JPH05152519A - Manufacture of bicmos element having lge structure - Google Patents

Manufacture of bicmos element having lge structure

Info

Publication number
JPH05152519A
JPH05152519A JP4138142A JP13814292A JPH05152519A JP H05152519 A JPH05152519 A JP H05152519A JP 4138142 A JP4138142 A JP 4138142A JP 13814292 A JP13814292 A JP 13814292A JP H05152519 A JPH05152519 A JP H05152519A
Authority
JP
Japan
Prior art keywords
emitter
transistor
region
lge
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4138142A
Other languages
Japanese (ja)
Inventor
Sun-Kwon Im
シユン クオン イム
Myong-Song Kim
ミヨン ソン キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH05152519A publication Critical patent/JPH05152519A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE: To reduce a leakage current between an emitter and a base, by a method wherein the emitter of an LGE structure is formed from an LDD formed simultaneously at the time of the formation of a low-concentration doped drain(LDD) for CMOS. CONSTITUTION: A prescribed region of an N-type low-concentration silicon layer made of an ion-implantation through a window 35 is covered with oxide sidewalls 38 in such a way as to cover a gate 29 of an N-channel MOS transistor and the sidewalls of a polysilicon layer 26 of an emitter region 31. An extrinsic base diffused region 49 of a V-P-N-P transistor is formed and, at the same time, the ions in the N-type silicon layer covered with the sidewalls 38 are diffused to form an LGE structure having an N-type emitter diffused region 50a of an N-P-N transistor. As an emitter is formed from an LDD formed simultaneously at the time of the formation of a low-concentration doped drain(LDD) for CMOS, the LGE structure can be formed without using an additional mask and a leakage current between the emitter and a base can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポリシリコンゲートCM
OSトランジスタとバイポーラトランジスタを一つのチ
ップに集積したBiCMOS素子の製造方法に関し、特
にLGE(Laterally Graded Emi
tter)構造のNPNトランジスタとVPNP(Ve
rtical PNP)トランジスタをポリシリコンで
自己整合して信頼性を向上させるLGE構造を有するB
iCMOS素子の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a polysilicon gate CM.
The present invention relates to a method for manufacturing a BiCMOS device in which an OS transistor and a bipolar transistor are integrated on a single chip, and in particular, LGE (Laterally Graded Emi)
tter) structure NPN transistor and VPNP (Ve
B has a LGE structure that improves the reliability by self-aligning the RTP (Physical PNP) transistor with polysilicon.
The present invention relates to a method for manufacturing an iCMOS device.

【0002】[0002]

【従来の技術】従来の一般式なBiCMOS素子の製造
方法によると、NPNトランジスタとPNPトランジス
タのエミッタ/ベースが自己整合されない構造を有する
ようになっているため、集積度及び動作速度が劣るだけ
でなく、バイポーラNPNトランジスタ及びPNPトラ
ンジスタが横方向(laterally)に設計されて
いて、垂直的に形成されたNPNトランジスタ及びPN
Pトランジスタに比べて電流駆動能力や動作速度面で劣
るという欠点があった。
2. Description of the Related Art According to a conventional general method for manufacturing a BiCMOS device, the NPN transistor and the PNP transistor have a structure in which the emitters / bases thereof are not self-aligned. In addition, the bipolar NPN transistor and the PNP transistor are laterally designed, and the vertically formed NPN transistor and the PN transistor are formed.
It has a drawback that it is inferior to the P-transistor in terms of current driving capability and operating speed.

【0003】[0003]

【発明が解決しようとする問題点】これらの欠点を除去
するためにポリシリコンを利用してバイポーラNPNト
ランジスタとVPNPトランジスタのエミッタベース構
造を自己整合させ、ポリシリコンゲートで構成されるC
MOSとを一つのチップに同時に実現するBiCMOS
素子の製造方法が、本発明の発明者らによって特願平3
−277851号(大韓民国特許出願第91−3021
号、1991年2月25日出願)で出願されているが、
この方法によって製造されたBiCMOS素子の断面図
は図1に示されている。図1では、NPNトランジスタ
とVPNPトランジスタのエミッタ/ベースが自己整合
構造を有するが、LGE構造ではないため、トランジス
タのエミッタ層の厚さが薄く、濃度が高い場合には、エ
ミッタ/ベース間の漏洩電流が多くなって信頼性が低下
するという欠点がある。更に、接合面の濃度が高い場
合、エミッタ/ベース間に逆方向バイアスが印加される
と、電流利得(hFE)が急激に劣化してトランジスタの
老化現象が速くなり、半導体素子の寿命が短くなるとい
う欠点がある。また、1μm以下のサブミクロン級やミ
クロン級のバイポーラトランジスタはエミッタ接合に逆
方向バイアスが印加されることにより、ホットキャリア
(hot carrier)現象が発生するので、上記
バイポーラトランジスタの劣化現象がもっと激しくな
る。
In order to eliminate these drawbacks, polysilicon is used to self-align the emitter-base structures of the bipolar NPN transistor and the VPNP transistor, and a C gate composed of a polysilicon gate is used.
BiCMOS that simultaneously realizes MOS and one chip
A device manufacturing method is disclosed in Japanese Patent Application No.
-277851 (Korea Patent Application No. 91-3021)
No., filed on February 25, 1991),
A cross-sectional view of a BiCMOS device manufactured by this method is shown in FIG. In FIG. 1, although the emitter / base of the NPN transistor and the VPNP transistor have a self-aligned structure, they do not have the LGE structure. Therefore, when the emitter layer of the transistor is thin and the concentration is high, leakage between the emitter / base is caused. There is a drawback that the current increases and the reliability decreases. Further, when the concentration of the junction surface is high and the reverse bias is applied between the emitter and the base, the current gain (h FE ) is rapidly deteriorated, the aging phenomenon of the transistor is accelerated, and the life of the semiconductor element is shortened. There is a drawback that In addition, in a submicron class or micron class bipolar transistor of 1 μm or less, a reverse carrier bias is applied to the emitter junction to cause a hot carrier phenomenon, so that the deterioration phenomenon of the bipolar transistor becomes more severe. ..

