JPH0515247B2 - - Google Patents

Info

Publication number
JPH0515247B2
JPH0515247B2 JP5163187A JP5163187A JPH0515247B2 JP H0515247 B2 JPH0515247 B2 JP H0515247B2 JP 5163187 A JP5163187 A JP 5163187A JP 5163187 A JP5163187 A JP 5163187A JP H0515247 B2 JPH0515247 B2 JP H0515247B2
Authority
JP
Japan
Prior art keywords
light
diffraction grating
modulation element
refractive index
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5163187A
Other languages
Japanese (ja)
Other versions
JPS63218920A (en
Inventor
Akihiko Nagano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5163187A priority Critical patent/JPS63218920A/en
Priority to US07/035,017 priority patent/US4856869A/en
Publication of JPS63218920A publication Critical patent/JPS63218920A/en
Publication of JPH0515247B2 publication Critical patent/JPH0515247B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光変調素子とそれを用いた観察装置及
び投影型表示装置に関し、特に位相型の回折格子
と液晶等の屈折率可変物質を利用して、光の通過
や遮光等の光変調を行つた、例えばカメラ等のフ
アインダー系における表示用やライトバルブ用に
好適な光変調素子に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a light modulation element, an observation device using the same, and a projection type display device, and in particular uses a phase-type diffraction grating and a variable refractive index material such as liquid crystal. The present invention relates to a light modulation element that performs light modulation such as passing light and blocking light, and is suitable for use in displays and light valves in viewfinder systems such as cameras.

(従来の技術) 従来から良く知られている光変調素子として
は、互いに偏光方向が直交する様に配した一対の
偏光板と、この一対の偏光板間に配され一対の透
明基板と相対する基板面に互いに直交する配向処
理を施して液晶を封入した素子とから成り、この
液晶の配向状態をねじれた状態と基板面に垂直に
向いた状態との間でスイツチングを行ない入射光
の変調をする所謂TN(ツウイストネマツチク)
型の液晶を用いた表示素子がある。
(Prior Art) A conventionally well-known light modulation element includes a pair of polarizing plates disposed so that the polarization directions are perpendicular to each other, and a pair of transparent substrates disposed between the pair of polarizing plates facing each other. It consists of an element in which liquid crystal is sealed with the substrate surface subjected to alignment treatment perpendicular to each other, and the alignment state of this liquid crystal is switched between a twisted state and a state perpendicular to the substrate surface to modulate the incident light. The so-called TN
There is a display element using a type of liquid crystal.

この種の表示素子は構成が簡便で、駆動が容易
なことから多岐に亘り利用されているが、2枚の
偏光板を利用して光束の透過及び遮断を行なう為
に光透過時の透過率が悪く光束利用効率の面から
は好ましい光変調素子とは言えなかつた。
This type of display element has a simple structure and is easy to drive, so it is used in a wide variety of applications. However, since it uses two polarizing plates to transmit and block the light beam, the transmittance when transmitting light is low. It could not be said to be a desirable light modulation element from the viewpoint of luminous flux utilization efficiency.

又、液晶を利用した同種の表示素子として、液
晶分子に色素を混入させて用いる所謂ゲスト・ホ
ストモードの液晶素子があるが、この表示素子に
於ても色素が介在する為に消光時の透過率は良く
ても70%程度であつた。
In addition, as a similar type of display element using liquid crystal, there is a so-called guest-host mode liquid crystal element that uses a dye mixed into liquid crystal molecules, but since the dye is present in this display element as well, the transmission during extinction decreases. The rate was at best around 70%.

一方、特公昭53−3928号公報やUSP4251137等
に於て反射型や透過型の位相型の回折格子と液晶
とを組合せた表示素子や可変減色フイルター素子
が開示されている。これらで開示されている素子
は光束利用効率が高くカメラのフアインダー内の
表示素子、あるいはライトバルブ等としては有用
である。
On the other hand, Japanese Patent Publication No. 53-3928 and US Pat. No. 4,251,137 disclose display elements and variable subtractive color filter elements in which a reflection type or transmission type phase type diffraction grating is combined with a liquid crystal. The elements disclosed in these documents have high luminous flux utilization efficiency and are useful as display elements in camera viewfinders, light valves, and the like.

しかしながら、この種の光変調素子を例えばカ
メラのフアインダー系の焦点面近傍に配置し、輝
度の高い被写体(例えば水銀灯等)をフアインダ
ー系を介して観察した場合、輝度の高い被写体か
らの光が、表示を行つている回折格子部の一部分
に入射すると同一の回折格子部の他の領域に虹状
の回折像が発生し、表示素子としての品位を低下
させる欠点があつた。
However, when this type of light modulation element is placed, for example, near the focal plane of a camera's finder system, and a highly bright object (such as a mercury lamp) is observed through the finder system, the light from the bright object becomes When the light is incident on a portion of the diffraction grating section that is displaying, a rainbow-like diffraction image is generated in other regions of the same diffraction grating section, which has the disadvantage of degrading the quality of the display element.

(発明が解決しようとする問題点) 本発明は回折格子を利用し、光の通過や遮光等
を行つて表示を行う際、表示パターンとしての回
折格子部に高輝度物体からの光が入射しても該回
折格子部の表示パターン内に虹状の回折像が生じ
ないようにした高品位の光変調素子とそれを用い
た観察装置及び投影型表示装置の提供を目的とす
る。
(Problems to be Solved by the Invention) When the present invention uses a diffraction grating to perform display by transmitting or blocking light, light from a high-luminance object is incident on the diffraction grating portion as a display pattern. The object of the present invention is to provide a high-quality light modulation element that prevents a rainbow-like diffraction image from occurring in the display pattern of the diffraction grating section, and an observation device and a projection type display device using the same.

(問題点を解決するための手段) 回折格子部を有する光変調素子において、前記
回折格子部を具備する基板の厚さをt、屈折率を
nとしたときに、前記回折格子部の格子線に垂直
な方向の長さwを w<4・t・tan{sin-1(1/n)} とすることを特徴としている。
(Means for Solving the Problem) In an optical modulation element having a diffraction grating section, when the thickness of the substrate provided with the diffraction grating section is t and the refractive index is n, the grating lines of the diffraction grating section are The length w in the direction perpendicular to is set to w<4·t·tan {sin −1 (1/n)}.

(実施例) 第1図は本発明に係る光変調素子10の基本構
成の説明図である。図中1は屈折率可変物質で例
えば液晶等から成つている。2は使用波長に対し
て透明な物質から成るレリープ型の回折格子、3
は透明電極、4は透明光学部材から成る透明基
板、5は任意の偏光特性を有する入射光、6a及
び6bは各々入射光5のうちの互いに直交する偏
光成分であり、6aは紙面に垂直方向の偏光成
分、6bは偏光成分6aと直交した紙面に平行方
向の偏光成分を示している。
(Example) FIG. 1 is an explanatory diagram of the basic configuration of a light modulation element 10 according to the present invention. In the figure, reference numeral 1 denotes a refractive index variable material, which is made of, for example, liquid crystal. 2 is a relief-type diffraction grating made of a material that is transparent to the wavelength used; 3
4 is a transparent electrode, 4 is a transparent substrate made of a transparent optical member, 5 is incident light having arbitrary polarization characteristics, 6a and 6b are mutually orthogonal polarization components of the incident light 5, and 6a is a direction perpendicular to the plane of the paper. The polarized light component 6b indicates a polarized light component in a direction parallel to the plane of the paper orthogonal to the polarized light component 6a.

