JPH05152599A - Light receiving semiconductor element - Google Patents

Light receiving semiconductor element

Info

Publication number
JPH05152599A
JPH05152599A JP3341865A JP34186591A JPH05152599A JP H05152599 A JPH05152599 A JP H05152599A JP 3341865 A JP3341865 A JP 3341865A JP 34186591 A JP34186591 A JP 34186591A JP H05152599 A JPH05152599 A JP H05152599A
Authority
JP
Japan
Prior art keywords
light receiving
light
inp
receiving element
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3341865A
Other languages
Japanese (ja)
Other versions
JP2765321B2 (en
Inventor
Atsuhiko Kusakabe
敦彦 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3341865A priority Critical patent/JP2765321B2/en
Publication of JPH05152599A publication Critical patent/JPH05152599A/en
Application granted granted Critical
Publication of JP2765321B2 publication Critical patent/JP2765321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent unstable condition of laser emission by reducing reflecting retrogressive light from the receiving side in optical communication. CONSTITUTION:A region of p<+>-InP 5 is formed as a light-receiving region on an epitaxial wafer which consists of a substrate 1 of n<+>-InP, a buffering layer 2 of n-InP, a light absorbing layer 3 of n<->-InPGaAs, and a window layer 4 on n-InP. Then, an inclined light-receiving region 5 is formed by etching the surface of the light-receiving region obliquely.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信に用いられる半
導体受光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light receiving element used for optical communication.

【0002】[0002]

【従来の技術】化合物半導体受光素子は、光通信用の高
感度・長波長受光器として実用化されているが、中でも
InGaAsを用いた波長1.3μmあるいは1.55
μmに対する半導体受光素子は大容量長距離光通信用と
して広く使われている。
2. Description of the Related Art A compound semiconductor photodetector has been put to practical use as a high-sensitivity, long-wavelength photodetector for optical communication. Above all, a wavelength of 1.3 μm or 1.55 using InGaAs is used.
A semiconductor light receiving element for μm is widely used for large capacity long distance optical communication.

【0003】このInGaAsを使ったpinホトダイ
オードの従来例を図5に示す。n+ −InP基板1上
に、キャリア濃度1E15〜2E16cm-3、層厚1〜
3μmのn−InP緩衝層2、キャリア濃度1E14〜
1E16cm-3、層厚1〜5μmのn- −InGaAs
光吸収層3、キャリア濃度1E15〜3E16cm-3
層厚0.5〜2μmのn−InP窓層4を順次気相成長
法により成長させたエピタキシャルウェハに、受光部と
してキャリア濃度1E17〜1E20cm-3のp+ −I
nP領域5をZnの封止拡散により選択的に形成したの
ち、n−InP窓層4の表面に、反射防止膜兼絶縁膜8
として酸化膜または窒化膜を成長させる。この後絶縁膜
8に選択的に穴開けを行いp側電極6を形成し、さらに
基板裏面にn側電極7を形成する。
FIG. 5 shows a conventional example of a pin photodiode using this InGaAs. On the n + -InP substrate 1, the carrier concentration is 1E15 to 2E16 cm -3 , and the layer thickness is 1 to 1.
3 μm n-InP buffer layer 2, carrier concentration 1E14-
1E16 cm -3 , n -InGaAs having a layer thickness of 1 to 5 μm
Light absorption layer 3, carrier concentration 1E15 to 3E16 cm -3 ,
On an epitaxial wafer in which an n-InP window layer 4 having a layer thickness of 0.5 to 2 μm was sequentially grown by a vapor phase growth method, p + -I having a carrier concentration of 1E17 to 1E20 cm -3 was used as a light receiving portion.
After selectively forming the nP region 5 by the sealing diffusion of Zn, an antireflection film / insulating film 8 serving as an antireflection film is formed on the surface of the n-InP window layer 4.
As a result, an oxide film or a nitride film is grown. After that, the insulating film 8 is selectively perforated to form the p-side electrode 6, and further the n-side electrode 7 is formed on the back surface of the substrate.

【0004】このようにして作成したInGaAsを用
いたpinホトダイオードは主に光ファイバ通信におけ
る受信器として用いられる。光通信システムにおいて送
信側には半導体レーザ(以下、LDと記す)が用いられ
る。LDから出た信号光はレンズによって集光されて光
ファイバへ導かれる。受光側では光ファイバ内を伝搬し
てきた光は、レンズによって受光部に集光され、受光素
子内部(光吸収層内)で光電変換される。
The pin photodiode using InGaAs thus produced is mainly used as a receiver in optical fiber communication. A semiconductor laser (hereinafter referred to as LD) is used on the transmitting side in an optical communication system. The signal light emitted from the LD is condensed by the lens and guided to the optical fiber. On the light receiving side, the light propagating in the optical fiber is condensed by the lens on the light receiving portion and photoelectrically converted inside the light receiving element (in the light absorption layer).