【0004】一方、自己整合されたLGE構造を有する
NPNトランジスタの製造方法が、三菱電機株式会社に
よって1990年度のIEDM(227頁〜229頁)
において発表された。この方法によって製造されたLG
E構造を有するトランジスタの垂直断面図が図2に示さ
れているが、これはp型シリコン基板の上部にn−型エ
ピタキシャル層を成長させた後、上記エピタキシャル層
の上部に第1酸化層を成長させる工程と、上記エピタキ
シャル層の所定の領域にp型ベース領域を形成する工程
と、上記第1酸化層の上部に窒化物層を成膜させた後、
窒化物層と第1酸化層の所定の領域を順次エッチングし
て窓を形成することによりエミッタになる領域を開き、
n−型イオンを注入してn−型エミッタ領域を形成する
工程と、上記基板上に第2酸化層を成長させた後、異方
性エッチングを行い酸化物側壁を形成する工程と、上記
エッチング工程によって形成された窓を通じて低いエネ
ルギーでイオン注入した後、熱処理してn+型エミッタ
領域を形成する工程と、多結晶シリコン層を基板上に成
膜した後、通常のフォトリソグラフィー法で上記多結晶
シリコン層の所定の領域を除去して多結晶シリコンコン
タクトを形成する工程と、以降の通常のバイポーラート
ランジスタの製造工程とからなる。
On the other hand, a method for manufacturing an NPN transistor having a self-aligned LGE structure is described by Mitsubishi Electric Corporation in IEDM (1990, pages 227 to 229).
Was announced at. LG manufactured by this method
A vertical cross-sectional view of a transistor having an E structure is shown in FIG. 2, in which an n − -type epitaxial layer is grown on a p-type silicon substrate and then a first oxide layer is formed on the epitaxial layer. A step of growing, a step of forming a p-type base region in a predetermined region of the epitaxial layer, and a step of forming a nitride layer on the first oxide layer,
By opening a predetermined area of the nitride layer and the first oxide layer in order to form a window, the area to be an emitter is opened,
a step of implanting n-type ions to form an n-type emitter region; a step of growing a second oxide layer on the substrate and then performing anisotropic etching to form oxide sidewalls; After implanting ions with low energy through the window formed by the process, heat treatment is performed to form an n + type emitter region, and a polycrystalline silicon layer is formed on the substrate, and then the polycrystal is formed by an ordinary photolithography method. It comprises a step of removing a predetermined region of the silicon layer to form a polycrystalline silicon contact, and a subsequent normal bipolar transistor manufacturing step.

【0005】即ち、酸化物側壁を利用してエミッタの濃
度分布を横方向に勾配を形成(grading)せしめ
ることにより、水平的電界を減少させ、バイポーラNP
Nトランジスタの劣化現象を改善させる自己整合された
LGE構造を有するNPNトランジスタの製造方法であ
る。
That is, a horizontal electric field is reduced by forming a gradient in the concentration distribution of the emitter in the lateral direction by utilizing the oxide side wall, thereby reducing the bipolar electric field.
A method for manufacturing an NPN transistor having a self-aligned LGE structure that improves the deterioration phenomenon of the N transistor.

【0006】しかし、このようなLGE構造を有するト
ランジスタの製造方法は、エミッタ領域を開いた後にn
−イオンを注入し、酸化物側壁でエミッタ領域の外側の
一部を覆った後、高濃度のエミッタを形成するようにな
るので、実際のエミッタの幅は酸化物側壁の幅の2倍程
に狭くなって電流駆動能力が低下するという欠点があ
る。
However, according to the method of manufacturing a transistor having such an LGE structure, the n region is formed after the emitter region is opened.
-The actual width of the emitter is about twice the width of the oxide side wall, because a high-concentration emitter is formed after implanting ions and covering part of the outside of the emitter region with the oxide side wall. There is a drawback in that the current driving capability is reduced due to the narrowing.