本光変調素子10は1対の透明基板4の対向す
る面上に透明電極3を形成して、1対の透明基板
4の一方の透明電極3上に透明物質から成るレリ
ーフ型の回折格子2を設け、屈折率可変物質1を
回折格子2の溝部(凹部)に充填している。そし
て透明電極3を介して電界をを印加することによ
り屈折率可変物質1の屈折率を変化させている。
This light modulation element 10 has transparent electrodes 3 formed on opposing surfaces of a pair of transparent substrates 4, and a relief-type diffraction grating 2 made of a transparent material on one of the transparent electrodes 3 of the pair of transparent substrates 4. is provided, and the grooves (concavities) of the diffraction grating 2 are filled with the refractive index variable material 1. Then, by applying an electric field through the transparent electrode 3, the refractive index of the variable refractive index material 1 is changed.

次に第1図に示す光変調素子10の動作原理を
屈折率可変物質1として液晶を用いた場合を例に
とり説明する。
Next, the principle of operation of the light modulation element 10 shown in FIG. 1 will be explained using an example in which liquid crystal is used as the variable refractive index material 1.

今第1図において電界が印加されていない、所
謂静的状態において液晶1は回折格子2の溝方
向、即ち紙面と垂直方向に配向され、ホモジニア
ス配向の状態を維持しているものとする。この静
的状態の光変調素子10に入射する入射光5の偏
光成分6a,6bの内、液晶1の配向方向と直交
する成分である偏光成分6bは液晶1の常屈折率
npを感じ、又液晶1の配向方向と平行な成分であ
る偏光成分6aは液晶1の異常屈折率neを感じ
る。ここで回折格子2を成す物質の屈折率をng
入射光5の波長をλ、回折格子2の厚さをTとす
れば回折格子が矩形状の場合、入射光5の偏光成
分6a,6bの各々に対する零次の透過回折光の
回折効率ηpは概略次式(1)で表わされる。
In FIG. 1, it is assumed that in a so-called static state in which no electric field is applied, the liquid crystal 1 is oriented in the direction of the grooves of the diffraction grating 2, that is, in the direction perpendicular to the plane of the paper, and maintains a homogeneous orientation state. Of the polarization components 6a and 6b of the incident light 5 that enters the light modulation element 10 in a static state, the polarization component 6b, which is a component perpendicular to the orientation direction of the liquid crystal 1, has an ordinary refractive index of the liquid crystal 1.
The polarized light component 6a , which is a component parallel to the alignment direction of the liquid crystal 1, senses the extraordinary refractive index n e of the liquid crystal 1. Here, the refractive index of the material forming the diffraction grating 2 is n g ,
If the wavelength of the incident light 5 is λ and the thickness of the diffraction grating 2 is T, then when the diffraction grating is rectangular, the diffraction efficiency of the zero-order transmitted diffracted light for each of the polarization components 6a and 6b of the incident light 5 is η p is roughly expressed by the following equation (1).

ηp1/2{1+cos(2π・Δn・T/λ)}……(1
) 但しΔnは回折格子2の屈折率ngと液晶1の屈
折率np〜neとの屈折率差であり、ホモジニアス配
向の状態では入射光5の偏光成分6aに対しては
Δn=|ne−ng|となり、又偏光成分6bに対し
てはΔn=|np−ng|となる。
η p 1/2 {1+cos(2π・Δn・T/λ)}……(1
) However, Δn is the refractive index difference between the refractive index n g of the diffraction grating 2 and the refractive index n p to ne of the liquid crystal 1 , and in the state of homogeneous alignment, for the polarization component 6a of the incident light 5, Δn=| n e −n g |, and for the polarization component 6b, Δn=|n p −n g |.

従つて(1)式よりΔn=0のとき、即ちne=ng
はnp=ngのときに零次透過回折光の回折効率ηoは
ηp=1となる。
Therefore, from equation (1), when Δn=0, that is, when n e =n g or n p =n g , the diffraction efficiency η o of the zero-order transmitted diffracted light becomes η p =1.

又、ΔnT=(m+1/2)λ、(m=0、12、
3、……)のときに回折効率ηpはηp=0となる。
Also, ΔnT=(m+1/2)λ, (m=0, 12,
3,...), the diffraction efficiency η p becomes η p =0.

次に透明電極3を介して液晶1に電界を印加す
ると、液晶1の配向方向(光学軸方向)が徐々に
変化する。このとき入射光5における偏光成分6
bは電界の印加に無関係に常時液晶1の常屈折率
npを感じる。
Next, when an electric field is applied to the liquid crystal 1 through the transparent electrode 3, the alignment direction (optical axis direction) of the liquid crystal 1 gradually changes. At this time, the polarization component 6 in the incident light 5
b is the ordinary refractive index of liquid crystal 1 regardless of the application of an electric field.
I feel n p .

これに対して偏光成分6aは電界の印加量に伴
つて液晶1の異常屈折率neと常屈折率npとを所定
の比率で合成した合成屈折率n〓を感じる。ここで
合成屈折率n〓は液晶1の配向方向の変化に伴つて
変化する。更に電界の印加量を増加させると液晶
1は基板4(透明電極3)に垂直配向されホメオ
トロピツク配向の状態となり、入射光5の偏光成
分6a,6bは共に液晶1の常屈折率npを感じ飽
和する。このような状態においても入射光5は(1)
式に従つて変調される。
On the other hand, the polarized light component 6a senses a composite refractive index n〓, which is a combination of the extraordinary refractive index n e and the ordinary refractive index n p of the liquid crystal 1 at a predetermined ratio, as the amount of applied electric field increases. Here, the composite refractive index n〓 changes as the alignment direction of the liquid crystal 1 changes. When the amount of applied electric field is further increased, the liquid crystal 1 is aligned perpendicularly to the substrate 4 (transparent electrode 3) and becomes in a homeotropic alignment state, and the polarized light components 6a and 6b of the incident light 5 both sense the ordinary refractive index n p of the liquid crystal 1. saturate. Even in this state, the incident light 5 is (1)
Modulated according to Eq.

第2図は光変調素子10をフアインダー系の焦
点面近傍に配置し、高輝度物体をフアインダー系
を介して観察したときに光変調領域、即ち回折格
子部に虹状の回折像が発生し、表示素子としての
性能を低下させる要因の説明図である。
FIG. 2 shows that the light modulation element 10 is placed near the focal plane of the finder system, and when a high-luminance object is observed through the finder system, a rainbow-shaped diffraction image is generated in the light modulation region, that is, the diffraction grating. FIG. 2 is an explanatory diagram of factors that reduce the performance of a display element.

