JPH0515224B2 - - Google Patents

Info

Publication number
JPH0515224B2
JPH0515224B2 JP60295991A JP29599185A JPH0515224B2 JP H0515224 B2 JPH0515224 B2 JP H0515224B2 JP 60295991 A JP60295991 A JP 60295991A JP 29599185 A JP29599185 A JP 29599185A JP H0515224 B2 JPH0515224 B2 JP H0515224B2
Authority
JP
Japan
Prior art keywords
probe
flaw detection
probe holder
test material
dimension measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60295991A
Other languages
Japanese (ja)
Other versions
JPS62153744A (en
Inventor
Koji Sekiguchi
Hiromitsu Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd, Doryokuro Kakunenryo Kaihatsu Jigyodan filed Critical Tokyo Keiki Co Ltd
Priority to JP60295991A priority Critical patent/JPS62153744A/en
Publication of JPS62153744A publication Critical patent/JPS62153744A/en
Publication of JPH0515224B2 publication Critical patent/JPH0515224B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、探触子を探触子ホルダにて保持し、
該探触子ホルダの中心部に被検材を挿通搬送し、
該被検材の回りに探触子ホルダを高速回転させて
探傷を行なう形式の探触子回転型超音波探傷装置
に関し、特に、寸測用探触子に対して高精度の温
度補償を行なうようにした超音波探傷装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for holding a probe in a probe holder,
Insert and transport the test material into the center of the probe holder,
Regarding a probe rotation type ultrasonic flaw detection device that performs flaw detection by rotating a probe holder around the test material at high speed, in particular, high-precision temperature compensation is performed for a dimension measurement probe. The present invention relates to an ultrasonic flaw detection device.

[従来の技術] 一般に金属管の中でも、高品質および高精度を
要求されるもの、例えば、原子力関係で使用され
るような極小径管にあつては、管の傷や材質中の
欠陥等についての厳密な超音波探傷のみならず、
その内外径・肉厚等の寸法測定(以下寸測とい
う。)についても、厳密な超音波寸測が行なわれ
る。
[Prior Art] Generally speaking, among metal tubes, those that require high quality and high precision, such as ultra-small diameter tubes used in nuclear power, are checked to prevent scratches on the tube and defects in the material. In addition to rigorous ultrasonic flaw detection,
Strict ultrasonic measurements are also performed to measure dimensions such as inner and outer diameters and wall thickness (hereinafter referred to as measurements).

従来、超音波探傷装置としては、複数個の探触
子を探触子ホルダに保持させると共に、水室を形
成して、該ホルダを回転させることにより、探触
子を被検材の回りに回転させ、同時に、被検材を
長さ方向に搬送することにより、該被検材の外周
表面に螺施状の走査軌跡を画いて探傷を高密度で
行なうものがある。
Conventionally, as an ultrasonic flaw detection device, a plurality of probes are held in a probe holder, a water chamber is formed, and the holder is rotated to move the probes around the test material. There is a method that performs high-density flaw detection by drawing a spiral scanning locus on the outer circumferential surface of the test material by rotating the test material and simultaneously transporting the test material in the length direction.

一方、超音波寸測装置としては、従来、適当な
シールを施した挿通孔と側壁に備えた水槽内に、
寸測用探触子を配置し、被検材を回転させつつ、
上記挿通孔を挿通して水槽内を搬送して、寸測を
行なうものがある。また、より精密な寸法計測を
行なうため、温度による超音波の音速変化を補償
すべく、温度補償用探触子を備えたものもある。
On the other hand, as an ultrasonic dimension measuring device, conventionally, a water tank with an appropriately sealed insertion hole and a side wall is used.
Place the measurement probe and rotate the material to be inspected.
There is a device that is inserted through the above-mentioned insertion hole and transported inside the aquarium to perform dimension measurements. Furthermore, in order to perform more precise dimensional measurements, some devices are equipped with a temperature compensation probe to compensate for changes in the speed of ultrasonic waves due to temperature.

[発明が解決しようとする問題点] しかし、これら従来の装置は、互いに独立の装
置であつて、探傷と寸測とを別途行なう必要があ
る。そのため、それぞれについて作業の段取りを
行なう必要があり、作業量が増えると共に、煩雑
となり、しかも、検査に要する時間も長くなると
いう欠点がある。
[Problems to be Solved by the Invention] However, these conventional devices are mutually independent devices, and it is necessary to perform flaw detection and dimension measurement separately. Therefore, it is necessary to prepare the work for each one, which increases the amount of work, becomes complicated, and has the disadvantage that the time required for inspection also increases.

また、従来の寸測装置にあつては、水槽を使用
する形式であるため、被検材を回転させる必要が
あり、従つて、回転数を大きくすることができ
ず、検査に時間がかかる欠点がある。
In addition, since conventional dimension measuring devices use a water tank, it is necessary to rotate the material to be inspected. Therefore, the number of rotations cannot be increased, making inspection time-consuming. There is.