【0007】本発明の目的は自己整合されたエミッタ/
ベースを有するLGE構造のNPNトランジスタを形成
してエミッタ/ベースの漏洩電流が少ないBiCMOS
素子を提供することにある。本発明の他の目的はhFE
化による老化現象を防止する信頼性の高いBiCMOS
素子を提供することにある。
The object of the present invention is to provide a self-aligned emitter /
BiCMOS with a low leakage current of emitter / base by forming an NGE transistor of LGE structure having a base
It is to provide an element. Another object of the present invention is a highly reliable BiCMOS which prevents the aging phenomenon due to h FE deterioration.
It is to provide an element.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明のLGE構造を有するBiCMOS素子の製造
方法は、ポリシリコンゲートで構成されているCMOS
トランジスタとポリシリコンを利用して、バイポーラN
PNトランジスタのエミッタを自己整合されたLGE構
造に形成させ、一つのチップにこれらを同時に実現する
ことによって具現される。
In order to achieve the above object, a method of manufacturing a BiCMOS device having an LGE structure according to the present invention is a CMOS having a polysilicon gate.
Bipolar N using transistor and polysilicon
This is realized by forming the emitter of the PN transistor in a self-aligned LGE structure and realizing them in one chip at the same time.

【0009】[0009]

【作用】本発明は、ポリシリコンゲートで構成されてい
るCMOSトランジスタとバイポーラトランジスタを一
つのチップに集積させたBiCMOS素子の製造方法に
おいて、特にエミッタの濃度分布を横方向に傾斜させた
LGE構造のNPNトランジスタとVPNPトランジス
タのエミッタ/ベースをポリシリコン層で自己整合する
ものであり、またLGE構造のエミッタをCMOS用の
低濃度ドープドレイン(LDD)の形成時に同時に作成
したLDDからエミッタを形成するので、追加的なマス
クを使用することなくLGE構造を形成することがで
き、エミッタ/ベースの漏洩電流が少ない、hFEの劣化
の問題がない長寿命のBiCMOS素子が得られる。
The present invention relates to a method of manufacturing a BiCMOS device in which a CMOS transistor composed of a polysilicon gate and a bipolar transistor are integrated on one chip, and particularly, an LGE structure in which the concentration distribution of the emitter is inclined in the lateral direction. Since the emitter / base of the NPN transistor and the VPNP transistor are self-aligned with a polysilicon layer, and the emitter of the LGE structure is formed from the LDD formed at the same time when the lightly doped drain (LDD) for CMOS is formed. An LGE structure can be formed without using an additional mask, and a long-life BiCMOS device having a small emitter / base leakage current and no problem of h FE deterioration can be obtained.

【0010】[0010]

【実施例】以下に、図3〜図6の本発明のBiCMOS
素子の製造工程の一例を示す図、および本発明の方法に
よって得られたBiCMOS素子の一例を示す図7を参
照して本発明をより詳しく説明する。図3(A)に示す
ように、VPNPトランジスタのための深いn+埋没層
(deep buried layer)を形成した
後、通常のツインウェル、ツインボトム工程でLOCO
S(Local Oxidation of Sili
con)酸化後にパッド酸化層を除去した状態を示した
もので、p型基板1上にVPNPトランジスタのコレク
タ領域になるp+型ボトム層2を基板1と分離させるた
めにn+埋没層60を形成した後、通常の方法でp+ボ
トム層2とn+型ボトム層3を形成し、その上に真性エ
ピタキシャル層を成長させた後、pウェル4とnウェル
5を形成し、フィールド反転を防止するためにチャンネ
ルストップ領域6を形成し、通常のLOCOS酸化方法
で選択的酸化膜7を形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The BiCMOS of the present invention shown in FIGS.
The present invention will be described in more detail with reference to the drawings showing an example of the manufacturing process of the device and FIG. 7 showing an example of the BiCMOS device obtained by the method of the present invention. As shown in FIG. 3A, after forming a deep n + buried layer for the VPNP transistor, the LOCO is formed by a normal twin well and twin bottom process.
S (Local Oxidation of Sili)
(con) shows a state in which the pad oxide layer has been removed after oxidation. An n + buried layer 60 is formed on the p-type substrate 1 to separate the p + -type bottom layer 2 which becomes the collector region of the VPNP transistor from the substrate 1. After that, a p + bottom layer 2 and an n + type bottom layer 3 are formed by a usual method, an intrinsic epitaxial layer is grown thereon, and then a p well 4 and an n well 5 are formed to prevent field inversion. The channel stop region 6 is formed, and the selective oxide film 7 is formed by the usual LOCOS oxidation method.

