキによつても可能である。
この発明の電極ワイヤーを利用した電気抵抗シ
ーム溶接を適用する缶用素材としては、電解クロ
メート処理鋼板(TFS)、粒状化電解クロメート
処理鋼板(粒状化TFS)、極薄錫メツキ鋼板、極
薄ニツケルメツキ鋼板が掲げられる。TFSは、
例えば100mg/m2の金属クロム層とその上のクロ
ム換算で10mg/m2のクロム水和酸化物層からなる
電解クロメート皮膜を有する表面処理鋼板であ
る。粒状化TFSは、上記の電解クロメート皮膜
中の金属クロム層が全面粒状化している表面処理
鋼板である。極薄錫メツキ鋼板は、例えば500
mg/m2の錫メツキ層と、錫メツキ層上の7mg/m2
の金属クロムおよびその上のクロム換算で12mg/
m2のクロム水和酸化物からなる化学処理皮膜とを
有する表面処理鋼板である。極薄ニツケルメツキ
鋼板は、例えば500mg/m2のニツケルメツキ層と、
ニツケルメツキ層上の4mg/m2の金属クロムおよ
びその上のクロム換算で6mg/m2のクロム水和酸
化物からなる化学処理皮膜とを有する表面処理鋼
板である。
この発明の電極ワイヤーを利用して、缶形状に
曲げ成形したこれら缶用素材の重ね合せた接合部
を電気抵抗シーム溶接するには、第1図に示すよ
うに、従来と同様にスードロニツク型の溶接機を
用いて行なえばよい。即ち、缶用素材1の重ね合
せた接合部1aを電極ワイヤー2を介して、溶接
機の上下の導電ロール3a,3bで把持する。そ
して、上下の導電ロール3a,3bを回転して、
重ね合せた接合部1aおよびその上下の電極ワイ
ヤー2を一体に水平方向に移動させながら、上下
の導電ロール3a,3bから上下の電極ワイヤー
2を通つて、重ね合せた接合部1aに通電し、こ
れによつて接合部1aを電気抵抗加熱させて、接
合部1a間を溶接すればよい。
この発明の電極ワイヤーでは、上述したよう
に、缶用素材がTFS等の場合でも、その表面の
クロメート皮膜等を除去することなく、良好に接
合することができるが、更に錫メツキ電極ワイヤ
ーに比べて、メツキ金属も安価でメツキ量も少な
くて済むために、価格を大幅に低減できる利点が
ある。またメツキ量が少ないことから、電極ワイ
ヤー中に混入する不純物量が錫メツキ電極ワイヤ
ーに比べて著しく少なく、僅かであるために、使
用後に廃棄処分した電極ワイヤーから銅を回収す
る際に、非常に便である。さらに、混入する不純
物がクロムが主体であるときには、電極ワイヤー
を汎用の銅クロム合金電極として再生することも
可能である。
〔実施例〕
以下に、本発明の実施例を述べる。
実施例 1
直径1.38mmの円形断面の純銅線を、重クロム酸
水溶液中で連続陰極電解して、純銅線の表面にク
ロム換算で0.02g/m2のクロム酸化物からなるメ
ツキ層を有する製缶用電気抵抗シーム溶接電極ワ
イヤーを作つた。
この電極ワイヤーを使用して、スードロニツク
型の溶接機(溶接電流500Hz)により、食缶の胴
部接合部のシーム溶接を行ない、また別のスード
ロニツク型の溶接機(溶接電流175Hz)により、
5ガロン缶の胴部接合部のシーム溶接を行なつ
た。そして、そのときの溶接性を調査した。素材
は飲料缶、5ガロン缶とも、極薄錫メツキ鋼板、
TFS、粒状化TFSおよび極薄ニツケルメツキ鋼
板の4種を試した。
実施例 2
実施例1と同様の純銅線を、無水クロム酸を主
体とする水溶液中で連続陰極電解して、純銅線の
表面に、0.1g/m2の金属クロム層とその上のク
ロム換算で0.005g/m2のクロム水和酸化物層か
らなるメツキ層を有する製缶用電気抵抗シーム溶
接電極ワイヤーを作つた。
この電極ワイヤーを使用して実施例1と同様の
溶接を行ない、溶接性を調査した。
実施例 3
実施例1と同様の純銅線に、真空中で金属クロ