同図において第1図で示した要素と同一要素に
は同符番を付してあり、又透明基板4と回折格子
2との間に配置している透明電極は透明基板4に
比べて極めて薄い為図示を省略してある。
In this figure, the same elements as those shown in FIG. Because it is thin, illustration is omitted.

同図において回折格子2の回折格子部2aに入
射した入射光5は液晶1と回折格子2との屈折率
差によつて光変調され、回折格子2の格子線方向
と直交する面内に複数の次数の回折光を生じる。
これらの回折光のうち零次や低次数の回折角が比
較的小さい回折光7はそのまま透明基板4より出
射するが、一部の高次の回折光は透明基板4と空
気との境界面で全反射し、再び回折格子部2aに
入射する場合がある。回折格子部2aに再度入射
した光は再度回折され、その一部の回折光7′は、
ある回折角度φをもつて透明基板4外に出射し、
それが観察系の入射瞳にはいると像として認識さ
れる。この時、回折角は波長により異なるため回
折格子部2aへの再入射位置も波長により異なり
その位置のズレが虹として認識される。
In the same figure, the incident light 5 that has entered the diffraction grating portion 2a of the diffraction grating 2 is optically modulated by the difference in refractive index between the liquid crystal 1 and the diffraction grating 2. generates diffracted light of order.
Among these diffracted lights, the zero-order and low-order diffraction lights 7 with relatively small diffraction angles are emitted as they are from the transparent substrate 4, but some high-order diffraction lights are emitted at the interface between the transparent substrate 4 and air. The light may be totally reflected and enter the diffraction grating section 2a again. The light that has entered the diffraction grating section 2a again is diffracted again, and a part of the diffracted light 7' is
It is emitted to the outside of the transparent substrate 4 with a certain diffraction angle φ,
When it enters the entrance pupil of the observation system, it is recognized as an image. At this time, since the diffraction angle differs depending on the wavelength, the re-incidence position on the diffraction grating section 2a also differs depending on the wavelength, and a deviation in the position is recognized as a rainbow.

そこで本実施例では回折格子部2aにおける格
子線の法線方向の幅を、入射光5が回折格子部2
aの略中央に入射したとし、このとき回折した回
折光が回折格子部2aの形成されていない他の
面、例えば透明基板4の空気と接する面で全反射
した後、回折格子部2aの他の領域に再度入射し
ない長さとなるようにして回折格子部2aからの
虹状の回折像の発生を防止している。
Therefore, in this embodiment, the width of the grating line in the normal direction of the diffraction grating part 2a is
It is assumed that the diffracted light is incident on approximately the center of a, and the diffracted light is totally reflected on another surface where the diffraction grating portion 2a is not formed, for example, the surface of the transparent substrate 4 that is in contact with air, and then The length is such that the light does not re-enter the region of , thereby preventing the generation of a rainbow-like diffraction image from the diffraction grating portion 2a.

第2図においては透明回折光を例にとり説明し
たが、反射回折光についても全く同様である。
In FIG. 2, transparent diffraction light was explained as an example, but the same applies to reflected diffraction light.

第3図は本発明に係る光変調素子10をカメラ
のフアインダー系の一部に適用したときの一実施
例の説明図である。同図において10は光変調素
子、31は跳ね上げミラー、32はピント板、3
3はコンデンサーレンズ、34はペンタプリズ
ム、35は接眼レンズである。不図示の撮影レン
ズを透過した光は跳ね上げミラー31によりフア
インダー光学系に導かれ、ピント板32のピント
面上に結像する。ピント板32から出射する光は
撮影レンズのFナンバー及びマツトの拡散特性に
応じた強度で拡散し、その一部がコンデンサーレ
ンズ33、ペンタプリズム34、接眼レンズ35
を介して人間の眼に到達する。ここで実際に眼に
入射する光は、眼の瞳径により制限を受けたもの
で一般に一眼レフカメラを例にとつてみるとピン
ト板32上で光軸を中心に通常開口角約3°の範囲
内で出射した光となる。
FIG. 3 is an explanatory diagram of an embodiment in which the light modulation element 10 according to the present invention is applied to a part of a viewfinder system of a camera. In the figure, 10 is a light modulation element, 31 is a flip-up mirror, 32 is a focusing plate, and 3
3 is a condenser lens, 34 is a pentaprism, and 35 is an eyepiece lens. The light transmitted through a photographing lens (not shown) is guided to a finder optical system by a flip-up mirror 31, and is imaged on the focusing surface of a focusing plate 32. The light emitted from the focusing plate 32 is diffused with an intensity according to the F number of the photographic lens and the diffusion characteristics of the lens, and a portion of the light is transmitted to the condenser lens 33, pentaprism 34, and eyepiece lens 35.
reaches the human eye through The light that actually enters the eye is limited by the pupil diameter of the eye, and in the case of a single-lens reflex camera, the light that actually enters the eye is normally set at an aperture angle of about 3° centered on the optical axis on the focusing plate 32. The light is emitted within the range.

本実施例における光変調素子10はピント板3
2のピント近傍に配置され、不図示の駆動装置に
より表示、非表示状態が選択される。非表示状態
では光変調素子10は屈折率の一様な透明基板と
見なされ、ピント面上に結像した被写体像は変調
されずに、コンデンサーレンズ33、ペンタプリ
ズム34、接眼レンズ35を介して眼の網膜上
に、そのまま結像される。表示状態では光変調素
子10に入射する光の一部は回折格子部からなる
表示パターン部分において回折される。回折され
た光のうち回折角の大きな成分は眼の視野外にと
ばされるために被写体光の一部が減光されたよう
に視認され、被写体像と重なつた表示がなされう
る。
The light modulation element 10 in this embodiment is the focusing plate 3
The display/non-display state is selected by a driving device (not shown). In the non-display state, the light modulation element 10 is regarded as a transparent substrate with a uniform refractive index, and the subject image formed on the focal plane is not modulated but is transmitted through the condenser lens 33, pentaprism 34, and eyepiece 35. The image is directly formed on the retina of the eye. In the display state, a portion of the light incident on the light modulation element 10 is diffracted at the display pattern portion made up of the diffraction grating portion. A component of the diffracted light with a large diffraction angle is blown out of the field of view of the eye, so that a portion of the subject light is visually perceived as being attenuated, and the display may overlap with the subject image.

第4図は第3図で用いた光変調素子10の平面
図である。同図において4−1,4−2,4−
3,4−4は各々回折格子部あり、L41,L4
2は各々回折格子部の格子線の法線方向の幅であ
る。各回折格子部における格子部の方向は領域の
長手方向と平行になつている。
FIG. 4 is a plan view of the light modulation element 10 used in FIG. 3. In the same figure, 4-1, 4-2, 4-
3, 4-4 each have a diffraction grating section, L41, L4
2 is the width in the normal direction of the grating lines of each diffraction grating portion. The direction of the grating portion in each diffraction grating portion is parallel to the longitudinal direction of the region.