【0011】次に、図3(B)のように、犠牲酸化膜8
を基板上に40〜60nm程度成長させた後、VPNP
トランジスタのコレクタを形成するために、上記基板上
にフォトレジスト9を塗布し、通常のフォトリソグラフ
ィー工程でVPNPトランジスタのコレクタになる領域
に窓10を開いた後、ホウ素(B)イオンを5×1014
〜2×1015個/cm2 でイオン注入する。
Next, as shown in FIG. 3B, the sacrificial oxide film 8 is formed.
Is grown on the substrate for about 40 to 60 nm and then the VPNP
In order to form a collector of the transistor, a photoresist 9 is applied on the substrate, a window 10 is opened in a region which will be a collector of the VPNP transistor by a normal photolithography process, and then boron (B) ions are added at 5 × 10 5. 14
Ion implantation is performed at ˜2 × 10 15 ions / cm 2 .

【0012】その後、図3(C)に示すように、上記フ
ォトレジスト9を除去し、NPNトランジスタのコレク
タを形成するために、上記基板上にフォトレジスト11
を塗布し、通常のフォトリソグラフィー工程でNPNト
ランジスタのコレクタになる領域に窓12を開いた後、
リン(P)イオンを5×1014〜2×1015個/cm2
程度イオン注入する。
Thereafter, as shown in FIG. 3C, the photoresist 9 is removed and the photoresist 11 is formed on the substrate to form the collector of the NPN transistor.
Is applied, and a window 12 is opened in a region which will be a collector of the NPN transistor by a normal photolithography process.
5 × 10 14 to 2 × 10 15 phosphorus / (P) ions / cm 2
About ion implantation.

【0013】続いて、図3(D)に示すように、上記フ
ォトレジスト11を除去し、通常の方法により高温でア
ニーリングを行い、NPNトランジスタのコレクタ拡散
領域13とVPNPトランジスタのコレクタ拡散領域1
4を形成した後、犠牲酸化膜8を通常の湿式エッチング
法で除去して10〜30nm程度のゲート酸化膜15を
成長させ、ポリシリコン層16を約30〜60nm程度
上記基板上に成膜させた後、NPNトランジスタのベー
ス領域を形成するために、上記基板上にフォトレジスト
17を塗布し、通常のフォトリソグラフィー工程でNP
Nトランジスタのベースになる領域に窓18を開いた
後、ホウ素(B)イオンを1×1014〜5×1014個/
cm2 程度イオン注入する。
Subsequently, as shown in FIG. 3D, the photoresist 11 is removed, annealing is performed at a high temperature by a usual method, and a collector diffusion region 13 of the NPN transistor and a collector diffusion region 1 of the VPNP transistor are formed.
4 is formed, the sacrificial oxide film 8 is removed by a normal wet etching method to grow a gate oxide film 15 of about 10 to 30 nm, and a polysilicon layer 16 is formed on the substrate to about 30 to 60 nm. After that, a photoresist 17 is applied on the substrate to form a base region of the NPN transistor, and NP is formed by a normal photolithography process.
After opening the window 18 in the base region of the N-transistor, 1 × 10 14 to 5 × 10 14 boron (B) ions /
Ion implantation of about cm 2 .

【0014】次いで、図4(A)に示すように、上記フ
ォトレジスト17を除去し、VPNPトランジスタのベ
ースを形成するために、上記基板上にフォトレジスト1
9を塗布した後、通常のフォトリソグラフィー工程でV
PNPトランジスタのベースになる領域に窓20を形成
した後、リン(P)イオンを1×1014〜7×1014
/cm2 程度イオンに注入する。これらのホウ素および
リンの注入工程はいずれの順序で行っても良い。
Next, as shown in FIG. 4A, the photoresist 17 is removed and the photoresist 1 is formed on the substrate to form the base of the VPNP transistor.
After applying 9, V in a normal photolithography process
After forming the window 20 in the region that will be the base of the PNP transistor, phosphorus (P) ions are implanted into the ions at about 1 × 10 14 to 7 × 10 14 ions / cm 2 . These steps of implanting boron and phosphorus may be performed in any order.

【0015】次に、図4(B)に示すように、上記フォ
トレジスト19を除去し、通常の高温アニーリングを行
い、NPNトランジスタの真性ベース拡散領域21とV
PNPトランジスタの真性ベース拡散領域22を形成し
た後、上記基板上にフォトレジスト23を塗布し、NP
Nトランジスタの拡散領域とVPNPトランジスタの拡
散領域になる領域に窓を形成した後、通常のフォトリソ
グラフィー法で上記ポリシリコン層16とゲート酸化膜
15を除去してNPNトランジスタの拡散領域24とV
PNPトランジスタの拡散領域25を形成する。
Next, as shown in FIG. 4 (B), the photoresist 19 is removed, and normal high temperature annealing is performed to remove the intrinsic base diffusion region 21 and V of the NPN transistor.
After forming the intrinsic base diffusion region 22 of the PNP transistor, a photoresist 23 is applied on the substrate to form NP.
After forming windows in the diffusion region of the N-transistor and the diffusion region of the VPNP transistor, the polysilicon layer 16 and the gate oxide film 15 are removed by a normal photolithography method to remove the diffusion region 24 and V of the NPN transistor.
A diffusion region 25 of the PNP transistor is formed.