ムの連続蒸着メツキをおこなつて、純銅線の表面
に0.07g/m2の金属クロム層からなるメツキ層を
有する製缶用電気抵抗シーム溶接電極ワイヤーを
作つた。
この電極ワイヤーを使用して実施例1と同様の
溶接を行ない、溶接性を調査した。
実施例 4
実施例1と同様の純銅線を、無水クロム酸を主
体とする水溶液中で、その途中に微弱な陽極電解
を挿入しながら断続陰極電極することによつて、
表面全面に粒状金属クロムを有する0.1g/m2の
金属クロム層とその上のクロム換算で0.005g/
m2のクロム水和酸化物層とからなるメツキ層を、
純銅線の表面に有する製缶用電気抵抗シーム溶接
電極ワイヤーを作つた。
この電極ワイヤーを使用して実施例1と同様の
溶接を行ない、溶接性を調べた。
実施例 5
実施例1と同様の純銅線を、硫酸ニツケルを主
体とする酸性水溶液中で連続陰極電解して、純銅
線の表面に0.1μmの金属ニツケル層からなるメツ
キ層を有する製缶用電気抵抗シーム溶接電極ワイ
ヤーを作つた。
この電極ワイヤーを使用して実施例1と同様の
溶接を行ない、溶接性を調査した。
実施例 6
実施例1と同様の純銅線を、硫酸ニツケルと硫
酸第一鉄を主体とする酸性水溶液中で連続陰極電
解して、純銅線の表面に0.1μmのニツケル鉄電析
合金層からなるメツキ層を有する製缶用電気抵抗
シーム溶接電極ワイヤーを作つた。
この電極ワイヤーを使用して実施例1と同様の
溶接を行ない、溶接性を調査した。
実施例 7
実施例1と同様の純銅線を、塩化ニツケル塩化
クロムを主体とする酸性水溶液中で連続陰極電解
して、純銅線の表面に0.2μmのニツケルクロム電
析合金層からなるメツキ層を有する製缶用電気抵
抗シーム溶接電極ワイヤーを作つた。
この電極ワイヤーを使用して実施例1と同様の
溶接を行ない、溶接性を調査した。
比較例 1
実施例1と同様の純銅線を、メツキを施さない
でそのまま電極ワイヤーとした。現状の非めつき
の電極ワイヤーである。
この電極ワイヤーを使用して実施例1と同様の
溶接を行ない、溶接性を調査した。
比較例 2
実施例1と同様の純銅線を、溶融メツキによつ
て錫メツキして、純銅線の表面に錫と錫合金から
なる厚みが0.17μmのメツキ層を有する製缶用電
気抵抗シーム溶接電極ワイヤーを作り、これを使
用して実施例1と同様の溶接を行ない、溶接性を
調査した。
比較例 3
実施例1と同様の純銅線を、連続電気メツキに
よつて錫メツキして、純銅線の表面に錫からなる
厚みが0.1μmのメツキ層を有する製缶用電気抵抗
シーム溶接電極ワイヤーを作つた。
この電極ワイヤーを使用し、実施例1と同様の
溶接を行ない、溶接性を調べた。
以上の実施例1〜7および比較例1〜3におけ
る溶接性の調査結果を、第1〜4表に示す。
[Prior art] Can materials such as tinplate are molded into a cylindrical shape, and the joints on both edges are joined to lap seams, lock seams, or a combination of these seams using solder, adhesive, etc., and cans are manufactured. Can be done.
However, this can manufacturing method requires a considerable area for the joint, which poses problems in terms of resource conservation, and also requires adhesive cans (cans joined with adhesive).
