JPH05152617A - Superconducting shield layer - Google Patents

Superconducting shield layer

Info

Publication number
JPH05152617A
JPH05152617A JP3337600A JP33760091A JPH05152617A JP H05152617 A JPH05152617 A JP H05152617A JP 3337600 A JP3337600 A JP 3337600A JP 33760091 A JP33760091 A JP 33760091A JP H05152617 A JPH05152617 A JP H05152617A
Authority
JP
Japan
Prior art keywords
layer
superconducting
oxide
oxide superconductor
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3337600A
Other languages
Japanese (ja)
Inventor
Takao Nakamura
孝夫 中村
Michitomo Iiyama
道朝 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3337600A priority Critical patent/JPH05152617A/en
Publication of JPH05152617A publication Critical patent/JPH05152617A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To obtain a shield layer which prevents interference between signals and does not lower the degree of integration by successively forming oxide layers and oxide superconductor crystal layers having similar crystal structures on an oxide superconductor. CONSTITUTION:After forming a Y1Ba2Cu3O7-x film on an MgO substrate 5 as a ground plane 4 and another MgO film on the ground plane 4 as an insulating layer 21, a Y1Ba2Cu3O7-x thin film is formed as a first wiring layer 11 and the layer 11 is processed. Then an MgO film is formed on the layer 11 as an insulating layer 22 and a superconducting shield layer 3 is formed on the layer 22. The layer 3 is formed in such a way that, after a Pr1Ba2Cu3O7-x thin film having a film thickness of about 5nm (four unit lattices) is formed on the layer 22 as a first oxide layer 32, a Y1Ba2Cu3 O7-x thin film having a film thickness of about 2nm (two unit lattices) is formed on the layer 32 as an oxide superconductor crystal layer 31 and a second oxide layer 33 is formed on the layer 21 in the same way as that used for the layer 32. Then an MgO insulating layer 23 and superconducting wiring layer 12 are successively formed on the layer 33. When a superconducting current flows between the wiring layers 11 and 12, it can be confirmed that both layers 11 and 12 are electromagnetically shielded from each other by the Meissner effect of the layer 31.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導シールド層に関
する。より詳細には、超電導多層配線に使用する超電導
シールド層に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting shield layer. More specifically, it relates to a superconducting shield layer used for superconducting multilayer wiring.

【0002】[0002]

【従来の技術】超電導体の電子機器への応用は、大きく
分けて2種類ある。即ち、超電導体を使用し、従来の半
導体素子とは異なる原理で動作する超電導素子と、電子
機器内の電線路に超電導体を使用する超電導配線であ
る。現在使用されている半導体素子を超電導素子に置き
換えることにより、電子機器の飛躍的な高性能化が可能
であると考えられている。超電導素子を、超電導配線と
組み合わせて使用するとより高い効果が得られ、一方、
超電導配線だけでも電子機器を高速化できることがわか
っている。特に、信号線路に超電導電線路を使用する
と、従来よりも高い周波数の信号を伝送することが可能
であり、これが電子機器の高速化につながる。また、信
号の減衰も少なくなるので、増幅器等を減らすことがで
き、消費電力を減少させる効果もある。
2. Description of the Related Art Applications of superconductors to electronic equipment are roughly divided into two types. That is, a superconducting element that uses a superconductor and operates on a principle different from that of a conventional semiconductor element, and a superconducting wiring that uses a superconductor for an electric line in an electronic device. It is considered that by replacing the currently used semiconductor element with a superconducting element, it is possible to dramatically improve the performance of electronic equipment. The use of superconducting elements in combination with superconducting wiring gives a higher effect, while
It has been found that electronic devices can be speeded up only by superconducting wiring. In particular, when a superconducting conductive line is used as the signal line, it is possible to transmit a signal having a higher frequency than before, which leads to speedup of electronic equipment. Further, since signal attenuation is reduced, it is possible to reduce the number of amplifiers and the like, which has an effect of reducing power consumption.