さらに、温度補償用探触子を備えた寸測装置に
あつては、水槽内の媒質の温度分布が不均一で、
補償精度が十分でないという欠点がある。
Furthermore, in the case of dimension measuring devices equipped with temperature compensation probes, the temperature distribution of the medium in the tank is uneven,
The disadvantage is that the compensation accuracy is not sufficient.

本発明は、このような欠点を解決すべくなされ
たもので、探傷と寸測とを同時に行なうことがで
きて、作業の段取りが1回で済み、作業量を減少
すると共に、作業を容易にし、しかも、検査に時
間がかからず、かつ、寸測に際し、精密な温度補
償を行ない得る、探触子回転型超音波探傷装置を
提供することを目的とする。
The present invention was made to solve these drawbacks, and it is possible to perform flaw detection and dimension measurement at the same time, requiring only one work setup, reducing the amount of work, and making the work easier. Moreover, it is an object of the present invention to provide a probe rotating type ultrasonic flaw detection device that does not take much time for inspection and can perform precise temperature compensation during dimension measurement.

[問題点を解決するための手段] 本発明は、探触子を探触子ホルにて保持し、該
探触子ホルダの中心部に被検材を挿通搬送し、該
被検材の回りに探触子ホルダを高速回転させて探
傷を行なう形式の探触子回転型超音波探傷装置に
おいて、上記問題点を解決する手段として、 上記探触子ホルダの両端部および中央部の各々
に、被検材を案内するガイド孔を有する隔壁を設
けて、探傷用水室と寸測用水室とを上記隔壁によ
り分離して形成し、前者には探傷用探触子を、一
方、後者には寸測用探触子を配設し、 かつ、上記寸測用探触子の近傍に、温度補償用
探触子を付設して構成されることを特徴とする。
[Means for Solving the Problems] The present invention holds a probe in a probe holder, inserts and conveys a specimen into the center of the probe holder, and moves around the specimen. In a rotating probe type ultrasonic flaw detection device that performs flaw detection by rotating the probe holder at high speed, as a means to solve the above problems, a A partition wall having a guide hole for guiding the material to be inspected is provided, and a water chamber for flaw detection and a water chamber for dimension measurement are separated by the partition wall, and the former is equipped with a flaw detection probe, while the latter is equipped with a dimension measurement water chamber. A measuring probe is disposed, and a temperature compensation probe is attached near the dimension measuring probe.

[作用] 本発明は、上記問題点解決手段に示すように、
探触子ホルダに、探傷用水室および寸測用水室を
形成して、前者には探傷用探触子を、一方、後者
には寸測用探触子を配設しているので、探傷と同
時に寸測を行なうことができる。この場合、両者
の水室が隔壁にて分離されており、それぞれに適
した水距離を設定できる。
[Function] As shown in the above problem solving means, the present invention has the following features:
A water chamber for flaw detection and a water chamber for dimension measurement are formed in the probe holder, and the former is equipped with a flaw detection probe, while the latter is equipped with a dimension measurement probe. Dimensions can be taken at the same time. In this case, both water chambers are separated by a partition wall, and water distances suitable for each can be set.

また、本発明は、寸測用水室に配設した温度補
償用探触子により、音速を計測して、寸測に際
し、温度による超音波の音速変化を補償してい
る。本発明の温度補償は、回転時の遠心力を可能
な限り小さくすべく、寸測用水室の容積を極限に
近く小さく設定しており、しかも、高速回転によ
り水が撹拌されるので、寸測用水室内の媒質の温
度分布がほぼ均一となつて、精度良く行ない得
る。そのため、高精度に寸法計測を行なうことが
できる。
Further, in the present invention, the speed of sound is measured by a temperature compensating probe disposed in the water chamber for dimension measurement, and the change in the sound speed of ultrasonic waves due to temperature is compensated for during dimension measurement. In the temperature compensation of the present invention, the volume of the water chamber for dimension measurement is set to be as small as possible in order to minimize the centrifugal force during rotation.Moreover, since the water is stirred by high speed rotation, The temperature distribution of the medium in the water chamber becomes almost uniform, allowing for highly accurate testing. Therefore, dimension measurement can be performed with high precision.

なお、本発明は、上記各隔壁の中心部に設けら
れたガイド孔により、被検材を、該被検材中心と
回転中心とをほぼ一致させて案内するので、被検
材と探触子ホルダの回転中心との位置合わせを行
なうことなく、被検材がガイド孔により位置決め
されて、自動的に回転中心と一致するように搬送
される。そのため、極小径管であつても、精密に
探傷および寸測を行ない得る。
In addition, in the present invention, the test material is guided by the guide hole provided in the center of each of the partition walls so that the center of the test material and the center of rotation are almost aligned, so that the test material and the probe are guided. The object to be inspected is positioned by the guide hole without alignment with the center of rotation of the holder, and is conveyed so as to be automatically aligned with the center of rotation. Therefore, even if it is an extremely small diameter pipe, flaw detection and dimension measurement can be performed accurately.

[実施例] 本発明の実施例について図面を参照して説明す
る。
[Example] An example of the present invention will be described with reference to the drawings.