同図に示す光変調素子10を第3図に示すフア
インダー系の焦点面近傍に配置し、光変調素子1
0を光変調すればフアインダー系の視野内で回折
格子部2−1,2−2,2−3,2−4が、かげ
りとなり矩形模様の像となり、被写体像と重なつ
て観察され表示素子として機能するようになる。
The light modulation element 10 shown in the same figure is arranged near the focal plane of the finder system shown in FIG.
If 0 is optically modulated, the diffraction grating parts 2-1, 2-2, 2-3, and 2-4 will be shaded within the field of view of the finder system, forming a rectangular pattern image, which will be observed overlapping the subject image and displayed on the display element. It comes to function as.

第5図は第4図の光変調素子10の回折格子部
4−4の一部に入射した入射光の回折状態を示す
断面図である。同図において第1図に示す要素と
同一要素には同符番を付してある。又透明基板4
と回折格子2との間に配置している透明電極は非
常に薄いので省略している。
FIG. 5 is a cross-sectional view showing the diffraction state of incident light that has entered a part of the diffraction grating section 4-4 of the light modulation element 10 of FIG. In this figure, the same elements as those shown in FIG. 1 are given the same reference numerals. Also transparent substrate 4
The transparent electrode disposed between and the diffraction grating 2 is omitted because it is very thin.

第5図においてtは透明基板4の厚さ、w は回折格子部4−4の格子線の法線方向の幅、φ
は回折光の媒質中での回折角、1は入射光5の入
射位置から再回折による像、即ち虹の発生位置ま
での距離である。
In FIG. 5, t is the thickness of the transparent substrate 4, w is the width in the normal direction of the grating lines of the diffraction grating section 4-4, and φ
is the diffraction angle of the diffracted light in the medium, and 1 is the distance from the incident position of the incident light 5 to the re-diffraction image, that is, the position where the rainbow is generated.

光変調素子10に入射した入射光5は液晶1と
回折格子2との屈折率差により回折され回折格子
の格子方向の直交する面内に複数の次数の回折光
が発生する。回折光の回折角φが透明基板4と空
気との境界面での全反射条件(n・sin φ>1;
nは透明基板4の屈折率)を満足すると、全反射
し、このときの回折光が再度回折格子部に入射す
ると再回折し、その領域に虹状の回折像を発生さ
せる。このとき虹状の回折像の発生位置は回折角
φと透明基板4の厚さtの値で決まり、前述の記
号を用いると 1≒2・t・tanφ となる。
The incident light 5 entering the light modulation element 10 is diffracted due to the difference in refractive index between the liquid crystal 1 and the diffraction grating 2, and diffracted light of a plurality of orders is generated in a plane orthogonal to the grating direction of the diffraction grating. The diffraction angle φ of the diffracted light is the total reflection condition at the interface between the transparent substrate 4 and air (n・sin φ>1;
When n satisfies the refractive index of the transparent substrate 4), total reflection occurs, and when the diffracted light at this time enters the diffraction grating portion again, it is diffracted again, and a rainbow-shaped diffraction image is generated in that area. At this time, the position where the rainbow-shaped diffraction image is generated is determined by the diffraction angle φ and the thickness t of the transparent substrate 4, and using the above-mentioned symbol, 1≈2·t·tanφ.

ここで全反射した回折光の進行方向の距離1の
位置に回折格子部が存在しなければ虹状の回折像
は発生しない。即ち回折格子部の格子線の法線方
向の幅、所謂表示パターン幅が入射光の位置と虹
状の回折像が入射光の位置から最も近接して発生
する位置との距離より狭くなるようにすれば良
い。
If there is no diffraction grating section at a distance 1 in the traveling direction of the totally reflected diffracted light, a rainbow-shaped diffraction image will not be generated. In other words, the width in the normal direction of the grating lines of the diffraction grating section, the so-called display pattern width, is made narrower than the distance between the position of the incident light and the position where the rainbow-shaped diffraction image is generated closest to the position of the incident light. Just do it.

ところで光変調素子10はカメラのフアインダ
ー系に適用する場合フアインダー光学系の焦点面
近傍に配置されるため、入射光5は撮影レンズの
Fナンバーとマツトの拡散特性に応じた入射角を
もち回折格子2において回折される光も連続的な
回折角θ1をもつ。これらの回折光のうち、透明基
板4と空気との境界面で全反射する光の最小の回
折角φpは φp=sin-1(1/n) であり、この時、入射光の入射位置と回折像の発
生位置との距離1′は 1′=2*t*tan(sin-1(1/n)) ……(2) となる。
By the way, when the light modulation element 10 is applied to a finder system of a camera, it is arranged near the focal plane of the finder optical system, so that the incident light 5 has an incident angle that corresponds to the F number of the photographing lens and the diffusion characteristics of the lens. The light diffracted at 2 also has continuous diffraction angles θ 1 . Among these diffracted lights, the minimum diffraction angle φ p of the light totally reflected at the interface between the transparent substrate 4 and air is φ p = sin -1 (1/n), and at this time, the incident light The distance 1' between the position and the position where the diffraction image is generated is 1'=2*t*tan(sin -1 (1/n))...(2).

実際には表示パターン上に被写体のうち高輝度
のスポツト光が入射した場合、表示パターンの幅
方向において、その中心付近に入射した光が表示
パターンの端部において虹状の回折像を生じる場
合が多い。この為このような場合について虹状の
回折光が生じないように表示パターンの幅を決定
しておけば良い。そこで表示パターンの幅、即ち
回折格子部の格子線の法線方向の幅wを w<4*t*tan{sin-1(1/n)} ……(3) の如く設定しておけば虹状の回折像の発生を略防
止することができる。
In reality, when high-intensity spot light from a subject is incident on a display pattern, the light incident near the center of the display pattern may produce a rainbow-like diffraction image at the edges of the display pattern. many. Therefore, in such a case, the width of the display pattern should be determined so that rainbow-like diffracted light does not occur. Therefore, if the width of the display pattern, that is, the width w in the normal direction of the grating lines of the diffraction grating section, is set as w<4*t*tan{sin -1 (1/n)}...(3) The generation of rainbow-like diffraction images can be substantially prevented.

例えば光変調素子10が屈折率n=1.53厚さt
=0.5(mm)のガラス基板を用いているとすると、
その時の表示パターンの幅wを w<1.73(mm) を満足するように設計すればよい。
For example, the light modulation element 10 has a refractive index n=1.53 and a thickness t.
Assuming that a glass substrate of = 0.5 (mm) is used,
The width w of the display pattern at that time may be designed to satisfy w<1.73 (mm).

又、液晶1及び回折格子2が2枚の透明基板4
により挟まれており、2枚の透明基板4の厚さが
異なる場合は厚さの薄い方の基板の厚さtを基準
に設計すれば良い。
Moreover, the liquid crystal 1 and the diffraction grating 2 are formed on two transparent substrates 4.
If the two transparent substrates 4 have different thicknesses, the design may be based on the thickness t of the thinner substrate.