【0003】一方、近年、臨界温度が高い酸化物超電導
体の研究が進み、従来の金属超電導体に加えて酸化物超
電導体が実用化されつつある。酸化物超電導体は非常に
種類が多いが、代表的なものとしては、臨界温度が80K
前後のY1Ba2Cu37-X系酸化物超電導体、臨界温度が10
0 K前後のBi2Sr2Ca2Cu3y系酸化物超電導体、臨界温
度が120 K前後のTl2Ba2Ca2Cu3z 系酸化物超電導体等
がある。いずれの酸化物超電導体も金属超電導体の臨界
温度よりもかなり高い臨界温度を有する。
On the other hand, in recent years, research on oxide superconductors having a high critical temperature has progressed, and oxide superconductors are being put to practical use in addition to conventional metal superconductors. There are many types of oxide superconductors, but a typical one has a critical temperature of 80K.
Before and after Y 1 Ba 2 Cu 3 O 7-X oxide superconductor, critical temperature is 10
There are Bi 2 Sr 2 Ca 2 Cu 3 O y based oxide superconductors around 0 K and Tl 2 Ba 2 Ca 2 Cu 3 O z based oxide superconductors with a critical temperature around 120 K. Both oxide superconductors have a critical temperature well above that of metallic superconductors.

【0004】[0004]

【発明が解決しようとする課題】上記の酸化物超電導体
の超電導配線を集積回路に使用する際には、多層配線を
酸化物超電導体で形成する必要がある。酸化物超電導体
で多層配線を形成する場合には、適当な基板上に酸化物
超電導薄膜を成膜し、この酸化物超電導薄膜を所望の配
線の形状に加工してその上に絶縁体層を被覆する工程を
繰り返す。
When the superconducting wiring of the above oxide superconductor is used in an integrated circuit, it is necessary to form a multilayer wiring with an oxide superconductor. When forming multilayer wiring with an oxide superconductor, an oxide superconducting thin film is formed on an appropriate substrate, this oxide superconducting thin film is processed into the shape of the desired wiring, and an insulating layer is formed thereon. Repeat the coating process.

【0005】一方、集積回路の集積度を向上させるため
には、配線間隔を小さくする必要がある。配線間隔を小
さくすると、隣接する配線間を伝搬する信号の干渉が問
題になる。特に、上述の超電導多層配線を使用する集積
回路は、周波数の高い高速な信号を処理するため、信号
の干渉は大きな問題になる。
On the other hand, in order to improve the degree of integration of the integrated circuit, it is necessary to reduce the wiring interval. When the wiring interval is reduced, interference of signals propagating between adjacent wirings becomes a problem. In particular, an integrated circuit using the above-mentioned superconducting multilayer wiring processes a high frequency and high speed signal, and therefore signal interference becomes a serious problem.

【0006】上記の信号の干渉は、配線間にシールドを
設けることにより解決することができる。そこで本発明
の目的は、酸化物超電導体を使用した超電導多層配線に
おける上記信号の干渉を防ぐ、効果的で集積度を低下さ
せないシールド層を提供することにある。
The above signal interference can be solved by providing a shield between the wirings. Therefore, an object of the present invention is to provide an effective shield layer that prevents the above-mentioned signal interference in a superconducting multilayer wiring using an oxide superconductor and does not reduce the degree of integration.

【0007】[0007]

【課題を解決するための手段】本発明に従うと、一対の
超電導配線の間に配置され、該超電導配線を電気的に絶
縁する絶縁層中で、前記一対の超電導配線の少なくとも
一方に平行に延在している数単位格子分の厚さの酸化物
超電導体結晶層と、該酸化物超電導体結晶層に接して該
酸化物超電導体結晶層の両側に配置された該酸化物超電
導体と類似の結晶構造を有する酸化物層とを具備するこ
とを特徴とする超電導シールド層が提供される。
According to the present invention, in an insulating layer which is arranged between a pair of superconducting wires and electrically insulates the superconducting wires, it extends parallel to at least one of the pair of superconducting wires. Similar to the existing oxide superconductor crystal layer having a thickness of several unit lattices and the oxide superconductor arranged on both sides of the oxide superconductor crystal layer in contact with the oxide superconductor crystal layer An oxide layer having a crystal structure of 1. is provided.