〈実施例の構成〉 第1図は本実施例が適用される探触子回転型超
音波探傷装置の外観を示す斜視図、第2図は本実
施例の主要部である探触子ホルダを示す断面図、
第3図は本実施例の各探触子の配置を示す説明図
である。
<Configuration of Example> Figure 1 is a perspective view showing the external appearance of a rotating probe type ultrasonic flaw detection device to which this example is applied, and Figure 2 shows a probe holder, which is the main part of this example. A sectional view showing,
FIG. 3 is an explanatory diagram showing the arrangement of each probe in this embodiment.

先ず、第1図に示す探触子回転型超音波探傷装
置について説明する。
First, the probe rotation type ultrasonic flaw detection apparatus shown in FIG. 1 will be explained.

同図において、本実施例装置は、各部分が架台
10上面に、一直線上に配置され、中央部に、回
転駆動および信号の電気的接続を行なう装置本体
12が設置され、該本体12の一端部に探触子ホ
ルダ部13が連結され、かつ、架台10の長手方
向両端側に、被検材Pを搬送する搬送装置16お
よび18が設けてある。これらの各装置は、被検
材Pを曲げずに搬送できるように中心軸を一致さ
せて配置してある。
In the figure, each part of the device of this embodiment is arranged in a straight line on the upper surface of a pedestal 10, and a device main body 12 for rotational driving and electrical connection of signals is installed in the center, and one end of the main body 12 is installed. A probe holder part 13 is connected to the mount 10, and transport devices 16 and 18 for transporting the test material P are provided at both ends of the pedestal 10 in the longitudinal direction. These devices are arranged with their central axes aligned so that the test material P can be transported without bending.

探触子ホルダ部13内部の探触子ホルダ14
は、第2図に示すように、取付部20、寸測部2
2、探傷部24および媒質導入部26からなり、
全体として複数の異径円筒を同心に重ねた構成と
なつている。そして、各円筒の境界部分には、隔
壁28,30および32が設けてある。なお、同
図に示す部分は、すべて高速回転する部分であつ
て、この外側に、回転しない外カバー34(第1
図参照)等の非回転部分が設けられている。
Probe holder 14 inside probe holder part 13
As shown in FIG.
2. Consists of a flaw detection section 24 and a medium introduction section 26,
The overall structure consists of multiple cylinders with different diameters stacked concentrically. Partition walls 28, 30 and 32 are provided at the boundary between each cylinder. The parts shown in the figure are all parts that rotate at high speed, and there is an outer cover 34 (first
Non-rotating parts such as (see figure) are provided.

隔壁28,30および32により、寸測用水室
36および探傷用水室38が設けられている。ま
た、隔壁28,30および32の各中心部には、
貫通孔40,42および44が同心に設けてあ
る。これら貫通孔40,42および44には、
各々中心が探触子ホルダ14の中心と一致すると
共に、内径が被検材Pの外径にほぼ等しくなるよ
うに精密に加工した位置決め用のブツシング4
6,48および50が嵌着してある。これらのブ
ツシング46,48および50に設けられた孔
が、被検材Pを探触子ホルダ14の回転中心と軸
心を合わせて案内するガイド孔となる。
A water chamber 36 for size measurement and a water chamber 38 for flaw detection are provided by the partition walls 28, 30, and 32. In addition, at the center of each of the partition walls 28, 30 and 32,
Through holes 40, 42 and 44 are provided concentrically. These through holes 40, 42 and 44 include
Positioning bushings 4 each precisely machined so that the center coincides with the center of the probe holder 14 and the inner diameter is approximately equal to the outer diameter of the test material P.
6, 48 and 50 are fitted. The holes provided in these bushings 46, 48, and 50 serve as guide holes for guiding the test material P so that its axis is aligned with the rotation center of the probe holder 14.

寸測部22には、寸測用探触子52,54と、
温度補償用探触子56(第3図参照)および反射
板58とが、端部を寸測用水室36に臨ませて配
置されている。探触子52,54,56は、適当
な保持部材により保持されて取付けられる。例え
ば、探触子52,54については、第2図に示す
ように保持部材60により、水距離の調整を行な
うと共に、その位置で保持固定される。
The dimension measurement section 22 includes dimension measurement probes 52 and 54,
A temperature compensation probe 56 (see FIG. 3) and a reflection plate 58 are arranged with their ends facing the measurement water chamber 36. The probes 52, 54, 56 are held and mounted by appropriate holding members. For example, as for the probes 52 and 54, as shown in FIG. 2, the water distance is adjusted by a holding member 60, and the probes 52 and 54 are held and fixed at that position.

探傷部24には、探傷用探触子62,64,6
6および68が各端部を探傷用水室38に臨ませ
て配置されている。なお、探傷用探触子68は、
切断面の手前にあつて、断面図である第2図には
本来は表れないはずであるが、位置を示すため同
図に示してある。
The flaw detection section 24 includes flaw detection probes 62, 64, 6.
6 and 68 are arranged with each end facing the water chamber 38 for flaw detection. Note that the flaw detection probe 68 is
Although it is located in front of the cut plane and should not originally appear in the cross-sectional view of FIG. 2, it is shown in the same figure to show the position.