【0005】ここで、LDから出た光が、光ファイバ端
やレンズ表面、受光素子表面によって一部反射され、再
び光ファイバを通してLD側に戻る現象がある。この反
射戻り光がLD内部に戻るとLDの発光状態が不安定に
なるため、可能なかぎりこの反射戻り光を抑えなければ
ならない。そのため、受光素子側の反射戻り光対策とし
て、ファイバ端を5°ないし15°の範囲で斜めカット
をしたり、レンズや受光素子表面に反射防止膜を施した
りしている。
Here, there is a phenomenon that the light emitted from the LD is partially reflected by the end of the optical fiber, the surface of the lens, and the surface of the light receiving element, and returns to the LD side through the optical fiber again. When this reflected return light returns to the inside of the LD, the light emitting state of the LD becomes unstable, so this reflected return light must be suppressed as much as possible. Therefore, as a measure against reflected return light on the light receiving element side, the fiber end is obliquely cut in the range of 5 ° to 15 °, or an antireflection film is provided on the surface of the lens or the light receiving element.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の受光素
子では、ステムにマウントした際に傾いて固着されるこ
とがありそしてその傾きの方向が一定でないため、その
受光素子と結合される光ファイバの斜めカット方向と整
合しなくなることがある。即ち、受光素子の傾き面と光
ファイバのカット面とが側面からみて「ハ」の字形状に
なるときには、受光素子表面での反射光が光ファイバ内
へ戻されることになるのであるが、上述した従来の受光
素子では、受光素子のステムに対する傾きが一義的に定
まらないため、上記不都合を避けることができなかっ
た。
In the above-mentioned conventional light receiving element, when mounted on the stem, the light receiving element sometimes tilts and is fixed, and the direction of the tilt is not constant. Therefore, the optical fiber coupled to the light receiving element is not fixed. It may not match the diagonal cutting direction of. That is, when the inclined surface of the light receiving element and the cut surface of the optical fiber have a “C” shape when viewed from the side, the reflected light on the surface of the light receiving element is returned to the inside of the optical fiber. In the conventional light receiving element described above, the inclination of the light receiving element with respect to the stem is not uniquely determined, so that the above inconvenience cannot be avoided.

【0007】[0007]

【課題を解決するための手段】本発明の半導体受光素子
は、受光領域の光入射面が5°ないし15°の範囲で傾
斜していることを特徴としている。
The semiconductor light receiving element of the present invention is characterized in that the light incident surface of the light receiving region is inclined in the range of 5 ° to 15 °.

【0008】[0008]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は、本発明の第1の実施例の製造工程
を示す断面図である。n+ −InP基板1上に気相成長
法によりキャリア濃度1E15cm-3、層厚2μmのn
−InP緩衝層2、キャリア濃度1E15cm-3、層厚
1.4μmのn- −InGaAs光吸収層3を成長させ
た後、キャリア濃度1E16cm-3、層厚1μmのn−
InP窓層4を成長させる〔図1の(a)〕。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a cross-sectional view showing the manufacturing process of the first embodiment of the present invention. An n + -InP substrate 1 having a carrier concentration of 1E15 cm −3 and a layer thickness of 2 μm was formed by vapor phase epitaxy.
-InP buffer layer 2, carrier concentration 1E15 cm -3 , n -- InGaAs light absorption layer 3 having a layer thickness of 1.4 µm-After growing an InGaAs light absorption layer 3, carrier concentration 1E16 cm -3 , layer thickness of 1 µm n-
The InP window layer 4 is grown [(a) of FIG. 1].