In this case, there are problems with the strength and durability of the seam. Furthermore, solder cans (cans joined by solder) and adhesive cans have a considerable level difference in the joined joint, so when double-sealing with the can lid,
There is a problem in that leakage is likely to occur at stepped portions. Conventionally, seamless cans (seamless cans) made by drawing and ironing have been used as cans in place of solder cans in some fields. In other words, it is completely impossible to use it in cans whose contents are sterilized by retort. Other examples of cans made using a can manufacturing method that replace solder cans include:
Welded seam cans are already known, in which both ends of a cylindrical can material are lap-joined by welding. In such welded seam cans, the area of the lap joint is significantly smaller than that of solder cans, etc., and the thickness of the joined joint is also relatively small, which alleviates the problems associated with the step mentioned above. , which has the advantage of not requiring a special bonding agent such as solder, but as will be explained later, depending on the type of can material, the manufacturing operation may be troublesome, and the bonded joint may be difficult to manufacture. The corrosion resistance, paint adhesion, and appearance characteristics of these materials were still not fully satisfactory. The above-mentioned welded seam cans are manufactured by overlapping the joints of both edges of can materials molded into a cylindrical shape, and passing the overlapping joints between a pair of upper and lower electrode rollers, or by passing an electrode wire between the overlapping joints between a pair of upper and lower electrode rollers. This is generally carried out by passing the joint between a pair of upper and lower electrode rollers via an electric resistance welding method. [Problem to be solved by the invention] By the way, among the materials for cans, electrolytic chromate-treated steel sheets (Tein Free Stale, hereinafter referred to as TFS) obtained by electrolytic chromate treatment of steel sheets are used.
Compared to other can materials such as tinplate, it has the advantage that it is inexpensive and easily available, and also has excellent corrosion resistance and paint adhesion. However, this TFS always has a chromium hydrated oxide layer with high electrical resistance on its outer surface, which inhibits current conduction when using current copper or copper matrix alloy electrode wires for electrical resistance welding. There is the problem of having to remove the chromate film containing the chromium hydrated oxide layer on the TFS iron surface prior to this welding operation. Therefore, the conventional manufacturing method of TFS welded cans (welded cans using TFS) has the problem of increasing the number of steps, and also has the problem that the chromate film at the joint is removed to expose the iron surface. However, there is a disadvantage that the corrosion resistance and paint adhesion of this part inevitably decrease. Furthermore, these chromate films are generally removed by mechanically polishing the joints where the TFS materials are to be overlapped, but during this polishing, debris and particles separated from the materials may cause other materials to be damaged. This results in damage to the chromate coating or paint on the part, and the incorporation of these fragments and particles into the contents of the can. In contrast, recently, TFS materials for non-polishing seam welding that do not require pre-treatment by polishing,
A non-polishing TFS welding method is being researched and considered. TFS materials for non-polishing seam welding include those made by thinning the chromium hydrated oxide layer of conventional TFS to reduce the electrical resistance between the chromate films at the overlapped joints, and those that reduce the electrical resistance between the chromate films at the overlapped joints, as well as those that reduce the electrical resistance between the chromate films at the overlapped joints. A method has been proposed in which the chromium hydrated oxide layer is destroyed during welding pressure by making the chromium layer contain finely divided particles, thereby reducing the electrical resistance between the chromate films. These methods aim to uniformly generate heat through resistance heating between overlapping chromate films, and suppress the occurrence of splash (a phenomenon in which molten iron protrudes outside the joint) at the weld joint interface, while also improving the weld joint area. Efforts are being made to improve airtightness and joint strength. However, even if such methods are used, the electrical resistance of the contact area between the TFS material and the electrode wire cannot be reduced.