これらの探傷用探触子62,64,66および
68は、被検材Pに斜めに超音波を入射させるた
め、回転中心に対して斜めに設定されている。こ
の探触子も、適当な保持部材により、水距離およ
び角度の調節を可能としてある。例えば、探傷用
探触子62,64は、保持部材70,72によ
り、水距離調節および角度調節を可能として保持
されている。
These flaw detection probes 62, 64, 66, and 68 are set obliquely with respect to the center of rotation in order to cause the ultrasonic waves to be obliquely incident on the test material P. This probe also allows adjustment of the water distance and angle using a suitable holding member. For example, the flaw detection probes 62 and 64 are held by holding members 70 and 72 such that the water distance and angle can be adjusted.

取付部20は、上記隔壁28の外側にフランジ
状に形成され、本体12側においてフランジ状に
形成される取付部74に、複数本のボルト76に
より固着される。この取付部20には、探触子5
2等に通じる信号線を接続するコネクタのプラグ
78が探触子対応に設けられている。
The mounting portion 20 is formed in a flange shape on the outside of the partition wall 28 and is fixed to a mounting portion 74 formed in a flange shape on the main body 12 side with a plurality of bolts 76 . A probe 5 is attached to this mounting portion 20.
A connector plug 78 for connecting a signal line leading to the second etc. is provided corresponding to the probe.

これに対し、本体12側には、上記プラグ78
に対応して、レセプタクル80が取付部74に設
けてある。このレセプタクル80から接続される
信号線82は、固定側と回転側との電気的接続を
行なうコンデンサカプリング等の信号授受部(図
示せず)に接続される。また、取付部74は、そ
の中心部がロータ84に連結されている。このロ
ータ84は、架台10内に格納された電動機と動
力伝達手段(いずれも図示せず)とにより回転駆
動され、取付部74を介して探触子ホルダ14を
高速回転させる。さらに、このロータ84の中心
部には、被検材Pを回転中心に位置させるガイド
部材86が貫装してある。
On the other hand, the plug 78 is provided on the main body 12 side.
A receptacle 80 is provided in the mounting portion 74 correspondingly. A signal line 82 connected from this receptacle 80 is connected to a signal transfer unit (not shown) such as a capacitor coupling that electrically connects the stationary side and the rotating side. Further, the mounting portion 74 is connected to the rotor 84 at its center. The rotor 84 is rotationally driven by an electric motor and a power transmission means (both not shown) housed in the pedestal 10, and rotates the probe holder 14 at high speed via the mounting portion 74. Further, a guide member 86 is inserted through the center of the rotor 84 to position the test material P at the center of rotation.

探触子ホルダ14の端部に設けられた媒質導入
部26は、上記隔壁32にボルト88により固着
してある。この媒質導入部26の外周には、溝9
0が設けてあり、この溝90の適所から探傷用水
室38に連通する導水部92が設けてある。ま
た、探傷用水室38と寸測用水室36とを連通す
るように、隔壁30にも導水孔93が設けてあ
る。そして、上記溝90は、回転しないケース9
4に密閉され、該ケース94に設けられた媒質導
入口96から媒質(通常は水)が加圧注入される
構成となつている。
The medium introduction part 26 provided at the end of the probe holder 14 is fixed to the partition wall 32 with bolts 88. A groove 9 is provided on the outer periphery of this medium introducing portion 26.
0 is provided, and a water guide portion 92 that communicates with the water chamber 38 for flaw detection from a proper location of this groove 90 is provided. Further, a water guide hole 93 is also provided in the partition wall 30 so that the water chamber 38 for flaw detection and the water chamber 36 for size measurement are communicated with each other. The groove 90 is formed in the non-rotating case 9.
4, and a medium (usually water) is injected under pressure from a medium inlet 96 provided in the case 94.

なお、上記構成では、寸測用水室36が探触子
ホルダ14の取付部側に設けられているが、これ
は、探触子ホルダ14が取付部20にて片持状に
支持される構造となつているので、大きな遠心力
の加わる径の大きい部分を基部側として、回転を
安定化させるためである。
In the above configuration, the measurement water chamber 36 is provided on the mounting part side of the probe holder 14, but this is due to the structure in which the probe holder 14 is supported in a cantilevered manner by the mounting part 20. Therefore, the purpose is to stabilize the rotation by setting the large-diameter portion where a large centrifugal force is applied to the base side.

また、上記実施例では、寸測部22および探傷
部24の外周に、各々、円筒状のカバー98,1
00が装着されている。これは、探触子ホルダ1
4から排出された水が過度に飛散しないよう、ま
た、探触子の引出線を保護するためである。
Further, in the above embodiment, cylindrical covers 98 and 1 are provided on the outer peripheries of the dimension measurement section 22 and the flaw detection section 24, respectively.
00 is installed. This is probe holder 1
This is to prevent the water discharged from 4 from scattering excessively and to protect the lead wire of the probe.