【0016】続いて、図4(C)に示すように、上記基
板上のフォトレジスト23を除去した後、200〜40
0nm程度の厚さのポリシリコン層26を成膜し、砒素
(As)イオンを6×1015〜1×1016個/cm2
度イオン注入する。
Subsequently, as shown in FIG. 4C, after removing the photoresist 23 on the substrate, 200 to 40 are formed.
A polysilicon layer 26 having a thickness of about 0 nm is formed, and arsenic (As) ions are ion-implanted at about 6 × 10 15 to 1 × 10 16 ions / cm 2 .

【0017】次いで、図4(D)に示すように、上記基
板上に通常のCVD法でWSi2 膜27を100〜20
0nm程度成膜した後、同様の方法で酸化膜28を20
0〜4000nm程度成膜し、通常のフォトリソグラフ
ィー法で上記酸化膜28、WSi2 膜27、ポリシリコ
ン層16、26及びゲート酸化膜15を除去してnチャ
ンネルMOSトランジスタのゲート29、pチャンネル
MOSトランジスタのゲート30、NPNトランジスタ
のエミッタ領域31とコレクタ領域32、VPNPトラ
ンジスタのベース領域33を形成する。
Next, as shown in FIG. 4D, a WSi 2 film 27 of 100 to 20 is formed on the substrate by a normal CVD method.
After forming a film having a thickness of about 0 nm, the oxide film 28 is formed by a similar method.
The oxide film 28, the WSi 2 film 27, the polysilicon layers 16 and 26, and the gate oxide film 15 are removed by a normal photolithography method to form a film having a thickness of 0 to 4000 nm, and the gate 29 of the n-channel MOS transistor and the p-channel MOS transistor are removed. The gate 30 of the transistor, the emitter region 31 and the collector region 32 of the NPN transistor, and the base region 33 of the VPNP transistor are formed.

【0018】次いで、図5(A)に示すように、上記基
板上に通常の方法でフォトレジスト34を塗布し、フォ
トレジスト34の所定の領域を除去して窓35、35a
同時に形成し、上記窓35、35aを通じて露出された
nチャンネルMOSトランジスタのソース、ドレイン形
成領域とNPNトランジスタの真性ベースの拡散領域2
1にそれぞれリン(P)をイオン注入して低濃度ドープ
ドレイン(LDD;Lightly Doped Dr
ain)構造の低濃度のn型シリコン層を形成する。
Next, as shown in FIG. 5 (A), a photoresist 34 is applied on the substrate by a usual method, and a predetermined region of the photoresist 34 is removed to remove the windows 35, 35a.
Source and drain forming regions of the n-channel MOS transistor, which are formed at the same time and exposed through the windows 35 and 35a, and an intrinsic base diffusion region 2 of the NPN transistor.
1 to each of which phosphorus (P) is ion-implanted to form a lightly-doped drain (LDD; Lightly Doped Dr).
A low concentration n-type silicon layer having an ain structure is formed.

【0019】次いで、図5(B)に示すように、上記フ
ォトレジスト34を除去してp型LDD構造を形成する
ために上記基板上にフォトレジスト36を塗布した値、
フォトレジスト36の所定の領域を除去して窓37を形
成し、上記窓37を通じて露出されたpチャンネルMO
Sトランジスタのシリコン領域にホウ素(B)イオンや
BF 2 + イオンをイオン注入する。
Next, as shown in FIG. 5B, a value obtained by applying the photoresist 36 on the substrate to remove the photoresist 34 and form a p-type LDD structure,
A predetermined area of the photoresist 36 is removed to form a window 37, and the p-channel MO exposed through the window 37 is formed.
Boron (B) ions and BF 2 + ions are implanted into the silicon region of the S transistor.

【0020】次いで、図5(C)に示すように、上記フ
ォトレジスト36を除去し、通常のCVD方法で、酸化
膜を300〜700nm程度成膜した後、反応性イオン
エッチング法で上記成膜した酸化膜を異方性エッチング
して酸化物側壁38を形成することにより、nチャンネ
ルMOSトランジスタのゲート29とエミッタ領域31
のポリシリコン層16、26の側壁を覆うようにして窓
35、35aを通じてイオン注入された低濃度のn型シ
リコン層の所定の領域を酸化物側壁38で覆うようにす
る。
Next, as shown in FIG. 5C, the photoresist 36 is removed, an oxide film is formed to a thickness of about 300 to 700 nm by a normal CVD method, and then the above-mentioned film is formed by a reactive ion etching method. By anisotropically etching the formed oxide film to form the oxide sidewall 38, the gate 29 and the emitter region 31 of the n-channel MOS transistor are formed.
The sidewalls of the polysilicon layers 16 and 26 are covered with the oxide sidewalls 38 to cover predetermined regions of the low-concentration n-type silicon layer ion-implanted through the windows 35 and 35a.