【0009】上記エピタキシャルウェハに拡散マスクを
CVD法により形成し、受光部分に50μmφの穴開け
を行った後、例えばZnの封止拡散によりキャリア濃度
1E17〜1E20cm-3のp+ −InP領域5を選択
的に形成する〔図1の(b)〕。p+ −InP領域5形
成後、エッチングマスクとして受光領域を囲むようにホ
トレジストマスク10を形成し、6°斜め方向からイオ
ンビーム11を照射してエッチングを行い〔図1の
(c)〕、InP窓層4表面に部分的に6°傾いた傾斜
受光領域9を形成する〔図1の(d)〕。
A diffusion mask is formed on the above epitaxial wafer by the CVD method, a hole of 50 μmφ is formed in the light receiving portion, and then a p + -InP region 5 having a carrier concentration of 1E17 to 1E20 cm -3 is formed by sealing diffusion of Zn, for example. It is selectively formed [(b) of FIG. 1]. After the p + -InP region 5 is formed, a photoresist mask 10 is formed as an etching mask so as to surround the light receiving region, and the ion beam 11 is irradiated from a 6 ° oblique direction to perform etching [(c) of FIG. 1]. An inclined light receiving region 9 which is partially inclined by 6 ° is formed on the surface of the window layer 4 [(d) of FIG. 1].

【0010】ホトレジストマスク10を除去した後、表
面側に通常の方法で反射防止膜兼絶縁膜8を成長させ、
この絶縁膜に窓明けを行ってからp側電極6を形成す
る。次に、n+ −InP基板1の裏面を全体の厚さが1
00〜200μmになるまで研磨し、その面にSn−A
uを蒸着し、アロイ化してn側電極7を形成する。
After removing the photoresist mask 10, an antireflection film / insulating film 8 is grown on the surface side by a usual method.
A window is formed in this insulating film, and then the p-side electrode 6 is formed. Next, the back surface of the n + -InP substrate 1 has a total thickness of 1
Polished to 0 to 200 μm, Sn-A on the surface
u is vapor-deposited and alloyed to form the n-side electrode 7.

【0011】上記方法により作成したpinホトダイオ
ードの断面図を図2に、このホトダイオードを搭載した
受光素子モジュールにおける受光部の傾斜と光ファイバ
のカット方向との関係を図3に示す。図3に示すよう
に、光ファイバのカット方向と傾斜受光領域9の方向を
そろえるように両者をステムに固定すれば、受光素子か
らの表面反射が再び光ファイバに戻ることを防止するこ
とができる。仮に、この場合にホトダイオードが傾いて
ステムにマウントされることがあっても、傾斜受光面が
ステム平面に対して水平になる程度であるので、傾斜受
光面と光ファイバのカット面とが「ハ」の字形となるこ
とは防止され、ホトダイオード表面での反射光が光ファ
イバへ再入射することはない。
FIG. 2 shows a sectional view of a pin photodiode manufactured by the above method, and FIG. 3 shows the relationship between the inclination of the light receiving portion and the cutting direction of the optical fiber in the light receiving element module in which the photodiode is mounted. As shown in FIG. 3, if both are fixed to the stem so that the cut direction of the optical fiber and the direction of the inclined light receiving region 9 are aligned, it is possible to prevent the surface reflection from the light receiving element from returning to the optical fiber again. . Even if the photodiode is tilted and mounted on the stem in this case, the tilted light-receiving surface and the cut surface of the optical fiber are “Ha” because the tilted light-receiving surface is only horizontal to the stem plane. The “-” shape is prevented, and the light reflected from the photodiode surface does not re-enter the optical fiber.

【0012】図4は、本発明の第2の実施例を示す断面
図であって、本実施例は、裏面入射型pinホトダイオ
ードに関するものである。本実施例のホトダイオードは
次のように作製される。図1の(b)に示す工程まで
は、第1の実施例の場合と同様である。このようにエピ
タキシャルウェハを形成した後、基板表面にp側電極6
を形成する。
FIG. 4 is a sectional view showing a second embodiment of the present invention. This embodiment relates to a back illuminated pin photodiode. The photodiode of this embodiment is manufactured as follows. The process up to the step shown in FIG. 1B is the same as in the case of the first embodiment. After forming the epitaxial wafer in this way, the p-side electrode 6 is formed on the substrate surface.
To form.

【0013】次に、基板裏面を全体の厚さが100〜1
50μmになるまで鏡面研磨し、然る後、受光領域を囲
むようにホトレジストマスクを形成し、斜め6°方向か
らイオンビームエッチングを行い、裏面に選択的に傾斜
受光領域9を形成する。その後裏面の傾斜領域に反射防
止膜8を、その他の部分にn側電極7を形成する。本実
施例のものにおいても、受光素子モジュールにおいて、
受光素子の傾斜面と光ファイバの傾斜方向とをそろえる
ことによって、先の実施例と同様に、反射戻り光を防止
することができる。
Next, the back surface of the substrate has a total thickness of 100 to 1
After mirror polishing to 50 μm, a photoresist mask is formed so as to surround the light receiving region, and ion beam etching is performed from an oblique 6 ° direction to selectively form a tilted light receiving region 9 on the back surface. After that, the antireflection film 8 is formed on the inclined region of the back surface, and the n-side electrode 7 is formed on the other portions. Also in the present embodiment, in the light receiving element module,
By aligning the inclined surface of the light receiving element with the inclined direction of the optical fiber, reflected return light can be prevented as in the previous embodiment.