第6図は第4図に示した本発明の光変調素子1
0の一部を変形した実施例の平面図である。同図
において4は透明基板、6−1,6−2,6−
3,6−4は各々回折格子部であり、斜線方向は
各々回折格子の格子線の方向を示す。
FIG. 6 shows the light modulation element 1 of the present invention shown in FIG.
FIG. In the figure, 4 is a transparent substrate, 6-1, 6-2, 6-
Reference numerals 3 and 6-4 each represent a diffraction grating section, and the diagonal lines indicate the direction of the grating lines of the diffraction grating.

本実施例では各回折格子部の格子線の方向は各
領域の長手方向に対して各々一定の角度をなして
いる。
In this embodiment, the direction of the grating lines of each diffraction grating section is at a constant angle with respect to the longitudinal direction of each region.

第7図は第6図の光変調素子10の回折格子部
6−4の拡大図である。同図においてθは格子線
と回折格子部6−4の長手方向となす角度、La
は回折格子部6−4の幅、wは回折格子部6−4
の格子線の法線方向の幅の長さである。
FIG. 7 is an enlarged view of the diffraction grating section 6-4 of the light modulation element 10 of FIG. 6. In the figure, θ is the angle between the grating line and the longitudinal direction of the diffraction grating section 6-4, and La
is the width of the diffraction grating section 6-4, and w is the width of the diffraction grating section 6-4.
is the length of the width in the normal direction of the grid lines.

本実施例において回折格子部6−4に入射した
入射光は不図示の液晶と回折格子との屈折率素に
より回折され、回折格子の格子線方向と直交する
面内に複数の次数の回折光を発生させる。これら
の回折光のうち回折角が大きい高次の回折光は透
明基板4と空気の境界面で全反射するが、その進
行方向に回折格子部6−4が存在していなければ
再回折し、虹状の回折像は発生しない。
In this embodiment, the incident light incident on the diffraction grating section 6-4 is diffracted by a refractive index element of the liquid crystal and the diffraction grating (not shown), and a plurality of orders of diffracted light are generated in a plane orthogonal to the grating line direction of the diffraction grating. to occur. Among these diffracted lights, high-order diffracted lights with large diffraction angles are totally reflected at the interface between the transparent substrate 4 and the air, but if the diffraction grating section 6-4 is not present in the direction in which they travel, they will be diffracted again. A rainbow-like diffraction image is not generated.

このときの回折格子部6−4への入射光の入射
位置と再回折による回折像の位置との距離Lは前
述と同様の記号を用いれば L=2*t*tan{sin-1(1/n)} ……(4) となる。
At this time, the distance L between the incident position of the incident light on the diffraction grating section 6-4 and the position of the diffraction image due to re-diffraction can be calculated using the same symbols as above: L=2*t*tan{sin -1 (1 /n)} ...(4).

従つて格子線の法線方向の幅wをw<Lとして
おけば虹状の回折像の発生を完全に防止すること
ができるが、実際にはw<Lとする必要ななく前
述の理由により w<2L=4*t*tan{sin-1(1/n)} ……(5) を満足するように設定すれば虹状の回折像の発生
を略防止することができる。
Therefore, if the width w in the normal direction of the grating lines is set to w<L, it is possible to completely prevent the occurrence of rainbow-like diffraction images, but in reality, it is not necessary to set w<L, and for the reasons mentioned above, If the setting is made to satisfy w<2L=4*t*tan {sin -1 (1/n)} (5), the generation of rainbow-shaped diffraction images can be substantially prevented.

例えば前述と同様に光変調素子10が屈折率n
=1.53、厚さt=0.5(mm)のガラス基板を用いて
いるとし、角度θ=45度とすると、そのときの幅
wを w<1.22(mm) を満足するように設定しておけは良い。
For example, as described above, the light modulation element 10 has a refractive index n
= 1.53, thickness t = 0.5 (mm), and angle θ = 45 degrees, then set the width w to satisfy w < 1.22 (mm). good.

本実施例における光変調素子10を第3図に示
すフアインダー系に配置すれば第4図の場合と同
様にフアインダー視野内で被写体像と共に回折格
子部6−1,6−2,6−3,6−4が矩形状の
かげりとなつて観察され表示素子として機能する
ようになる。
If the light modulation element 10 in this embodiment is arranged in the finder system shown in FIG. 3, the diffraction grating portions 6-1, 6-2, 6-3, 6-4 is observed as a rectangular shadow and functions as a display element.

尚本実施例において回折格子部6−4を第8図
に示すように同一若しくは異つた面積を有する複
数の回折格子領域81から構成しても良い。
In this embodiment, the diffraction grating section 6-4 may be composed of a plurality of diffraction grating regions 81 having the same or different areas, as shown in FIG.

第8図に示す実施例におけるwは格子線の法線
方向の幅、θは格子線と回折格子部8−4とのな
す角度、Laは回折格子部8−4の幅であり、こ
れらが第7図に示した場合と光学的用作用の点か
ら略同様である。
In the embodiment shown in FIG. 8, w is the width in the normal direction of the grating lines, θ is the angle between the grating lines and the diffraction grating section 8-4, and La is the width of the diffraction grating section 8-4. It is substantially the same as the case shown in FIG. 7 in terms of optical function.

そして本実施例において虹状の回折像の発生を
防止する為の条件も第7図に示した場合と同様で
(5)式を満足するように設定すれば良い。
In this example, the conditions for preventing the formation of a rainbow-like diffraction pattern are the same as those shown in FIG.
It suffices to set it so that equation (5) is satisfied.

以上の各実施例においては光変調素子として2
枚の透明基板の間に回折格子と液晶とを挾持した
構成のものを示したが、液晶を使用しない位相型
回折格子の表示素子として用いる場合も全く同様
であり、格子線の法線方向の幅を制限することに
より虹状の回折像の発生を防止することができ
る。
In each of the above embodiments, two light modulation elements are used.
Although a structure in which a diffraction grating and a liquid crystal are sandwiched between two transparent substrates is shown, it is exactly the same when used as a display element for a phase-type diffraction grating that does not use a liquid crystal. By limiting the width, it is possible to prevent the formation of a rainbow-like diffraction image.

又第9、第10図に示すように光変調素子10
を回折格子と液晶より成る層を複数積層して構成
しても良い。
Further, as shown in FIGS. 9 and 10, the light modulation element 10
It may be constructed by laminating a plurality of layers consisting of a diffraction grating and a liquid crystal.

第9図は本発明の光変調素子10の他の実施例
の構成の説明図である。同図において1は液晶、
91,92は回折格子、93,94,95,96
は透明電極、97,98,99は透明基板、5は
入射光、6a,6bは入射光5の偏光成分、t1
t2、t3は各々透明基板97,98,99の厚さで
ある。
FIG. 9 is an explanatory diagram of the configuration of another embodiment of the optical modulation element 10 of the present invention. In the figure, 1 is a liquid crystal,
91, 92 are diffraction gratings, 93, 94, 95, 96
are transparent electrodes, 97, 98, and 99 are transparent substrates, 5 is incident light, 6a and 6b are polarized components of incident light 5, t 1 ,
t 2 and t 3 are the thicknesses of the transparent substrates 97, 98, and 99, respectively.