〈実施例の作用〉 上記のように構成される本実施例の作用につい
て、上記第1〜3図および第4図を参照して説明
する。
<Operation of the embodiment> The operation of the embodiment configured as described above will be explained with reference to the above-mentioned FIGS. 1 to 3 and FIG. 4.

先ず、図示しない電動機によりロータ84を回
転させて、探触子ホルダ14を高速回転させる。
また、該探触子ホルダ14に、媒質として水を媒
質導入口96から注入する。この注入は、媒質導
入口96にパイプを連結して行なう。注入された
水は、溝90の適所から導水部92を経て探傷用
水室38および寸測用水室36に達して、これら
を満たし、溢れた水は、図示していないドレイン
から探触子ホルダ14外部に排出される。
First, the rotor 84 is rotated by an electric motor (not shown) to rotate the probe holder 14 at high speed.
Further, water as a medium is injected into the probe holder 14 from the medium inlet 96. This injection is performed by connecting a pipe to the medium inlet 96. The injected water reaches the water chamber 38 for flaw detection and the water chamber 36 for dimension measurement from an appropriate place in the groove 90 through the water guide portion 92, filling them, and the overflowing water flows from a drain (not shown) to the probe holder 14. It is discharged to the outside.

一方、被検材Pは、搬送装置16により先端か
らロータ84内のガイド部材86に挿通し、さら
に、探触子ホルダ14の隔壁28,30および3
2に設けてあるブツシング46,48および50
に順次挿通し、搬送装置18に達して、第1図矢
印A方向に一定の速度で搬送される。
On the other hand, the test material P is inserted into the guide member 86 in the rotor 84 from the tip by the conveyance device 16, and is further inserted into the partition walls 28, 30 and 3 of the probe holder 14.
Bushings 46, 48 and 50 provided in 2
The paper is sequentially inserted into the paper, reaches the transport device 18, and is transported at a constant speed in the direction of arrow A in FIG.

寸測および探傷は、各々図示しないリミツトス
イツチ等の近接センサにより、被検材Pの先端の
接近が検出されると開始される。
Dimension measurement and flaw detection are started when the approach of the tip of the test material P is detected by a proximity sensor such as a limit switch (not shown).

寸測は、寸測用探触子52,54から超音波を
被検材Pに垂直に放射し、そのエコーが帰るまで
の時間を計測して、該被検材Pの外径寸法、内径
寸法、肉厚等を計測する。
Dimension measurement involves emitting ultrasonic waves perpendicularly to the specimen P from the dimension measurement probes 52 and 54, measuring the time it takes for the echo to return, and determining the outer diameter and inner diameter of the specimen P. Measure dimensions, wall thickness, etc.

また、上記寸測は、媒質の温度変化による音速
変化により、誤差を生じ易いため、温度補償を行
なつている。
Furthermore, since the above-mentioned dimensions tend to have errors due to changes in the speed of sound due to changes in the temperature of the medium, temperature compensation is performed.

この温度補償は、温度補償用探触子56と、こ
れに対して一定間隔を持つて対向する反射版58
とで行なわれる。即ち、温度補償用探触子56か
ら発射される超音波が反射板58にて反射され、
再び、温度補償用探触子56にて検出されるまで
に要する時間の音速温度変化による変化を検出
し、これにより寸測用探触子からの信号を補正し
て、温度変化の影響を除去する。
This temperature compensation is performed using a temperature compensation probe 56 and a reflective plate 58 that faces the temperature compensation probe 56 at a constant distance.
It is done with. That is, the ultrasonic waves emitted from the temperature compensation probe 56 are reflected by the reflection plate 58,
Again, the temperature compensation probe 56 detects the change in sound speed due to the temperature change in the time required to be detected, and thereby corrects the signal from the dimension measurement probe to eliminate the influence of the temperature change. do.

この温度補償作用について、第4図を参照して
説明する。第4図は、被検材の外径を計測する場
合を例として示す。
This temperature compensation effect will be explained with reference to FIG. FIG. 4 shows an example of measuring the outer diameter of a specimen.

先ず、被検材Pの外径Dは、寸測用探触子52
と54との水距離をW0、寸測用探触子52と被
検材Pの外周との水距離、および、寸測用探触子
54と被検材Pの外周との水距離を各々W1,W2
とすると、次式で与えられる。
First, the outer diameter D of the material P to be tested is determined using the dimension measuring probe 52.
W 0 is the water distance between and W 1 and W 2 respectively
Then, it is given by the following formula.

D=W0−(W1+W2) ……(1) 一方、温度補償用探触子6と反射板58との水
距離をW3とし、超音波が該水距離W3を進行する
に要する時間の計測値をt3とすると、温度補償係
数αは、次のように求まる。
D=W 0 -(W 1 +W 2 )...(1) On the other hand, let the water distance between the temperature compensation probe 6 and the reflection plate 58 be W 3 , and as the ultrasonic wave travels the water distance W 3 , Assuming that the measured value of the required time is t 3 , the temperature compensation coefficient α is determined as follows.