【0021】その後、図5(D)に示すように、フォト
レジスト39を塗布し、上記フォトレジスト39の所定
の領域を除去して窓40を形成した後、nチャンネルM
OSトランジスタのソースとドレインを形成するため
に、n型不純物である砒素(As)イオンを1×1015
〜9×1015個/cm2 程度イオン注入する。
Thereafter, as shown in FIG. 5D, a photoresist 39 is applied, a predetermined region of the photoresist 39 is removed to form a window 40, and then an n-channel M is formed.
Arsenic (As) ions, which are n-type impurities, are added in an amount of 1 × 10 15 to form the source and drain of the OS transistor.
Ion implantation is performed at about 9 × 10 15 ions / cm 2 .

【0022】続いて、図6(A)に示すように、上記フ
ォトレジスト39を除去し、フォトレジスト41を塗布
した後、上記フォトレジスト41の所定の領域を除去し
て窓42〜窓45を形成し、pチャンネルMOSトラン
ジスタのソース/ドレイン、VPNPトランジスタのエ
ミッタ/コレクタとNPNトランジスタの外因性(ex
trinsic)ベースを形成するために、ホウ素
(B)イオンを1×1015〜5×1015個/cm2 程度
イオン注入する。
Subsequently, as shown in FIG. 6A, the photoresist 39 is removed, the photoresist 41 is applied, and then a predetermined region of the photoresist 41 is removed to form the windows 42 to 45. The p-channel MOS transistor source / drain, the VPNP transistor emitter / collector, and the NPN transistor extrinsic (ex
In order to form a (trinsic) base, boron (B) ions are ion-implanted at about 1 × 10 15 to 5 × 10 15 ions / cm 2 .

【0023】続いて、図6(B)に示すように、上記フ
ォトレジスト41を除去し、通常のCVD法で酸化膜4
6を200〜700nm程度の厚さで成膜し、通常の高
温アニーリングを行い、上記イオン注入された窓を拡散
させてnチャンネルMOSトランジスタのソース拡散領
域47とドレイン拡散領域47a、pチャンネルMOS
トランジスタのソース拡散領域48とドレイン拡散領域
48a、VPNPトランジスタの外因性ベース拡散領域
49とエミッタ拡散領域49a、NPNトランジスタの
外因性ベース拡散領域50とエミッタ拡散領域50a、
50a’を形成すると共に、VPNPトランジスタのベ
ース電極の高濃度の多結晶シリコン層26を拡散ソース
として拡散してVPNPトランジスタの外因性ベース拡
散領域49を形成し、同時に、NPNトランジスタのエ
ミッタ領域の高濃度の多結晶シリコン層26を拡散ソー
スとして拡散し、酸化物側壁38で覆われているn−型
シリコン層を拡散してNPNトランジスタのn−型エミ
ッタ拡散領域50a’を有するLGE構造を形成する。
Subsequently, as shown in FIG. 6B, the photoresist 41 is removed, and the oxide film 4 is formed by a normal CVD method.
6 is deposited to a thickness of about 200 to 700 nm, and ordinary high temperature annealing is performed to diffuse the ion-implanted window to form the source diffusion region 47 and the drain diffusion region 47a of the n-channel MOS transistor and the p-channel MOS transistor.
Source diffusion region 48 and drain diffusion region 48a of the transistor, extrinsic base diffusion region 49 and emitter diffusion region 49a of the VPNP transistor, extrinsic base diffusion region 50 and emitter diffusion region 50a of the NPN transistor,
50a 'and at the same time, the high-concentration polycrystalline silicon layer 26 of the base electrode of the VPNP transistor is diffused as a diffusion source to form an extrinsic base diffusion region 49 of the VPNP transistor, and at the same time, a high concentration of the emitter region of the NPN transistor is formed. The polycrystalline silicon layer 26 having a high concentration is diffused as a diffusion source, and the n-type silicon layer covered with the oxide side wall 38 is diffused to form an LGE structure having an n-type emitter diffusion region 50a 'of an NPN transistor. ..

【0024】次いで、通常のコンタクト工程と金属電極
配線工程でソース電極S、ドレイン電極D、エミッタ電
極E、ベース電極Bとコレクタ電極Gを形成することに
より製造工程が完了して、図7に示すBiCMOS素子
が得られる。
Next, the manufacturing process is completed by forming the source electrode S, the drain electrode D, the emitter electrode E, the base electrode B and the collector electrode G by the normal contact process and the metal electrode wiring process, and the manufacturing process is completed, as shown in FIG. A BiCMOS device is obtained.