回折格子91の格子方向は紙面に垂直な方向
(偏光成分6a)、回折格子92の格子方向は紙面
と平行で水平方向(偏光成分6b)である。液晶
1は各回折格子の格子方向に配向しているもので
ある。本光変調素子10に入射する入射光5のう
ち回折格子92の格子方向(偏光成分6b)と平
行な偏光成分は回折格子92(屈折率ng)と液晶
1(屈折率ne)との屈折率差により回折される。
回折光のうち反射回折光の一部は透明電極96を
透過後、透明基板99の空気との境界面で全反射
をする。表示パターンとなる回折格子の領域の大
きさは透明基板99の厚さt3でまず制限される。
ここで透明電極96の厚さは透明基板の厚さに比
べ十分小さく無視しうるものである。
The grating direction of the diffraction grating 91 is perpendicular to the plane of the paper (polarization component 6a), and the grating direction of the diffraction grating 92 is parallel to the plane of the paper and horizontal (polarization component 6b). The liquid crystal 1 is oriented in the grating direction of each diffraction grating. Of the incident light 5 that enters the light modulation element 10, a polarized component parallel to the grating direction (polarized component 6b) of the diffraction grating 92 is a component of the polarized light between the diffraction grating 92 (refractive index n g ) and the liquid crystal 1 (refractive index n e ). It is diffracted due to the difference in refractive index.
A part of the reflected diffracted light of the diffracted light passes through the transparent electrode 96 and is totally reflected at the interface between the transparent substrate 99 and the air. The size of the area of the diffraction grating serving as the display pattern is first limited by the thickness t3 of the transparent substrate 99.
Here, the thickness of the transparent electrode 96 is sufficiently smaller than the thickness of the transparent substrate and can be ignored.

一方透過回折光の一部は透明電極95、透明基
板98、透明電極94を透過し回折格子91に到
達する。透過回折光(偏光成分6b)に対して回
折格子91の屈折率ngと液晶1の屈折率npは等し
いので光はそのまま透過し、透明電極93を介し
て透明基板97の基板面に到達する。透過回路光
の一部は透明基板97と空気との境界面で全反射
し、同様に透明電極93、回折格子91、透明電
極94、透明基板98、透明電極95を介して回
折格子92に到達する。表示パターンとなる回折
格子の領域の大きさは透明基板98,97の厚さ
の和(t1+t2)で制限される。
On the other hand, a part of the transmitted diffraction light passes through the transparent electrode 95 , the transparent substrate 98 , and the transparent electrode 94 and reaches the diffraction grating 91 . Since the refractive index n g of the diffraction grating 91 and the refractive index n p of the liquid crystal 1 are equal to the transmitted diffracted light (polarized light component 6b), the light is transmitted as is and reaches the substrate surface of the transparent substrate 97 via the transparent electrode 93. do. A part of the transmission circuit light is totally reflected at the interface between the transparent substrate 97 and the air, and similarly reaches the diffraction grating 92 via the transparent electrode 93, the diffraction grating 91, the transparent electrode 94, the transparent substrate 98, and the transparent electrode 95. do. The size of the area of the diffraction grating serving as the display pattern is limited by the sum of the thicknesses of the transparent substrates 98 and 97 (t 1 +t 2 ).

ここで透明電極93,94,95の厚さ及び回
折格子91の厚さは透明基板97,98の厚さに
比べ十分小さく無視しうる。
Here, the thicknesses of the transparent electrodes 93, 94, 95 and the thickness of the diffraction grating 91 are sufficiently small compared to the thicknesses of the transparent substrates 97, 98 and can be ignored.

入射光5の偏光成分6b対して回折格子の領域
の大きさは、透明基板の厚さt3と(t1+t2)の薄
い方の厚さで制限されてくる。
The size of the area of the diffraction grating for the polarized light component 6b of the incident light 5 is limited by the thinner of the transparent substrate thickness t 3 and (t 1 +t 2 ).

入射光5の偏光成分6aについても同様であ
る。本光変調素子10へ入射した入射光5(偏光
成分6b方向)は回折格子91の屈折率ngと液晶
1の屈折率neとの差に応じて回折される。この時
透過回折光に対して回折格子の領域の大きさは透
明基板97の厚さt1により制限され反射回折光に
対しては透明基板98,99の厚さの和(t2
t3)により制限される。そこで入射光5の偏光成
分6aに対して表示パターンとなる回折格子の領
域の大きさは透明基板の厚さt1と(t2+t3)の薄
い方の厚さで制限されるものである。
The same applies to the polarized light component 6a of the incident light 5. The incident light 5 (in the direction of the polarization component 6b) that has entered the optical modulation element 10 is diffracted according to the difference between the refractive index n g of the diffraction grating 91 and the refractive index n e of the liquid crystal 1. At this time, the size of the area of the diffraction grating for the transmitted diffracted light is limited by the thickness t 1 of the transparent substrate 97, and for the reflected diffracted light, the size of the area of the diffraction grating is limited by the sum of the thicknesses of the transparent substrates 98 and 99 (t 2 +
t3 ). Therefore, the size of the area of the diffraction grating that becomes the display pattern for the polarized light component 6a of the incident light 5 is limited by the thinner of the transparent substrate thickness t 1 and (t 2 + t 3 ). .

そこで入射光5に対して表示パターンとなる回
折格子の領域の大きさは、その基板面で全反射を
発生させる透明基板97,99の厚さt1とt3の薄
い方により制限される。
Therefore, the size of the area of the diffraction grating that becomes a display pattern for the incident light 5 is limited by the thinner of the thicknesses t 1 and t 3 of the transparent substrates 97 and 99 that cause total reflection on the substrate surface.

以上のようにして(3)式又は(5)式における厚さt
を設定すれば表示素子として用いたときの虹状の
回折像の発生を防止することができる。
As described above, the thickness t in equation (3) or (5)
By setting , it is possible to prevent the generation of a rainbow-like diffraction image when used as a display element.

第10図は本発明の光変調素子の他の実施例の
構成の説明図である。本実施例では第9図に示す
実施例に比べて回折格子91,92との間に配置
した透明電極と透明基板を省略して構成してい
る。
FIG. 10 is an explanatory diagram of the configuration of another embodiment of the optical modulation element of the present invention. In this embodiment, compared to the embodiment shown in FIG. 9, the transparent electrode and transparent substrate disposed between the diffraction gratings 91 and 92 are omitted.

尚第10図において第9図に示す要素と同一要
素には同符番を付してある。本実施例は第9図の
実施例において透明基板98の厚さt2がt2=0と
なつた場合に相当し、基本動作は第9図に実施例
と同様である。
In FIG. 10, the same elements as those shown in FIG. 9 are given the same reference numerals. This embodiment corresponds to the case where the thickness t 2 of the transparent substrate 98 is t 2 =0 in the embodiment shown in FIG. 9, and the basic operation is the same as that of the embodiment shown in FIG.