α=W3/t3 ……(2) そこで、寸測用探触子52と54により、各々
水距離W1,W2を超音波が進行するに要する時間
t1,t2を計測する。ここで、上記第2式で与えら
れる温度補償係数αを用いると、温度補償した水
距離W1,W2は、次式で与えられる。
α=W 3 /t 3 ...(2) Therefore, the time required for the ultrasonic wave to travel the water distance W 1 and W 2 , respectively, is measured using the dimension measurement probes 52 and 54.
Measure t 1 and t 2 . Here, if the temperature compensation coefficient α given by the above second equation is used, the temperature compensated water distances W 1 and W 2 are given by the following equation.

W1=αt1 W2=αt2 従つて、これらの関係を上記第1式に代入し
て、被検材Pの外径Dは、 D=W0−α(t1+t2) で与えられる。
W 1 = αt 1 W 2 = αt 2 Therefore, by substituting these relationships into the first equation above, the outer diameter D of the test material P is given by D = W 0 - α (t 1 + t 2 ). It will be done.

探傷は、探傷用の探触子62,64,66およ
び68から、被検材Pに対して斜めに超音波を放
射し、被検材P内部にある傷や欠陥の界面で反射
されて戻つてくる超音波エコーを検出することに
より行なう。この探傷は、探触子ホルダ14が高
速回転しているため、4個の探触子6,64,6
6および68による4条の螺施状走査跡により探
傷が行なわれる。
In flaw detection, ultrasonic waves are emitted obliquely from the flaw detection probes 62, 64, 66, and 68 to the test material P, and are reflected back at the interface of the flaws or defects inside the test material P. This is done by detecting incoming ultrasonic echoes. In this flaw detection, since the probe holder 14 is rotating at high speed, the four probes 6, 64, 6
Flaw detection is carried out using four threaded scanning traces by No. 6 and No. 68.

このように、本実施例では、寸測と探傷とが、
被検材を1回の搬送だけで、同時に行なわれるの
で、作業時間の大幅な減少が可能である。
In this way, in this example, dimension measurement and flaw detection are
Since the materials to be inspected are conveyed only once and the inspection is carried out simultaneously, it is possible to significantly reduce the working time.

また、寸測および探傷に際し、被検材Pは、3
箇所の隔壁28,30および32に装着されたブ
ツシング46,48および50により拘束される
ため、その中心軸が探触子ホルダ14の回転中心
とほぼ一致した状態で、寸測および探傷が行なわ
れる。従つて、極小径管等の径が小さい被検材に
ついても、精度よく寸測および探傷を行ない得
る。なお、本実施例では、これらのブツシング4
6,48および50に、その開口部にテーパが設
けてあるので、被検材の先端を挿通する際に、先
端部との衝突がなく、容易に挿通することができ
る。
In addition, during dimension measurement and flaw detection, the material P to be tested is
Since it is restrained by the bushings 46, 48 and 50 attached to the partition walls 28, 30 and 32 at the location, the dimension measurement and flaw detection are performed with the center axis of the bushings substantially aligned with the rotation center of the probe holder 14. . Therefore, it is possible to accurately measure dimensions and detect flaws even for specimens having a small diameter such as extremely small diameter pipes. In addition, in this embodiment, these bushings 4
6, 48, and 50 are tapered at their openings, so that when the tip of the test material is inserted, there is no collision with the tip, and the material can be easily inserted.

さらに、本実施例では、寸測に際し、温度補償
用探触子56により、音速の温度補償を行なつて
いるので、正確な寸測を行ない得る。
Furthermore, in this embodiment, since the temperature compensation probe 56 performs temperature compensation for the speed of sound during dimension measurement, accurate dimension measurement can be performed.

〈実施例の変形〉 上記実施例では、探触子ホルダの隔壁中心部に
貫通孔を設け、これに位置決め用のブツシングを
嵌着しているが、貫通孔自体を精密加工して、ガ
イド孔とし、ブツシングを省略してもよい。
<Modification of the embodiment> In the above embodiment, a through hole is provided in the center of the partition wall of the probe holder, and a positioning bushing is fitted into the through hole, but the through hole itself is precisely machined to form a guide hole. , and the bushing may be omitted.

また、本実施例では、探傷用探触子を4個使用
しているが、これに限らないこと勿論である。
Further, in this embodiment, four flaw detection probes are used, but of course the number is not limited to this.