【0025】[0025]

【発明の効果】上記図3A乃至図3Oに示すように本発
明の方法によりBiCMOS素子を製造すると、エミッ
タの濃度分布を横方向に勾配をもたせて形成したLGE
構造のNPNトランジスタとVPNPトランジスタのエ
ミッタ/ベースがポリシリコン層で自己整合されるの
で、エミッタとベースとの間の逆方向バイアスによるh
FE劣化現象が防止されてBiCMOS素子の寿命が長く
なる利点がある。
As shown in FIGS. 3A to 3O, when a BiCMOS device is manufactured by the method of the present invention, the LGE formed by grading the concentration distribution of the emitter in the lateral direction.
Since the emitter / base of the NPN transistor and the VPNP transistor of the structure are self-aligned with the polysilicon layer, h due to the reverse bias between the emitter and the base.
There is an advantage that the FE deterioration phenomenon is prevented and the life of the BiCMOS device is extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のBiCMOS素子の断面図である。FIG. 1 is a cross-sectional view of a conventional BiCMOS device.

【図2】LGE構造のトランジスタの断面図である。FIG. 2 is a cross-sectional view of a transistor having an LGE structure.

【図3】本発明によるBiCMOS素子の製造工程の一
例を示す図である。
FIG. 3 is a diagram showing an example of a manufacturing process of a BiCMOS device according to the present invention.

【図4】本発明によるBiCMOS素子の製造工程の一
例を示す図である。
FIG. 4 is a diagram showing an example of a manufacturing process of a BiCMOS device according to the present invention.

【図5】本発明によるBiCMOS素子の製造工程の一
例を示す図である。
FIG. 5 is a diagram showing an example of a manufacturing process of a BiCMOS device according to the present invention.

【図6】本発明によるBiCMOS素子の製造工程の一
例を示す図である。
FIG. 6 is a diagram showing an example of a manufacturing process of a BiCMOS device according to the present invention.

【図7】本発明の方法によって得られたBiCMOS素
子の一例を示す図である。
FIG. 7 is a diagram showing an example of a BiCMOS device obtained by the method of the present invention.

【符号の説明】[Explanation of symbols]

1…基板、2…p+型ボトム層、3…n+型ボトム層、
4…pウェル、5…nウェル、6…チャンネルストップ
領域、7…選択的酸化膜、8…犠牲酸化膜、15…ゲー
ト酸化膜、28,46…酸化膜、9,11,17,1
9,23,34,36,39,41…フォトレジスト、
10,12,18,20,35,35a,37,40,
42,43,44,45…窓、13,14…コレクタ拡
散領域、21,22…真性ベース拡散領域、24,25
…拡散領域、16,26…ポリシリコン層、27…WS
2 膜、29,30…ゲート、31…エミッタ領域、3
2…コレクタ領域、33…ベース領域、38…酸化物側
壁、47,48…ソース拡散領域、47a,48a…ド
レイン拡散領域、49、50…外因性ベース拡散領域、
49a50a,50a’…エミッタ拡散領域、S,D,
E,B,C…電極、60…埋没層
1 ... Substrate, 2 ... P + type bottom layer, 3 ... N + type bottom layer,
4 ... p-well, 5 ... n-well, 6 ... channel stop region, 7 ... selective oxide film, 8 ... sacrificial oxide film, 15 ... gate oxide film, 28, 46 ... oxide film, 9, 11, 17, 1
9, 23, 34, 36, 39, 41 ... Photoresist,
10, 12, 18, 20, 35, 35a, 37, 40,
42, 43, 44, 45 ... Window, 13, 14 ... Collector diffusion region, 21, 22 ... Intrinsic base diffusion region, 24, 25
... diffusion region, 16, 26 ... polysilicon layer, 27 ... WS
i 2 film, 29, 30 ... Gate, 31 ... Emitter region, 3
2 ... Collector region, 33 ... Base region, 38 ... Oxide side wall, 47, 48 ... Source diffusion region, 47a, 48a ... Drain diffusion region, 49, 50 ... Extrinsic base diffusion region,
49a 50a, 50a '... Emitter diffusion region, S, D,
E, B, C ... Electrode, 60 ... Buried layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上にNPN型およびVPNP
型のバイポーラトランジスタとCMOSトランジスタを
形成したBiCMOS素子の製造方法において、NPN
型トランジスタのn+エミッタ領域拡散源であるポリシ
リコンとエミッタの側壁に形成した酸化物側壁によって
p+ベース領域を自己整合すると共に、LGE構造のN
PN型トランジスタのエミッタを形成し、VPNP型ト
ランジスタのp+エミッタ領域はn+ベース領域の拡散
源であるポリシリコンとベースの側壁に形成した酸化物
側壁によって自己整合して形成することを特徴とするL
GE構造を有するBiCMOS素子の製造方法。
1. An NPN type and a VPNP on a semiconductor substrate.
Method for manufacturing a BiCMOS device including a bipolar transistor and a CMOS transistor
Of the n-type emitter of the n-type transistor and the p + base region are self-aligned by the side wall of the oxide which is formed on the side wall of the emitter and polysilicon which is the diffusion source of the n + emitter region.
The emitter of the PN-type transistor is formed, and the p + emitter region of the VPNP-type transistor is formed in a self-aligned manner by polysilicon as a diffusion source of the n + base region and an oxide sidewall formed on the sidewall of the base.
A method for manufacturing a BiCMOS device having a GE structure.
【請求項2】 バイポーラNPNトランジスタのエミッ
タ領域に、CMOSトランジスタ用の低濃度ドープドレ
イン(LDD)の形成と同時に低濃度ドープドレイン領
域を形成し、得られた低濃度ドープドレイン領域からn
+型エミッタ拡散領域とn−型エミッタ拡散領域を形成
して、NPNトランジスタのエミッタをLGE構造とす
ることを特徴とする請求項1記載のLGE構造を有する
BiCMOS素子の製造方法。
2. A lightly doped drain region (LDD) for a CMOS transistor is formed at the same time as a lightly doped drain region (LDD) in the emitter region of a bipolar NPN transistor, and n is formed from the obtained lightly doped drain region.
2. The method for manufacturing a BiCMOS device having an LGE structure according to claim 1, wherein the + -type emitter diffusion region and the n-type emitter diffusion region are formed so that the emitter of the NPN transistor has the LGE structure.
JP4138142A 1991-05-30 1992-05-29 Manufacture of bicmos element having lge structure Pending JPH05152519A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019910008957A KR940005726B1 (en) 1991-05-30 1991-05-30 Npn transistor of bicmos device and making method thereof
KR1991-8957 1991-05-30