尚本発明に係る光変調素子は第3図に示すよう
にカメラのフアインダー系に適用する場合に限ら
ず、例えば第11図に示すように表示用ライトバ
ルブとして投影系の一部に適用することもでき
る。
Note that the light modulation element according to the present invention is not limited to being applied to a viewfinder system of a camera as shown in FIG. 3, but may also be applied to a part of a projection system as a display light valve as shown in FIG. 11, for example. You can also do it.

同図において110は表示用ライトバルブ、1
11は光源、112はコンデンサーレンズ、11
3は透過型投影体、114は投影レンズ、115
はスクリーンである。
In the figure, 110 is a display light valve;
11 is a light source, 112 is a condenser lens, 11
3 is a transmission type projector, 114 is a projection lens, 115
is a screen.

コンデンサーレンズ112の焦点位置に配置さ
れた光源111より発した照明光はコンデンサー
レンズ112により平行光となり透過型投影体
(例えば写真フイルム)113を垂直に照明する。
透過型投影体113の像は投影レンズ114を介
してスクリーン115上に結像される。本発明に
かかる表示用ライトバルブ110は透過型投影体
113と近接した位置に配置され、不図示の駆動
装置により表示、非表示状態が選択される。非表
示状態では表示用ライトバルブ110は屈折率の
一様な透明体とみなされ透過型投影体113を透
過した光は変調されずに投影レンズ114を介し
てスクリーン115上に結像される。表示状態で
は、表示用ライトバルブ110に入射する光の一
部は回折格子からなる表示パターン部分において
回折される。回折された光のうち、回折角の大き
な成分は、投影レンズの瞳の外にとばされるため
に、透過型投影体113を透過した光の一部は減
光されないように視認され表示がなされうる。
Illumination light emitted from a light source 111 placed at the focal point of a condenser lens 112 is turned into parallel light by the condenser lens 112, and vertically illuminates a transmission type projector (for example, a photographic film) 113.
An image of the transmission type projector 113 is formed on a screen 115 via a projection lens 114. The display light valve 110 according to the present invention is placed in close proximity to the transmission type projector 113, and a display or non-display state is selected by a drive device (not shown). In the non-display state, the display light valve 110 is regarded as a transparent body with a uniform refractive index, and the light transmitted through the transmission type projector 113 is imaged on the screen 115 via the projection lens 114 without being modulated. In the display state, a portion of the light incident on the display light valve 110 is diffracted at the display pattern portion made up of the diffraction grating. Of the diffracted light, a component with a large diffraction angle is blown out of the pupil of the projection lens, so that a part of the light that has passed through the transmissive projector 113 can be visually recognized and displayed without being attenuated. .

第12図は表示用ライトバルブ110の平面図
である。121は回折格子部、4は透明基板、回
折格子部内の縞は格子方向を示す。回折格子部の
格子方向は格子領域の長手方向を平行である。表
示用ライトバルブ110に入射した光のうち、回
折格子部に入射した光は φ=sin-1(m/n・λ/P) を満足する回折角φで回折する。
FIG. 12 is a plan view of the display light valve 110. 121 is a diffraction grating section, 4 is a transparent substrate, and the stripes within the diffraction grating section indicate the grating direction. The grating direction of the diffraction grating portion is parallel to the longitudinal direction of the grating region. Of the light incident on the display light valve 110, the light incident on the diffraction grating portion is diffracted at a diffraction angle φ that satisfies φ=sin −1 (m/n·λ/P).

但し、mは回折次数、λは波長、nは透明基板
4の屈折率、Pは回折格子ピツチである。
Here, m is the diffraction order, λ is the wavelength, n is the refractive index of the transparent substrate 4, and P is the diffraction grating pitch.

回折角の小さい低次回折光は投影レンズ114
を介してスクリーン115上に結像する。回折角
の大きい回折光は投影レンズ114の瞳の外にと
ばされるための像形成には寄与しない。回折角の
さらに大きい高次回折光は透明基板4と空気との
境界面で全反射し、このときの全反射した高次回
折光の進行方向に回折格子部が存在すると、回折
光と回折角φと透明基板4の厚さにより決まる位
置に前述と同様の虹状の回折像が発生する。
The low-order diffracted light with a small diffraction angle is transmitted through the projection lens 114.
The image is formed on the screen 115 via the. The diffracted light with a large diffraction angle is blown out of the pupil of the projection lens 114 and therefore does not contribute to image formation. The higher-order diffracted light with a larger diffraction angle is totally reflected at the interface between the transparent substrate 4 and the air, and if a diffraction grating exists in the traveling direction of the totally reflected higher-order diffracted light, the diffraction angle of the diffracted light and the diffraction angle φ A rainbow-like diffraction image similar to that described above is generated at a position determined by the thickness of the transparent substrate 4.

従つて前述の如く回折格子部の形状を特定すれ
ば、虹状の回折像の発生を防止することができ
る。
Therefore, by specifying the shape of the diffraction grating portion as described above, it is possible to prevent the formation of a rainbow-like diffraction image.

(発明の効果) 以上のように本発明によれば表示パターンとな
る回折格子部の格子線の形状寸法を前述の如く特
定することにより、回折格子部で発生し、回折格
子部の形成されていない他の面で全反射した回折
光が再度、同一の回折格子部に入射し、虹状の回
折像を発生するのを防止した高品位の表示を可能
とした光変調素子とをそれを用いた観察装置及び
投影型表示装置を達成することができる。
(Effects of the Invention) As described above, according to the present invention, by specifying the shape and dimensions of the grating lines of the diffraction grating portion, which become the display pattern, as described above, it is possible to prevent the formation of the diffraction grating portion. Using a light modulation element that enables high-quality display, it prevents the diffracted light that has been totally reflected on other surfaces from entering the same diffraction grating section again and creating a rainbow-like diffraction image. It is possible to achieve a viewing device and a projection type display device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光変調素子の基本構成の
説明図、第2図は本発明の光変調素子における回
折光の全反射発生の説明図、第3図は本発明の光
変調素子をカメラのフアインダー系に適用したと
きの説明図、第4図は第3図で用いた光変調素子
の平面図、第5図は第4図の光変調素子における
回折光の説明図、第6図、第7図、第8図は光変
調素子を表示素子として用いたときの一実施例の
説明図、第9図、第10図は各々本発明の光変調
素子の他の実施例の構成の説明図、第11図は本
発明の光変調素子を表示用ライトバルブとして投
影系の一部に適用したときの説明図、第12図は
第11図で用いた光変調素子の平面図である。 図中1は屈折率可変物質、2は回折格子、3は
透明電極、4は透明基板、5は入射光、6a,6
bは各々偏光成分、10は光変調素子、7は出射
光、4−1,4−2,4−3,4−4は回折格子
部である。
FIG. 1 is an explanatory diagram of the basic configuration of the light modulation element according to the present invention, FIG. 2 is an explanatory diagram of the occurrence of total reflection of diffracted light in the light modulation element of the present invention, and FIG. 3 is an explanatory diagram of the light modulation element of the present invention. An explanatory diagram when applied to a camera finder system, Fig. 4 is a plan view of the light modulation element used in Fig. 3, Fig. 5 is an explanatory diagram of diffracted light in the light modulation element of Fig. 4, and Fig. 6 , FIGS. 7 and 8 are explanatory diagrams of one embodiment when the light modulation element is used as a display element, and FIGS. 9 and 10 are illustrations of the configurations of other embodiments of the light modulation element of the present invention, respectively. An explanatory diagram, FIG. 11 is an explanatory diagram when the light modulation element of the present invention is applied to a part of a projection system as a display light valve, and FIG. 12 is a plan view of the light modulation element used in FIG. 11. . In the figure, 1 is a refractive index variable material, 2 is a diffraction grating, 3 is a transparent electrode, 4 is a transparent substrate, 5 is incident light, 6a, 6
10 is a light modulation element, 7 is an emitted light, and 4-1, 4-2, 4-3, and 4-4 are diffraction grating sections.