[発明の効果] 以上説明したように本発明は、探傷と寸測とを
同時に行なうことができて、作業の段取りが1回
で済み、作業量を減少すると共に、作業を容易に
し、しかも、検査に時間がかからず、かつ、寸測
に際し、精密な温度補償を行ない得る効果があ
る。
[Effects of the Invention] As explained above, the present invention can perform flaw detection and dimension measurement at the same time, requires only one work setup, reduces the amount of work, and facilitates the work. Inspection does not take much time, and precise temperature compensation can be performed during dimension measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施列が適用される探触子回転型超
音波探傷装置の外観を示す斜視図、第2図は本実
施例の主要部である探触子ホルダを示す断面図、
第3図は本実施例の各探触子の配置を示す説明
図、第4図は温度補償の作用について、被検材の
外径を計測する場合を例として示す説明図であ
る。 P……被検材、10……架台、12……装置本
体、14……探触子ホルダ、16,18……搬送
装置、20……取付部、22……寸測部、24…
…探傷部、26……媒質導入部、28,30,3
2……隔壁、34……外カバー、36……寸測用
水室、38……探傷用水室、40,42,44…
…貫通孔、46,48,50……ブツシング、5
2,54……寸測用探触子、56……温度補償用
探触子、58……反射板、60……保持部、6
2,64,66,68……探傷用探触子、70,
72……保持部材、74……取付部、76,88
……ボルト、78……プラグ、80……レセプタ
クル、82……信号線、84……ロータ、86…
…ガイド部材、90……溝、92……導水部、9
4……ケース、96……媒質導入口、98,10
0……カバー。
FIG. 1 is a perspective view showing the external appearance of a rotating probe type ultrasonic flaw detection device to which this embodiment is applied, and FIG. 2 is a sectional view showing a probe holder, which is the main part of this embodiment.
FIG. 3 is an explanatory diagram showing the arrangement of each probe of this embodiment, and FIG. 4 is an explanatory diagram showing the effect of temperature compensation, taking as an example the case where the outer diameter of a specimen is measured. P... Test material, 10... Frame, 12... Device main body, 14... Probe holder, 16, 18... Transport device, 20... Mounting section, 22... Dimensions section, 24...
...Flaw detection section, 26...Medium introduction section, 28, 30, 3
2... Bulkhead, 34... Outer cover, 36... Water chamber for dimension measurement, 38... Water chamber for flaw detection, 40, 42, 44...
...Through hole, 46, 48, 50...Butching, 5
2, 54...Dimension measurement probe, 56...Temperature compensation probe, 58...Reflection plate, 60...Holding part, 6
2,64,66,68...flaw detection probe, 70,
72... Holding member, 74... Mounting part, 76, 88
... Bolt, 78 ... Plug, 80 ... Receptacle, 82 ... Signal line, 84 ... Rotor, 86 ...
... Guide member, 90 ... Groove, 92 ... Water guide portion, 9
4...Case, 96...Medium inlet, 98,10
0...Cover.

Claims (1)

【特許請求の範囲】 1 探触子を探触子ホルダにて保持し、該探触子
ホルダの中心部に被検材を挿通搬送し、該被検材
の回りに探触子ホルダを高速回転させて探傷を行
なう形式の探触子回転型超音波探傷装置におい
て、 上記探触子ホルダの両端部および中央部の各々
に、被検材を案内するガイド孔を有する隔壁を設
けて、探傷用水室と寸測用水室とを上記隔壁によ
り分離して形成し、前者には探傷用探触子を、一
方、後者には寸測用探触子を配設し、 かつ、上記寸測用探触子の近傍に、音速を計つ
て温度を補償する温度補償用探触子を付設して構
成されることを特徴する探触子回転型超音波探傷
装置。 2 上記探触子ホルダの探傷用水室および寸測用
水室を設けるに際し、前者を探触子ホルダの先端
側に、後者を該探触子ホルダの基端側に配置し、
該探触子ホルダの基端を回転駆動部に取付けてな
る特許請求の範囲第1項記載の探触子回転型超音
波探傷装置。 3 探触子を探触子ホルダにて保持し、該探触子
ホルダの中心部に被検材を挿通搬送し、該被検材
の回りに探触子ホルダを高速回転させる探触子回
転型超音波探傷装置の運転方法において、 寸測用探触子を用いて、被検材を寸測し、この
寸測信号を出力すると共に、温度補償用探触子を
用いて、温度変化による音速変化を検出し、これ
により、上記寸測信号を補正する工程と、探傷用
探触子を用いて、被検材の探傷を行なう工程と、 を含んで構成されることを特徴する探触子回転型
超音波探傷装置の運転方法。
[Claims] 1. A probe is held in a probe holder, a test material is inserted and conveyed through the center of the probe holder, and the probe holder is moved around the test material at high speed. In a rotating probe type ultrasonic flaw detection device that performs flaw detection by rotating, a partition wall having a guide hole for guiding the test material is provided at both ends and the center of the probe holder to perform flaw detection. A water chamber and a dimension measurement water chamber are separated by the partition wall, and the former is provided with a flaw detection probe, while the latter is provided with a dimension measurement probe, and the dimension measurement water chamber is provided with a flaw detection probe. A rotating probe type ultrasonic flaw detection device comprising a temperature compensation probe attached near the probe to measure the speed of sound and compensate for the temperature. 2. When providing the water chamber for flaw detection and the water chamber for dimension measurement of the probe holder, the former is placed on the distal end side of the probe holder, the latter on the proximal end side of the probe holder,
The probe rotating type ultrasonic flaw detection device according to claim 1, wherein the proximal end of the probe holder is attached to a rotation drive section. 3. Probe rotation in which the probe is held in a probe holder, the test material is inserted and conveyed through the center of the probe holder, and the probe holder is rotated at high speed around the test material. In the method of operating an ultrasonic flaw detection system, a dimension measurement probe is used to measure the dimensions of the material to be inspected, and this measurement signal is output, and a temperature compensation probe is used to measure the dimensions of the material to be inspected due to temperature changes. A probe characterized by comprising: a step of detecting a change in sound velocity and thereby correcting the dimensional signal; and a step of performing flaw detection on a test material using a flaw detection probe. How to operate a rotary type ultrasonic flaw detection device.
JP60295991A 1985-12-27 1985-12-27 Probe rotating type ultrasonic flaw detection apparatus Granted JPS62153744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60295991A JPS62153744A (en) 1985-12-27 1985-12-27 Probe rotating type ultrasonic flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60295991A JPS62153744A (en) 1985-12-27 1985-12-27 Probe rotating type ultrasonic flaw detection apparatus