【0008】[0008]

【作 用】本発明の超電導シールド層は、一対の超電導
配線間の絶縁層内に配置されており、超電導配線の少な
くとも一方に平行な数単位格子分の厚さの酸化物超電導
体結晶層と、この酸化物超電導体結晶層の両側に積層さ
れた、酸化物超電導体と類似の結晶構造を有する酸化物
層とを備えるところにその主要な特徴がある。本発明の
超電導シールド層では、酸化物超電導体に類似の結晶構
造を有する酸化物層と酸化物超電導体結晶層とが積層さ
れているので、酸化物超電導体結晶層の厚さが1単位格
子分以上あれば超電導性を示す。従って、絶縁層全体の
厚さをほとんど変更することなくシールド層を挿入でき
る。また、酸化物超電導体結晶層の厚さにより、電磁シ
ールド効果を調整できる。
[Operation] The superconducting shield layer of the present invention is arranged in an insulating layer between a pair of superconducting wirings, and an oxide superconducting crystal layer parallel to at least one of the superconducting wirings and having a thickness of several unit lattices. Its main feature is that it has an oxide layer having a crystal structure similar to that of the oxide superconductor, which is laminated on both sides of the oxide superconductor crystal layer. In the superconducting shield layer of the present invention, the oxide layer having a crystal structure similar to that of the oxide superconductor and the oxide superconductor crystal layer are laminated, so that the oxide superconductor crystal layer has a thickness of 1 unit lattice. If more than a minute, it shows superconductivity. Therefore, the shield layer can be inserted without substantially changing the thickness of the entire insulating layer. Further, the electromagnetic shield effect can be adjusted by the thickness of the oxide superconductor crystal layer.

【0009】本発明の超電導シールド層は、マイスナー
効果により電磁シールドとして機能する。従って、超電
導配線が動作している温度において、本発明の超電導シ
ールド層の酸化物超電導体は超電導状態になっていなけ
ればならない。従って、本発明の超電導シールド層に使
用する酸化物超電導体の臨界温度は、超電導配線に使用
する超電導体の臨界温度以上であることが好ましい。
The superconducting shield layer of the present invention functions as an electromagnetic shield due to the Meissner effect. Therefore, the oxide superconductor of the superconducting shield layer of the present invention must be in the superconducting state at the temperature at which the superconducting wiring is operating. Therefore, the critical temperature of the oxide superconductor used for the superconducting shield layer of the present invention is preferably equal to or higher than the critical temperature of the superconductor used for the superconducting wiring.

【0010】本発明の超電導シールド層には任意の酸化
物超電導体が使用できるが、例えば、Y1Ba2Cu37-X
Bi2Sr2Ca2Cu3x 、Tl2Ba2Ca2Cu3x 等が安定に作製可
能で、特性も優れているので好ましい。また、本発明の
超電導シールド層の酸化物超電導体結晶導体の両側に配
置される酸化物層には、Pr1Ba2Cu37-y、Bi2Sr2Cu1
6等を使用することが好ましい。酸化物層は、Pr1Ba2Cu3
7-y、Bi2Sr2Cu16 等の酸化物の結晶層を必要な数だ
けMBE法等で積層して形成することが好ましい。
Although any oxide superconductor can be used for the superconducting shield layer of the present invention, for example, Y 1 Ba 2 Cu 3 O 7-X ,
Bi 2 Sr 2 Ca 2 Cu 3 O x , Tl 2 Ba 2 Ca 2 Cu 3 O x and the like can be stably produced and are excellent in characteristics, which is preferable. Further, in the oxide layers arranged on both sides of the oxide superconductor crystal conductor of the superconducting shield layer of the present invention, Pr 1 Ba 2 Cu 3 O 7-y , Bi 2 Sr 2 Cu 1 O are contained.
It is preferable to use 6 or the like. The oxide layer is Pr 1 Ba 2 Cu 3
It is preferable that a required number of crystal layers of oxides such as O 7-y and Bi 2 Sr 2 Cu 1 O 6 are laminated by the MBE method or the like.

【0011】以下、本発明を実施例により、さらに詳し
く説明するが、以下の開示は本発明の単なる実施例に過
ぎず本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail by way of examples, but the following disclosure is merely examples of the present invention and does not limit the technical scope of the present invention.