The temperature of the inner and outer surfaces of the overlapped joints becomes high, causing splash, making it impossible to obtain a weldable current value, or even if it is obtained, it is limited to a very narrow range, making it difficult for industrial use. This method has problems that make it inapplicable to high-speed welding can manufacturing. On the other hand, unpolished
As a TFS welding method, there is a method in which the electrode wire is tinned to reduce the contact resistance between the electrode wire and the chromate film of the TFS material, thereby improving weldability. Since tin is a soft metal with a low melting point, it can reduce contact resistance with materials and enable welding. However, the solid lubricity of tin causes slippage when holding the material between a pair of electrode wires, making it difficult to stably overlap them with a constant width. moreover,
Electrode rollers and electrode wires are made of copper or copper alloy, so copper-tin alloy grows during welding, and long-term operation can contaminate the electrode rollers that hold the electrode wires, which can interfere with operations. Sometimes I give. On the other hand, if a commonly used tin-plated steel plate, i.e., can-making tin, is used as a material for cans, the aforementioned problem of blocking current flow does not occur, but the worldwide depletion of tin resources is a problem. It is an expensive metal, and reducing the amount of tin plating is being seriously considered in the field of can manufacturing. However, a decrease in the amount of tin plating not only inevitably leads to a decrease in the corrosion resistance of the can, but also causes a significant increase in the contact resistance between the material and the electrode roller or electrode wire during the production of welded cans, resulting in a weldable current value. is limited to a very narrow range. For this reason, if the current is insufficient, complete bonding cannot be achieved, and if the current is excessive, the temperature of the inner and outer surfaces of the overlapping joints will become high, causing splashes or the tin plating layer. Loss of protective effect due to fume scattering or acceleration of oxidation due to high temperature causes defects such as poor appearance of joints, decreased corrosion resistance, and poor paint adhesion. Therefore, an object of the present invention is to obtain a well-joined joint by electrical resistance seam welding of overlapping joints without removing the chromate film of electrolytically chromate-treated steel sheets used as can manufacturing materials. Furthermore, it can be applied to ultra-thin tin-plated steel sheets and nickel-plated steel sheets, which are recently being developed as materials for can manufacturing, by electrical resistance seam welding of overlapped joints, and similarly well-joined joints. It is an object of the present invention to provide an electric resistance seam welding electrode wire for can making, which can be obtained. [Means for Solving the Problems] In order to achieve the above object, the present inventors have conducted repeated research on welding characteristics in electric resistance seam welding, with particular emphasis on heat generation characteristics. As a result, welding characteristics not only greatly depend on the surface characteristics of the can material such as TFS (electrolytic chromate treated steel sheet), but also the electrical interface between the surface of the electrode wire and the surface of the material that come into contact during welding. We found that it also depends greatly on electrical characteristics. In other words, the copper electrode wire and copper matrix alloy electrode wire used in electrical resistance seam welding are soft materials, so even when pressure is applied during welding, the chromium hydrated oxide layer remains on the top surface. The contact resistance at the interface with the can material is originally high. Since the surface of the electrode wire is likely to be covered with a very thin copper oxide film, the contact resistance at this interface becomes higher. In addition, electrode wires coated with tin on copper or copper matrix alloys can reduce the contact resistance at this interface, but due to the high solid lubricity of tin, the joints of the can material can be accurately bonded during welding. Because it is difficult to maintain a constant width, when resistance seam welding is performed at high speed, it is impossible to weld a constant width due to slippage. Therefore, the present inventors further investigated the electrode wire surface, the interfacial contact resistance between this surface and the can material surface,
After repeated research into the lubrication properties of the surface, we found that
If the surface of the copper or copper-based alloy electrode wire is coated with a film such as chromium, which has the effects of preventing surface oxidation, reducing contact resistance with the can material, and preventing slippage with the can material, the above-mentioned effect can be achieved. I found that I could achieve my goal. This invention was made based on the above findings, and the electrode wire of this invention has surface oxidation prevention on the surface of the electrode wire made of copper or copper matrix alloy.
It is characterized by the formation of a plating layer made of a plating metal such as chromium, which has various effects of reducing contact resistance with the can material and preventing slipping between the can material and the can material. In this invention, the copper or copper-based alloy electrode wire that forms the plating layer is a known copper or copper-based alloy electrode wire with a diameter of about 1.5 mm that is used in electrical resistance seam welding for can manufacturing. say. In addition to chromium, nickel and iron can be used as the plating metal that has the above-mentioned effects to be used in the present invention. These chromium, nickel, and iron may be used alone to form a plating layer on the surface of an electrode wire made of copper or a copper matrix alloy, or two or more of them may be combined to form a plating layer in the form of an alloy. Furthermore, chromium can also form a plating layer in the form of hydrated or non-hydrated chromium oxide.