Publications (2)

Publication Number Publication Date
JPS62153744A JPS62153744A (en) 1987-07-08
JPH0515224B2 true JPH0515224B2 (en) 1993-03-01

Family

ID=17827719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60295991A Granted JPS62153744A (en) 1985-12-27 1985-12-27 Probe rotating type ultrasonic flaw detection apparatus

Country Status (1)

Country Link
JP (1) JPS62153744A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016475A (en) * 1989-09-20 1991-05-21 Kabushiki Kaisha Kobe Seiko Sho Wiredrawing apparatus including an ultrasonic flaw detector
JPH04161848A (en) * 1990-10-25 1992-06-05 Mitsubishi Electric Corp Automatic ultrasonic flaw detecting apparatus
JP3119750B2 (en) * 1992-11-30 2000-12-25 三菱原子燃料株式会社 Fuel rod weld inspection system
JP7415757B2 (en) * 2020-04-09 2024-01-17 大同特殊鋼株式会社 Ultrasonic flaw detection method for round bar materials
CN112325814A (en) * 2020-11-03 2021-02-05 成都锐科软控科技有限公司 Ultrasonic correlation thickness gauge and thickness measuring method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119982A (en) * 1978-02-10 1979-09-18 Commissariat Energie Atomique Device for testing quality of tubular article by ultrasonic waves
JPS5888653A (en) * 1981-11-24 1983-05-26 Nippon Kokan Kk <Nkk> Ultrasonic flaw detector
JPS597258A (en) * 1982-07-05 1984-01-14 Mitsubishi Electric Corp Ultrasonic flaw detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119982A (en) * 1978-02-10 1979-09-18 Commissariat Energie Atomique Device for testing quality of tubular article by ultrasonic waves
JPS5888653A (en) * 1981-11-24 1983-05-26 Nippon Kokan Kk <Nkk> Ultrasonic flaw detector
JPS597258A (en) * 1982-07-05 1984-01-14 Mitsubishi Electric Corp Ultrasonic flaw detection

Also Published As

Publication number Publication date
JPS62153744A (en) 1987-07-08

Similar Documents

Publication Publication Date Title
US4089227A (en) Apparatus for measuring the radial dimensions of a cylindrical tube by ultrasonics
US4304134A (en) Apparatus for ultrasonically inspecting circular bores
US4567747A (en) Self-calibration system for ultrasonic inspection apparatus
US4008603A (en) Ultrasonic method and apparatus for measuring wall thickness of tubular members
US7140253B2 (en) Device for the ultrasound measuring of cylindrical test models
EP0416245B1 (en) Ultrasonic system for determining the profile of solid bodies
EP0251698A2 (en) Boresonic inspection system
EP2053391A2 (en) Apparatus and method for nondestructive inspection of parts
US3850026A (en) Method and a device, for determining the cross-sectional dimensions of the inner space of elongated, tubular bodies
US3896662A (en) Ultrasonic measuring device
US5760306A (en) Probe head orientation indicator
JP2006153546A (en) Contact type steel pipe dimension-measuring device
JPH0515224B2 (en)
EP0410580B1 (en) Scanning outer profiles of control rods
JPH0515223B2 (en)
USRE30088E (en) Method and a device for determining the cross-sectional dimensions of the inner space of elongated, tubular bodies
JPS6315104A (en) Inner-hole mapping device and method
KR20200061419A (en) Automatic rotating ultrasonic inspection system using brushless
JPH0320775Y2 (en)
CN112461167B (en) Nondestructive testing device for thickness of damping layer of torsional vibration damper
JP4118487B2 (en) Steel pipe corrosion diagnosis method
JPH0232249A (en) Ultrasonic flaw detection probe
JPS62153741A (en) Probe rotating type ultrasonic flaw detection apparatus
CA1303723C (en) Positioning assembly for a transducer in a boresonic inspection system
JPH05126803A (en) Automatic ultrasonic flaw detecting apparatus