【0012】[0012]

【実施例】図1(a)に、本発明の超電導シールド層を備
える超電導多層配線の断面図を示す。図1(a)の超電導
多層配線は、基板5上に形成されており、最下層のグラ
ンドプレーン4と、グランドプレーン4上の絶縁層21
と、絶縁層21上に順に積層された第1の超電導配線11、
絶縁層22、本発明の超電導シールド層3、絶縁層23およ
び第2の超電導配線12とを具備する。また、超電導配線
11および12の両方に電気的な接続を行うための接続孔6
を具備する。
EXAMPLE FIG. 1 (a) shows a cross-sectional view of a superconducting multilayer wiring provided with a superconducting shield layer of the present invention. The superconducting multilayer wiring shown in FIG. 1 (a) is formed on the substrate 5, and includes the bottom ground plane 4 and the insulating layer 21 on the ground plane 4.
And the first superconducting wire 11, which is sequentially stacked on the insulating layer 21,
An insulating layer 22, a superconducting shield layer 3 of the present invention, an insulating layer 23 and a second superconducting wire 12 are provided. Also, superconducting wiring
Connection hole 6 for making electrical connection to both 11 and 12
It is equipped with.

【0013】図1(b)に、上記の超電導多層配線に使用
されている本発明の超電導シールド層3の断面を拡大し
て示す。図1(b)に示すよう、本発明の超電導シールド
層3は、酸化物超電導体結晶層31と、酸化物超電導体結
晶層31の上下にそれぞれ配置された酸化物層32および33
とを備える。酸化物超電導体結晶層31は、数層の酸化物
超電導体結晶から構成されていて約2nmの厚さである。
酸化物層32および33は、酸化物超電導体結晶層31を構成
する酸化物超電導体と類似の結晶構造を有する酸化物の
結晶層で構成されておりそれぞれ約5nmの厚さである。
FIG. 1 (b) shows an enlarged cross section of the superconducting shield layer 3 of the present invention used in the above superconducting multilayer wiring. As shown in FIG. 1 (b), the superconducting shield layer 3 of the present invention comprises an oxide superconductor crystal layer 31, and oxide layers 32 and 33 arranged above and below the oxide superconductor crystal layer 31, respectively.
With. The oxide superconductor crystal layer 31 is composed of several layers of oxide superconductor crystals and has a thickness of about 2 nm.
The oxide layers 32 and 33 are made of oxide crystal layers having a crystal structure similar to that of the oxide superconductor forming the oxide superconductor crystal layer 31, and each has a thickness of about 5 nm.

【0014】図1(a)に示した構成の本発明の超電導シ
ールド層を備える超電導多層配線を作製した。まず、Mg
O(100)基板5上に、Y1Ba2Cu37-Xをスパッタリ
ング法により成膜してグランドプレーン4を形成した。
次に、グランドプレーン4上にMgO膜をCVD法で形成
し、絶縁層21とした。絶縁層21上にオフアクシススパッ
タリング法により第1の超電導配線11となるY1Ba2Cu3
7-X薄膜を形成し、反応性イオンエッチングにより配
線の形状に加工した。超電導配線11上に再びMgOで絶縁
層22を形成し、その上に本発明の超電導シールド層3を
作製した。
A superconducting multilayer wiring having the superconducting shield layer of the present invention having the structure shown in FIG. 1 (a) was produced. First, Mg
On the O (100) substrate 5, Y 1 Ba 2 Cu 3 O 7-X was deposited by the sputtering method to form the ground plane 4.
Next, an MgO film was formed on the ground plane 4 by the CVD method to form the insulating layer 21. Y 1 Ba 2 Cu 3 to be the first superconducting wiring 11 is formed on the insulating layer 21 by the off-axis sputtering method.
An O 7-X thin film was formed and processed into a wiring shape by reactive ion etching. The insulating layer 22 was again formed of MgO on the superconducting wire 11, and the superconducting shield layer 3 of the present invention was formed thereon.

【0015】本発明のシールド層3の作製は、以下のよ
うに行った。最初にMBE法により、第1の酸化物層32
となるPr1Ba2Cu37-y薄膜をMBE法で形成した。主な
成膜条件を以下に示す。 基板温度 730℃ 圧力 5×10-5Torr 膜厚 約 5nm(4単位格子)
The shield layer 3 of the present invention was manufactured as follows. First, the first oxide layer 32 is formed by the MBE method.
Then, a Pr 1 Ba 2 Cu 3 O 7-y thin film to be formed was formed by the MBE method. The main film forming conditions are shown below. Substrate temperature 730 ℃ Pressure 5 × 10 -5 Torr Film thickness about 5nm (4 unit lattice)

【0016】次に、Pr蒸発源をY蒸発源に切り換え、上
記の如く形成された酸化物層32上に連続して酸化物超電
導体結晶層31となるY1Ba2Cu37-X薄膜をMBE法で形
成した。 基板温度 700℃ 圧力 5×10-5Torr 膜厚 約2nm(2単位格子)
Next, the Pr evaporation source is switched to the Y evaporation source, and Y 1 Ba 2 Cu 3 O 7-X is formed, which becomes the oxide superconductor crystal layer 31 continuously on the oxide layer 32 formed as described above. The thin film was formed by the MBE method. Substrate temperature 700 ℃ Pressure 5 × 10 -5 Torr Thickness about 2nm (2 unit lattice)

【0017】次いでY蒸発源をPr蒸発源に切り換え、こ
の酸化物超電導体結晶層31上に連続して第2の酸化物層
33となるPr1Ba2Cu37-y薄膜をMBE法で形成した。主
な成膜条件を以下に示す。 基板温度 730℃ 圧力 5×10-5Torr 膜厚 約 5nm(4単位格子)
Then, the Y evaporation source is switched to the Pr evaporation source, and a second oxide layer is continuously formed on the oxide superconductor crystal layer 31.
A Pr 1 Ba 2 Cu 3 O 7-y thin film to be 33 was formed by the MBE method. The main film forming conditions are shown below. Substrate temperature 730 ℃ Pressure 5 × 10 -5 Torr Film thickness about 5nm (4 unit lattice)

【0018】このように、本発明の超電導シールド層3
を形成した後、MgOで絶縁層23を形成し、その上に超電
導配線12となるY1Ba2Cu37-X超電導薄膜をやはりオフ
アクシススパッタリング法で形成した。成膜条件は、第
1の超電導配線11を形成した条件と等しくした。
Thus, the superconducting shield layer 3 of the present invention
Then, the insulating layer 23 was formed of MgO, and the Y 1 Ba 2 Cu 3 O 7-X superconducting thin film to be the superconducting wiring 12 was also formed thereon by the off-axis sputtering method. The film forming conditions were the same as the conditions under which the first superconducting wiring 11 was formed.

【0019】最後に反応性イオンエッチングにより超電
導配線12と、接続孔6を形成し、引き続いて超電導配線
11および12を互いに接続するa軸配向の酸化物超電導薄
膜を接続孔6中に形成する。以上により、本発明の超電
導シールド層3を備える超電導多層配線が完成した。上
記のように作製した超電導多層配線はは、85Kで超電導
状態になり、超電導配線11および12に超電導電流が流れ
るとともに、酸化物超電導体結晶層31のマイスナー効果
により、両者の間は電磁的にシールドされることが確認
された。尚、接続孔6により、超電導シールド層3を通
じて短絡が生ずる場合には、超電導シールド層3を形成
後、集束イオンビーム加工により超電導シールド層3を
分断しておくことが必要である。
Finally, the superconducting wiring 12 and the connection hole 6 are formed by reactive ion etching, and then the superconducting wiring 12 is formed.
An a-axis oriented oxide superconducting thin film for connecting 11 and 12 to each other is formed in the connection hole 6. As described above, the superconducting multilayer wiring including the superconducting shield layer 3 of the present invention is completed. The superconducting multilayer wiring produced as described above is in a superconducting state at 85 K, a superconducting current flows in the superconducting wirings 11 and 12, and due to the Meissner effect of the oxide superconducting crystal layer 31, electromagnetic waves are generated between them. It was confirmed to be shielded. When a short circuit occurs due to the connecting hole 6 through the superconducting shield layer 3, it is necessary to divide the superconducting shield layer 3 by focused ion beam processing after forming the superconducting shield layer 3.

【0020】[0020]

【発明の効果】以上説明したように、本発明に従うと、
極めて薄く、しかも効果が高い超電導シールド層が提供
される。本発明の超電導シールド層は、例えば、超電導
集積回路の超電導多層配線に使用すると、従来よりも配
線間隔を狭めることが可能になる。また、ある超電導配
線に高い出力の信号電流を流しても、他の配線の信号へ
干渉することがなくなる。本発明により、超電導技術の
電子デバイスへの応用がさらに促進される。
As described above, according to the present invention,
An extremely thin and highly effective superconducting shield layer is provided. When the superconducting shield layer of the present invention is used, for example, in a superconducting multilayer wiring of a superconducting integrated circuit, it becomes possible to narrow the wiring interval as compared with the conventional case. Further, even if a high-output signal current is passed through a certain superconducting wire, it will not interfere with the signals of other wires. The present invention further facilitates the application of superconducting technology to electronic devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、本発明の超電導シールド層を備える超
電導多層配線の断面図であり、(b)は、図1(a)の超電導
多層配線に使用されている本発明の超電導シールド層の
拡大断面図である。
1A is a cross-sectional view of a superconducting multilayer wiring provided with a superconducting shield layer of the present invention, and FIG. 1B is a superconducting shield of the present invention used in the superconducting multilayer wiring of FIG. 1A. It is an expanded sectional view of a layer.