Furthermore, the plating layer can be formed with a metal chromium layer as the lower layer and a thin chromium oxide layer as the upper layer. The plating layer made of metallic chromium and the plating layer consisting of the metallic chromium layer and a thin chromium oxide layer thereon can also contain particulate metallic chromium. These plating layers are made of chromium, which is the plating metal,
Due to the properties of nickel, iron, and chromium oxides, they all have excellent corrosion resistance and surface oxidation prevention properties, preventing surface oxidation of electrode wires during storage and use. In addition, these plating layers are
It itself has poor workability and is easily destroyed during welding pressure, exposing the new surface of the underlying copper of the electrode wire. At the same time, it destroys the chromium hydrated oxide layer of the film on the outermost surface of the can material. Therefore, although the chromium hydrated oxide layer itself has a high contact electrical resistance, it is possible to significantly reduce the contact electrical resistance at the interface between the electrode wire and the welded portion of the can material during welding. In particular, when the plating layer is made of or has a metallic chromium layer, the hard metallic chromium promotes the destruction of the chromium hydrated oxide film, so that extremely low interfacial contact resistance can be achieved. When the metallic chromium layer contains particulate metallic chromium, the contact resistance at the interface becomes even lower because film breakage is further promoted. moreover,
The large surface friction of the plating layer prevents slippage between the electrode wire and the can material, making it possible to maintain the joint with an accurate overlapping width. For this reason, even if the material for the can is TFS, etc., the chromate film etc. on the surface can be removed without removing it.
It becomes possible to perform good welding. In the case of a plating layer made of metallic chromium, or a plating layer consisting of a metallic chromium layer and a thin chromium oxide layer thereon, the plating layer is applied to the surface of an electrode wire made of copper or a copper matrix alloy from 0.005 to 0.05% in terms of chromium.
It is preferable to form with a plating amount of 1 g/m 2 .
If the amount of plating is less than 0.005 g/m 2 , the desired effect of the present invention cannot be sufficiently achieved. In order to obtain a more stable effect, the amount is preferably 0.01 g/m 2 or more. On the other hand, even if the amount of plating exceeds 1 g/m 2 , there is no corresponding improvement in the effect and it is only disadvantageous in terms of cost. In the case of a plating layer made of chromium oxide, 0.005 chromium equivalent is applied to the surface of the electrode wire.
It is preferable to form with a plating amount of ~0.1 g/m 2 . If the amount of plating is less than 0.005 g/m 2 , the desired effect of the present invention cannot be obtained sufficiently, as described above, and on the other hand, if the amount exceeds 0.1 g/m 2 , there is no corresponding improvement in the effect and the cost is reduced. be at a disadvantage. In order to obtain a more stable effect, the amount should be 0.01 g/m 2 or more. Nickel, iron, nickel - iron alloy, nickel -
In the case of a plating layer made of any one of chromium alloy, iron-chromium alloy, or nickel-iron-chromium alloy, it is preferably formed on the surface of the electrode wire with a thickness of 0.01 to 2.0 μm. Thickness is 0.01μm
If the amount is less than that, the desired effect of the present invention cannot be sufficiently obtained. For more stable effect, 0.02μ
m or more is preferable. On the other hand, even if the thickness exceeds 2.0 μm, there is no corresponding improvement in the effect, which is disadvantageous in terms of cost. To form the above-mentioned plating layer on the surface of an electrode wire made of copper or a copper matrix alloy, it is possible to use a known electroplating method that is commonly used in the production of surface-treated steel sheets such as tin plate and TFS. good. Furthermore, this does not include, but is not limited to, immersion chemical plating,
It is also possible by vapor deposition plating. Can materials to which electrical resistance seam welding using the electrode wire of this invention is applied include electrolytic chromate treated steel sheets (TFS), granulated electrolytic chromate treated steel sheets (granulated TFS), ultra-thin tin-plated steel sheets, and ultra-thin nickel-plated steel sheets. A steel plate is raised. TFS is