【0014】以上好ましい実施例について説明したが、
本発明はこれら実施例に限定されるものではなく、例え
ば、pinホトダイオードばかりでなくAPDに対して
適用することができ、またInAsP/InP系以外の
材料を使用したホトダイオードについても同様に実施で
きる。さらにエピタキシャルウェハの形成手段として
は、気相成長法の外、液相法、MOCVD法、MBE
法、ALE法等を採用することができる。また、受光領
域の傾き角度も5°〜15°程度の範囲で任意に設定す
ることができる。
The preferred embodiment has been described above.
The present invention is not limited to these examples, and can be applied not only to pin photodiodes but also to APDs, and also to photodiodes using materials other than InAsP / InP-based materials. In addition to vapor phase epitaxy, liquid phase epitaxy, MOCVD, MBE is used as a means for forming an epitaxial wafer.
Method, ALE method, etc. can be adopted. Also, the inclination angle of the light receiving region can be arbitrarily set within the range of about 5 ° to 15 °.

【0015】なお、本発明の受光素子では支持体へのマ
ウント面と光入射面とが同一の面であってもよい。その
場合、マウント用電極の形成された部分に対し、受光領
域の半導体表面が傾斜をもつことになる。
In the light receiving element of the present invention, the mount surface on the support and the light incident surface may be the same surface. In that case, the semiconductor surface of the light receiving region is inclined with respect to the portion where the mounting electrode is formed.

【0016】[0016]

【発明の効果】以上説明したように、本発明の受光素子
は、マウント面に対して受光領域の表面を傾斜させたも
のであるので、本発明によれば、受光領域の傾きに対す
る光ファイバのカット面を一義的に決めることができ
る。その結果、受光素子表面からLDへの反射戻り光を
防ぐことができ、光ファイバ通信におけるLD側の発振
の不安定化を防止することができる。
As described above, since the light receiving element of the present invention has the surface of the light receiving region inclined with respect to the mount surface, the present invention allows the optical fiber of the optical fiber with respect to the inclination of the light receiving region. The cut surface can be uniquely determined. As a result, reflected return light from the surface of the light receiving element to the LD can be prevented, and instability of oscillation on the LD side in optical fiber communication can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施例の製造工程を説明する
ための断面図。
FIG. 1 is a sectional view for explaining a manufacturing process according to a first embodiment of the present invention.

【図2】 本発明の第1の実施例を示す断面図。FIG. 2 is a sectional view showing the first embodiment of the present invention.

【図3】 受光素子モジュールにおける、本発明の第1
の実施例と斜めカットされた光ファイバとの関係を示す
断面図。
FIG. 3 shows a first aspect of the present invention in a light-receiving element module.
FIG. 6 is a cross-sectional view showing the relationship between the embodiment of FIG.

【図4】 本発明の第2の実施例を示す断面図。FIG. 4 is a sectional view showing a second embodiment of the present invention.

【図5】 従来例を示す断面図。FIG. 5 is a cross-sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 n+ −InP基板 2 n−InP緩衝層 3 n- −InGaAs光吸収層 4 n−InP窓層 5 p+ −InP領域 6 p側電極 7 n側電極 8 反射防止膜兼絶縁膜 9 傾斜受光領域 10 ホトレジストマスク 11 イオンビーム 12 光ファイバ1 n + -InP substrate 2 n-InP buffer layer 3 n -- InGaAs light absorption layer 4 n-InP window layer 5 p + -InP region 6 p-side electrode 7 n-side electrode 8 Antireflection film / insulating film 9 Gradient light reception Area 10 Photoresist mask 11 Ion beam 12 Optical fiber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 支持体上にマウントされるマウント面
と、光が入射される光入射面と、を有する半導体受光素
子において、 前記マウント面に対し前記光入射面が傾いていることを
特徴とする半導体受光素子。
1. A semiconductor light receiving element having a mount surface mounted on a support and a light incident surface on which light is incident, wherein the light incident surface is inclined with respect to the mount surface. Semiconductor light receiving element.
JP3341865A 1991-11-29 1991-11-29 Semiconductor light receiving element Expired - Fee Related JP2765321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3341865A JP2765321B2 (en) 1991-11-29 1991-11-29 Semiconductor light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3341865A JP2765321B2 (en) 1991-11-29 1991-11-29 Semiconductor light receiving element