【符号の説明】[Explanation of symbols]

5 基板 11、12 超電導配線 31 酸化物超電導体結晶層 32、33 酸化物層 5 Substrate 11, 12 Superconducting wiring 31 Oxide superconductor crystal layer 32, 33 Oxide layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一対の超電導配線の間に配置され、該超
電導配線を電気的に絶縁する絶縁層中で、前記一対の超
電導配線の少なくとも一方に平行に延在している数単位
格子分の厚さの酸化物超電導体結晶層と、該酸化物超電
導体結晶層に接して該酸化物超電導体結晶層の両側に配
置された該酸化物超電導体と類似の結晶構造を有する酸
化物層とを具備することを特徴とする超電導シールド
層。
1. A number of unit lattices that are arranged between a pair of superconducting wires and extend parallel to at least one of the pair of superconducting wires in an insulating layer that electrically insulates the superconducting wires. An oxide superconductor crystal layer having a thickness, and an oxide layer having a crystal structure similar to the oxide superconductor arranged on both sides of the oxide superconductor crystal layer in contact with the oxide superconductor crystal layer A superconducting shield layer comprising:
JP3337600A 1991-11-27 1991-11-27 Superconducting shield layer Withdrawn JPH05152617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3337600A JPH05152617A (en) 1991-11-27 1991-11-27 Superconducting shield layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3337600A JPH05152617A (en) 1991-11-27 1991-11-27 Superconducting shield layer

Publications (1)

Publication Number Publication Date
JPH05152617A true JPH05152617A (en) 1993-06-18

Family

ID=18310176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3337600A Withdrawn JPH05152617A (en) 1991-11-27 1991-11-27 Superconducting shield layer

Country Status (1)

Country Link
JP (1) JPH05152617A (en)

Similar Documents

Publication Publication Date Title
US5811375A (en) Superconducting multilayer interconnection formed of oxide superconductor material and method for manufacturing the same
US5750474A (en) Method for manufacturing a superconductor-insulator-superconductor Josephson tunnel junction
CN216084932U (en) Transmission device, quantum device integrated component and quantum computer
US5672569A (en) Process for fabricating a superconducting circuit
JPH05152617A (en) Superconducting shield layer
EP0534854B1 (en) Superconducting thin film formed of oxide superconductor material, superconducting current path and superconducting device utilizing the superconducting thin film
CA2054796C (en) Superconducting wiring lines and process for fabricating the same
US6479139B1 (en) Superconducting substrate structure and a method of producing such structure
JPH05251772A (en) Superconducting multilayer interconnection and manufacture thereof
JP2720660B2 (en) Superconducting wiring
JPH05299914A (en) Superconducting high frequency resonator and filter
JP2757639B2 (en) Superconducting multilayer wiring
JPH07297608A (en) Superconducting microstrip circuit
JP3284293B2 (en) Oxide superconducting Josephson junction array device and method of manufacturing the same
JPH05160446A (en) Superconducting wiring and manufacture thereof
JP2773506B2 (en) Terminal structure of superconducting wiring and its forming method
JP2848402B2 (en) Superconducting wiring
JPH1174573A (en) Superconductinc element circuit, its manufacture and superconducting device
JPH01205549A (en) Semiconductor device having superconducting wiring part
CN115843212A (en) Transmission device, preparation method thereof, quantum device integrated assembly and quantum computer
JP3213204B2 (en) High-frequency circuit device using superconductor
JPH0637514A (en) Superconductive high frequency circuit device
JP2989943B2 (en) Superconducting integrated circuit manufacturing method
JPH10209514A (en) Production of copper oxide superconductive thin film
JPS63248187A (en) Superconducting device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204