For example, it is a surface-treated steel sheet having an electrolytic chromate film consisting of a metallic chromium layer of 100 mg/m 2 and a chromium hydrated oxide layer of 10 mg/m 2 in terms of chromium thereon. Granulated TFS is a surface-treated steel sheet in which the metal chromium layer in the electrolytic chromate film is entirely granulated. Ultra-thin tin-plated steel plate, for example, 500
mg/m 2 tin plating layer and 7 mg/m 2 on the tin plating layer
of metallic chromium and its chromium equivalent: 12mg/
This is a surface-treated steel sheet having a chemically treated film consisting of chromium hydrated oxide of m2 . The ultra-thin nickel-plated steel sheet has, for example, a nickel-plated layer of 500 mg/ m2 ,
This is a surface-treated steel sheet having 4 mg/m 2 of metallic chromium on the nickel plating layer and a chemically treated film consisting of 6 mg/m 2 of chromium hydrated oxide in terms of chromium. In order to perform electric resistance seam welding of the overlapped joints of these can materials bent into can shapes using the electrode wire of the present invention, as shown in FIG. This can be done using a welding machine. That is, the joined portion 1a of the overlapping can materials 1 is gripped by the upper and lower conductive rolls 3a, 3b of the welding machine via the electrode wire 2. Then, by rotating the upper and lower conductive rolls 3a and 3b,
While moving the stacked joint 1a and the electrode wires 2 above and below it together in the horizontal direction, electricity is applied to the stacked joint 1a from the upper and lower conductive rolls 3a, 3b through the upper and lower electrode wires 2, Thereby, the joint parts 1a may be heated by electrical resistance, and the joint parts 1a may be welded together. As mentioned above, with the electrode wire of this invention, even if the material for the can is TFS etc., it can be bonded well without removing the chromate film etc. on the surface. Furthermore, since the plated metal is also inexpensive and requires less plating, it has the advantage of being able to significantly reduce the price. In addition, since the amount of plating is small, the amount of impurities mixed into the electrode wire is significantly smaller than that of tin-plated electrode wire, so it is extremely difficult to recover copper from discarded electrode wire after use. It is a flight. Furthermore, when the impurities mixed in are mainly chromium, it is also possible to regenerate the electrode wire as a general-purpose copper-chromium alloy electrode. [Example] Examples of the present invention will be described below. Example 1 A pure copper wire with a circular cross section of 1.38 mm in diameter was subjected to continuous cathode electrolysis in an aqueous dichromic acid solution to produce a plating layer consisting of chromium oxide of 0.02 g/m 2 in terms of chromium on the surface of the pure copper wire. I made electrical resistance seam welding electrode wire for cans. Using this electrode wire, we seam welded the joint of the body of the food can with a Sudronik type welding machine (welding current 500Hz), and with another Sudronik type welding machine (welding current 175Hz).
Seam welding of the body joint of a 5 gallon can was performed. Then, the weldability at that time was investigated. Both beverage cans and 5-gallon cans are made of ultra-thin tin-plated steel sheets.
Four types were tested: TFS, granulated TFS, and ultra-thin nickel plated steel sheet. Example 2 Pure copper wire similar to Example 1 was subjected to continuous cathode electrolysis in an aqueous solution mainly containing chromic anhydride to form a 0.1 g/m 2 metallic chromium layer on the surface of the pure copper wire and a chromium equivalent layer on the surface of the pure copper wire. An electric resistance seam welding electrode wire for can making having a plating layer consisting of a chromium hydrated oxide layer of 0.005 g/m 2 was prepared. Using this electrode wire, welding was performed in the same manner as in Example 1, and weldability was investigated. Example 3 Pure copper wire similar to Example 1 was plated with metallic chromium by continuous vapor deposition in a vacuum to produce a can manufacturing product having a plating layer consisting of a 0.07 g/m 2 metallic chromium layer on the surface of the pure copper wire. I made electrical resistance seam welding electrode wire. Using this electrode wire, welding was performed in the same manner as in Example 1, and weldability was investigated. Example 4 A pure copper wire similar to Example 1 was used as an intermittent cathode electrode in an aqueous solution mainly containing chromic anhydride, with weak anodic electrolysis inserted in the middle.
A 0.1g/ m2 metallic chromium layer with granular metallic chromium on the entire surface and a chromium equivalent of 0.005g/m2 on top.
A plating layer consisting of a m 2 chromium hydrated oxide layer,
An electric resistance seam welding electrode wire for can making having a pure copper wire surface was made. Using this electrode wire, welding was performed in the same manner as in Example 1, and weldability was examined. Example 5 Pure copper wire similar to Example 1 was subjected to continuous cathode electrolysis in an acidic aqueous solution mainly composed of nickel sulfate to produce a can-making electric wire having a plating layer consisting of a 0.1 μm metal nickel layer on the surface of the pure copper wire. I made resistance seam welding electrode wire. Using this electrode wire, welding was performed in the same manner as in Example 1, and weldability was investigated. Example 6 Pure copper wire similar to Example 1 was subjected to continuous cathodic electrolysis in an acidic aqueous solution mainly composed of nickel sulfate and ferrous sulfate to form a 0.1 μm nickel-iron electrodeposited alloy layer on the surface of the pure copper wire. An electric resistance seam welding electrode wire for can manufacturing with a plating layer was made. Using this electrode wire, welding was performed in the same manner as in Example 1, and weldability was investigated. Example 7 The same pure copper wire as in Example 1 was subjected to continuous cathode electrolysis in an acidic aqueous solution mainly composed of nickel chloride and chromium chloride to form a plating layer consisting of a 0.2 μm nickel-chromium electrodeposited alloy layer on the surface of the pure copper wire. We made an electric resistance seam welding electrode wire for can manufacturing. Using this electrode wire, welding was performed in the same manner as in Example 1, and weldability was investigated. Comparative Example 1 The same pure copper wire as in Example 1 was used as an electrode wire without being plated. This is the current non-plated electrode wire. Using this electrode wire, welding was performed in the same manner as in Example 1, and weldability was investigated. Comparative Example 2 Pure copper wire similar to Example 1 was tin-plated by hot-dip plating to produce electrical resistance seam welding for can manufacturing having a plating layer of tin and tin alloy with a thickness of 0.17 μm on the surface of the pure copper wire. An electrode wire was made, and welding was performed using this in the same manner as in Example 1, and weldability was investigated. Comparative Example 3 The same pure copper wire as in Example 1 was tin-plated by continuous electroplating to produce an electric resistance seam welding electrode wire for can making, which had a plating layer of tin with a thickness of 0.1 μm on the surface of the pure copper wire. I made it. Using this electrode wire, welding was performed in the same manner as in Example 1, and weldability was examined. The results of the weldability investigation in Examples 1 to 7 and Comparative Examples 1 to 3 are shown in Tables 1 to 4.
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
この発明の電極ワイヤーによれば、缶用素材の
電解クロメート処理鋼板のクロメート皮膜を除去
することなく、重ね合せた接合部を良好に接合す
ることができ、更に極薄錫メツキ鋼板や極薄ニツ
ケルメツキ鋼板に適用して、重ね合せた接合部を
良好に接合することもできる。
According to the electrode wire of the present invention, it is possible to satisfactorily join the overlapped joint portions without removing the chromate film of the electrolytically chromate-treated steel sheets used as the raw material for cans, and it is also possible to bond the overlapping joints well, and also to bond the overlapping joints of the can materials such as ultra-thin tin-plated steel sheets and ultra-thin nickel-plated steel sheets. It can also be applied to steel plates to satisfactorily join overlapping joints.
第1図は、スードロニツク型の溶接機を用いて
電極ワイヤーにより缶用素材の重ね合せた接合部
を電気抵抗シーム溶接するところを示す説明図で
ある。図面において、
1……缶用素材、1a……接合部、2……電極
ワイヤー、3a,3b……導電ロール。
FIG. 1 is an explanatory view showing electrical resistance seam welding of overlapping joints of can materials using an electrode wire using a Sudronik type welding machine. In the drawings, 1... Can material, 1a... Joint portion, 2... Electrode wire, 3a, 3b... Conductive roll.
Claims (1)
金属クロムからなるメツキ層を、クロム換算で
0.005〜1g/m2形成したことを特徴とする、製
缶用電気抵抗シーム溶接電極ワイヤー。 2 前記メツキ層は、粒状金属クロムを含有する
ことを特徴とする、請求項1記載の製缶用電気抵
抗シーム溶接電極ワイヤー。 3 銅または銅基質合金電極ワイヤーの表面に、
クロム酸化物からなるメツキ層を、0.005〜0.1
g/m2形成したことを特徴とする、製缶用電気抵
抗シーム溶接電極ワイヤー。 4 銅または銅基質合金電極ワイヤーの表面に、
金属クロム層とその上のクロム酸化物層薄層とか
らなるメツキ層を、クロム換算で0.005〜1g/
m2形成したことを特徴とする、製缶用電気抵抗シ
ーム溶接電極ワイヤー。 5 前記金属クロム層は、粒状金属クロムを含有
することを特徴とする、請求項4記載の製缶用電
気抵抗シーム溶接電極ワイヤー。 6 銅または銅基質合金電気ワイヤーの表面に、
ニツケル、鉄、ニツケル−鉄合金、ニツケル−ク
ロム合金、鉄−クロム合金またはニツケル−鉄−
クロム合金のいずれか1つからなるメツキ層を、
0.01〜2.0μmの厚みで形成したことを特徴とす
る、製缶用電気抵抗シーム溶接電極ワイヤー。[Claims] 1. On the surface of a copper or copper matrix alloy electrode wire,
The plating layer made of metallic chromium is converted into chromium.
An electric resistance seam welding electrode wire for can making, characterized in that it has a formation of 0.005 to 1 g/m 2 . 2. The electric resistance seam welding electrode wire for can manufacturing according to claim 1, wherein the plating layer contains granular metallic chromium. 3. On the surface of the copper or copper matrix alloy electrode wire,
The plating layer made of chromium oxide is 0.005 to 0.1
An electric resistance seam welding electrode wire for can manufacturing, characterized by forming a g/ m2 . 4. On the surface of the copper or copper matrix alloy electrode wire,
A plating layer consisting of a metallic chromium layer and a thin chromium oxide layer on top of the metal chromium layer is applied at a rate of 0.005 to 1 g/chromium equivalent.
An electric resistance seam welding electrode wire for can manufacturing, characterized by forming m2 . 5. The electrical resistance seam welding electrode wire for can manufacturing according to claim 4, wherein the metallic chromium layer contains granular metallic chromium. 6. On the surface of copper or copper matrix alloy electric wire,
Nickel, iron, nickel-iron alloy, nickel-chromium alloy, iron-chromium alloy or nickel-iron-
A plating layer made of any one of chromium alloys,
An electric resistance seam welding electrode wire for can making, characterized in that it is formed with a thickness of 0.01 to 2.0 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4542088A JPH01218776A (en) | 1988-02-27 | 1988-02-27 | Electric resistance seam welding electrode wire for can making |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4542088A JPH01218776A (en) | 1988-02-27 | 1988-02-27 | Electric resistance seam welding electrode wire for can making |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01218776A JPH01218776A (en) | 1989-08-31 |
JPH05152B2 true JPH05152B2 (en) | 1993-01-05 |
Family
ID=12718776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4542088A Granted JPH01218776A (en) | 1988-02-27 | 1988-02-27 | Electric resistance seam welding electrode wire for can making |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01218776A (en) |
-
1988
- 1988-02-27 JP JP4542088A patent/JPH01218776A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH01218776A (en) | 1989-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4818755B2 (en) | Steel plate for welding can | |
JPS59598B2 (en) | Tampered steel plate with excellent weldability | |
JPS5931598B2 (en) | New welded can and manufacturing method | |
JPH05152B2 (en) | ||
JPH02122036A (en) | Resistance seam welding electrode wire and its manufacture | |
JP2580923B2 (en) | Laminated steel sheet for welding can and method for producing the same | |
KR850001367B1 (en) | Method of welding tin-free steel can | |
JPS6240396A (en) | Surface treated steel sheet for can having superior weldability and corrosion resistance | |
KR900004071B1 (en) | Surface treated steel sheet to be excellent in weldability lacquer adhesion and method for making | |
JP2784710B2 (en) | Surface-treated steel sheet for cans excellent in weldability and method for producing welded can using the same | |
JPH07164163A (en) | Wire for seam welding and seam welding method | |
JPS6330998B2 (en) | ||
JPH072998B2 (en) | Welding can body | |
JPS6318676B2 (en) | ||
JP3270731B2 (en) | Surface-treated steel sheet for cans excellent in weldability and method for producing welded can using the same | |
JP2522075B2 (en) | Ultra-thin Sn-plated steel sheet for can and method for producing the same | |
JP2959026B2 (en) | Ultra-thin Sn-plated steel sheet for welding can and method for producing the same | |
JPS63161191A (en) | Tin-free steel for welded can | |
JPH0425350B2 (en) | ||
JPH11106953A (en) | Steel sheet for welded can excellent in weldability, corrosion resistance and film adhesion | |
JPH11106954A (en) | Surface treated steel sheet for welded can excellent in weldability, corrosion resistance and appearance | |
JPS6353288A (en) | Low-cost surface treated steel sheet having superior weldability | |
JP3667510B2 (en) | Electric seam welding method for thin chrome plated steel sheet | |
JPS63238299A (en) | Steel sheet subjected to electrochromating treatment for welded can | |
JPS6335719B2 (en) |