Claims (1)

【特許請求の範囲】 1 回折格子部を有する光変調素子において、前
記回折格子部を具備する基板の厚さをt、屈折率
をnとしたときに、前記回折格子部の格子線に垂
直な方向の長さwを w<4・t・tan{sin-1(1/n)} とすることを特徴とする光変調素子。 2 前記光変調素子は、隣接した少なくとも2つ
の基板を有しており、該基板の相対する面の少な
くとも一方にレリーフ型回折格子部が設けられて
おり、該レリーフ型回折格子部と該基板との間に
は屈折率可変物質が充填されており、該屈折率可
変物質の屈折率を制御する手段を有することを特
徴とする特許請求の範囲第1項記載の光変調素
子。 3 前記回折格子部の外周に対して前記格子線の
少なくとも一部が斜設していることを特徴とする
特許請求の範囲第1項記載の光変調素子。 4 前記回折格子部が複数積層されており、該積
層された複数の回折格子部の格子線が互いに異な
る方向を向いていることを特徴とする特許請求の
範囲第1項記載の光変調素子。 5 照射系と、該照射系からの光束により照射さ
れる、回折格子部を有しており該回折格子部を具
備する基板の厚さをt、屈折率をnとしたとき
に、前記回折格子部の格子線に垂直な方向の長さ
wを w<4・t・tan{sin-1(1/n)} とする光変調素子と、該光変調素子によつて変調
された光束を観察する観察系とを有する観察装
置。 6 光源と、該光源からの光を変調する光変調素
子と、該変調された光を投影する投影レンズとを
有する投影型表示装置において、前記光変調素子
は、前記光源からの光を変調する回折格子部を有
しており、前記回折格子部を具備する基板の厚さ
をt、屈折率をnとしたときに、前記回折格子部
の格子線に垂直な方向の長さwを w<4・t・tan{sin-1(1/n)} とすることを特徴とする投影型表示装置。
[Scope of Claims] 1. In an optical modulation element having a diffraction grating section, where t is the thickness of the substrate provided with the diffraction grating section, and n is the refractive index, A light modulation element characterized in that the length w in the direction is w<4·t·tan {sin −1 (1/n)}. 2. The light modulation element has at least two adjacent substrates, a relief-type diffraction grating section is provided on at least one of the opposing surfaces of the substrates, and the relief-type diffraction grating section and the substrate 2. The light modulation element according to claim 1, further comprising a refractive index variable material filled between the spaces, and a means for controlling the refractive index of the refractive index variable material. 3. The light modulation element according to claim 1, wherein at least a portion of the grating lines are provided obliquely with respect to the outer periphery of the diffraction grating section. 4. The light modulation element according to claim 1, wherein a plurality of the diffraction grating sections are stacked, and grating lines of the plurality of stacked diffraction grating sections are oriented in different directions. 5. The diffraction grating has an irradiation system and a diffraction grating section that is irradiated with a light beam from the irradiation system, and where t is the thickness of the substrate and n is the refractive index of the substrate provided with the diffraction grating section. Observe a light modulation element whose length w in the direction perpendicular to the grid line of the part is w<4・t・tan {sin -1 (1/n)} and the light flux modulated by the light modulation element. An observation device having an observation system. 6. In a projection display device having a light source, a light modulation element that modulates the light from the light source, and a projection lens that projects the modulated light, the light modulation element modulates the light from the light source. It has a diffraction grating section, and when the thickness of the substrate including the diffraction grating section is t and the refractive index is n, the length w of the diffraction grating section in the direction perpendicular to the grating lines is w< 4.t.tan {sin -1 (1/n)} A projection type display device.
JP5163187A 1986-04-08 1987-03-06 Optical modulating element Granted JPS63218920A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5163187A JPS63218920A (en) 1987-03-06 1987-03-06 Optical modulating element
US07/035,017 US4856869A (en) 1986-04-08 1987-04-06 Display element and observation apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5163187A JPS63218920A (en) 1987-03-06 1987-03-06 Optical modulating element

Publications (2)

Publication Number Publication Date
JPS63218920A JPS63218920A (en) 1988-09-12
JPH0515247B2 true JPH0515247B2 (en) 1993-03-01

Family

ID=12892193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5163187A Granted JPS63218920A (en) 1986-04-08 1987-03-06 Optical modulating element

Country Status (1)

Country Link
JP (1) JPS63218920A (en)

Also Published As

Publication number Publication date
JPS63218920A (en) 1988-09-12

Similar Documents

Publication Publication Date Title
US4856869A (en) Display element and observation apparatus having the same
JP4586630B2 (en) Diffraction type display device and display device in viewfinder of camera
JP4631308B2 (en) Image display device
JP2001042251A (en) Video display device
JP2002107519A (en) Reflection type display unit, retroreflector
CA2058506C (en) Projector provided with a plurality of image generators
JPH09281917A (en) Image display device using hologram color filter
JPH03216638A (en) Projection type display device
CN109932839B (en) Display panel and display device
US8345189B2 (en) Diffractive display device, finder device and camera
JPH0515247B2 (en)
JP3717016B2 (en) Reflective liquid crystal display device using hologram
JP2005331767A (en) Image display device
JP3608391B2 (en) Holographic diffusion sheet and reflective liquid crystal display device using the same
JP3383082B2 (en) Projection type image display device
JPH052207B2 (en)
JPH0516010B2 (en)
JP2570314B2 (en) Viewfinder optical system
JP3235163B2 (en) Liquid crystal display device and liquid crystal projector with liquid crystal display device
JP3916244B2 (en) Reflective liquid crystal display device using hologram
JP3500806B2 (en) Backlight for liquid crystal display device and liquid crystal display device
JPS6234141A (en) In-finder display device
JP3082303B2 (en) LCD projector
JPS6234142A (en) In-finder display device
JPH09244017A (en) Full-color liquid crystal picture display device