Publications (1)

Publication Number Publication Date
JPH05152519A true JPH05152519A (en) 1993-06-18

Family

ID=19315220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4138142A Pending JPH05152519A (en) 1991-05-30 1992-05-29 Manufacture of bicmos element having lge structure

Country Status (2)

Country Link
JP (1) JPH05152519A (en)
KR (1) KR940005726B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197967A (en) * 1984-10-19 1986-05-16 Hitachi Ltd Semiconductor device and manufacture thereof
JPS63311753A (en) * 1987-06-15 1988-12-20 Sanyo Electric Co Ltd Manufacture of semiconductor integrated circuit
JPH02272758A (en) * 1989-03-06 1990-11-07 Internatl Business Mach Corp <Ibm> Transistor and its manufacture
JPH02283032A (en) * 1989-04-24 1990-11-20 Nec Corp Vertical bipolar transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197967A (en) * 1984-10-19 1986-05-16 Hitachi Ltd Semiconductor device and manufacture thereof
JPS63311753A (en) * 1987-06-15 1988-12-20 Sanyo Electric Co Ltd Manufacture of semiconductor integrated circuit
JPH02272758A (en) * 1989-03-06 1990-11-07 Internatl Business Mach Corp <Ibm> Transistor and its manufacture
JPH02283032A (en) * 1989-04-24 1990-11-20 Nec Corp Vertical bipolar transistor

Also Published As

Publication number Publication date
KR920022508A (en) 1992-12-19
KR940005726B1 (en) 1994-06-23

Similar Documents

Publication Publication Date Title
US5424572A (en) Spacer formation in a semiconductor structure
US6284581B1 (en) Integration of bipolar and CMOS devices for sub-0.1 micrometer transistors
US5001073A (en) Method for making bipolar/CMOS IC with isolated vertical PNP
JPH058583B2 (en)
JPH0315346B2 (en)
JPH04226066A (en) Bi-cmos device and its manufacture
JP3354145B2 (en) Bipolar transistor and its manufacturing method
JP3329640B2 (en) Method for manufacturing semiconductor device
US5389553A (en) Methods for fabrication of transistors
JPH04226064A (en) Interconnection body for semiconductor device use its manufacture
JPH0855924A (en) Step of processing bicmos including surface channel pmos transistor
US5208169A (en) Method of forming high voltage bipolar transistor for a BICMOS integrated circuit
US4983531A (en) Method of fabricating a single polysilicon bipolar transistor which is compatible with a method of fabricating CMOS transistors
US5348896A (en) Method for fabricating a BiCMOS device
JPH0645343A (en) Semiconductor device provided with borosilicate glass spacer and its manufacture
US5150184A (en) Method for forming emitters in a BiCMOS process
US5298440A (en) Method of fabrication of transistor device with increased breakdown voltage
JPH0348458A (en) Bi-cmos integrated circuit and manufacture thereof
US5227654A (en) Semiconductor device with improved collector structure
JPH0148661B2 (en)
JPH04348065A (en) Semiconductor device and its manufacture
JP2575876B2 (en) Semiconductor device
JP3532770B2 (en) Semiconductor device and manufacturing method thereof
US6337252B1 (en) Semiconductor device manufacturing method
JP3097095B2 (en) Method for manufacturing semiconductor device