Publications (2)

Publication Number Publication Date
JPH05152599A true JPH05152599A (en) 1993-06-18
JP2765321B2 JP2765321B2 (en) 1998-06-11

Family

ID=18349347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3341865A Expired - Fee Related JP2765321B2 (en) 1991-11-29 1991-11-29 Semiconductor light receiving element

Country Status (1)

Country Link
JP (1) JP2765321B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253987A (en) * 2010-06-03 2011-12-15 Mitsubishi Electric Corp Semiconductor photodetector and optical module
JP2012129390A (en) * 2010-12-16 2012-07-05 Opnext Japan Inc Semiconductor light-emitting element, and method of manufacturing the same
US8378289B2 (en) 2008-12-11 2013-02-19 Oclaro Japan, Inc. Optical receiver module and manufacturing method with a shifted and angled light receiving element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978643U (en) * 1982-11-18 1984-05-28 日本電気株式会社 photodetector
JPS62230065A (en) * 1986-03-31 1987-10-08 Mitsubishi Electric Corp Semiconductor photodetector
JPH02146460U (en) * 1989-05-17 1990-12-12
JPH03105985A (en) * 1989-09-20 1991-05-02 Matsushita Electron Corp Semiconductor photodetector and optical semiconductor device using same
JPH0513788A (en) * 1991-06-28 1993-01-22 Fujitsu Ltd Infrared rays detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978643U (en) * 1982-11-18 1984-05-28 日本電気株式会社 photodetector
JPS62230065A (en) * 1986-03-31 1987-10-08 Mitsubishi Electric Corp Semiconductor photodetector
JPH02146460U (en) * 1989-05-17 1990-12-12
JPH03105985A (en) * 1989-09-20 1991-05-02 Matsushita Electron Corp Semiconductor photodetector and optical semiconductor device using same
JPH0513788A (en) * 1991-06-28 1993-01-22 Fujitsu Ltd Infrared rays detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8378289B2 (en) 2008-12-11 2013-02-19 Oclaro Japan, Inc. Optical receiver module and manufacturing method with a shifted and angled light receiving element
JP2011253987A (en) * 2010-06-03 2011-12-15 Mitsubishi Electric Corp Semiconductor photodetector and optical module
JP2012129390A (en) * 2010-12-16 2012-07-05 Opnext Japan Inc Semiconductor light-emitting element, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2765321B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
US4470143A (en) Semiconductor laser having an etched mirror and a narrow stripe width, with an integrated photodetector
US4292512A (en) Optical monitoring photodiode system
EP1979999B1 (en) Monitoring photodetector for integrated photonic devices
US4493113A (en) Bidirectional fiber optic transmission systems and photodiodes for use in such systems
US4709413A (en) Bidirectional fiber optic systems
US7324574B2 (en) Long wavelength vertical cavity surface emitting laser with monolithically grown photodetector
JPH0653538A (en) Semiconductor light receiving element
US4577209A (en) Photodiodes having a hole extending therethrough
US4358676A (en) High speed edge illumination photodetector
US5920587A (en) Optical device and method of manufacturing the same
US20050019037A1 (en) To can laser package with front monitoring photodetector and turning mirror
JP2539089B2 (en) Semiconductor laser amplifier and semiconductor laser amplifier
CN101276028B (en) Optical semiconductor module and light receiving element
KR100464333B1 (en) Photo detector and method for fabricating thereof
JPH05152599A (en) Light receiving semiconductor element
JP2710070B2 (en) Semiconductor light receiving element and optical semiconductor device using this semiconductor light receiving element
JPH06296007A (en) Formation method for structure of combination of optical waveguide and mirror and structure obtained thereby
JP2995921B2 (en) Semiconductor light receiving element
JP6981370B2 (en) Light receiving device and its manufacturing method
JPH04342174A (en) Semiconductor photoelectric receiving element
JP2002305319A (en) Semiconductor light receiving element and module for optical communication
Bouadma et al. 1.3-/spl mu/m GaInAsP/InP buried-ridge-structure laser and its monolithic integration with photodetector using reactive ion beam etching
JPH0562472B2 (en)
JP2000277850A (en) Semiconductor laser element, semiconductor laser system, and manufacturing method of them
JPH0497574A (en) Semiconductor light receiving device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees