JPH0515146B2 - - Google Patents

Info

Publication number
JPH0515146B2
JPH0515146B2 JP58096132A JP9613283A JPH0515146B2 JP H0515146 B2 JPH0515146 B2 JP H0515146B2 JP 58096132 A JP58096132 A JP 58096132A JP 9613283 A JP9613283 A JP 9613283A JP H0515146 B2 JPH0515146 B2 JP H0515146B2
Authority
JP
Japan
Prior art keywords
brake
eddy current
brake disc
magnetic flux
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58096132A
Other languages
Japanese (ja)
Other versions
JPS59222072A (en
Inventor
Toshiro Hasebe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP9613283A priority Critical patent/JPS59222072A/en
Publication of JPS59222072A publication Critical patent/JPS59222072A/en
Publication of JPH0515146B2 publication Critical patent/JPH0515146B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • H02K49/04Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type
    • H02K49/046Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type with an axial airgap

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は鉄道車両等に使用されるデイスク形の
うず電流ブレーキ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a disc-shaped eddy current brake device used in railway vehicles and the like.

(従来の技術) 車両用のデイスク形うず電流ブレーキ装置は、
一般に、第1図及び第2図に示すように、車軸1
に磁性体からなる制動円板2をそのボス部3を車
軸1に圧入嵌合して固定し、この制動円板2の外
周部の両側にそれぞれ複数個の励磁コイル4を、
制動円板2面に接近対向させて制動円板周方向に
配設した構成となつており、前記励磁コイル4
は、その磁極鉄心5を固定枠6に固定して、この
固定枠6を介して台車枠7に支持されている。
(Prior art) A disc-type eddy current brake device for vehicles is
Generally, as shown in FIGS. 1 and 2, the axle 1
A brake disc 2 made of a magnetic material is fixed by press-fitting its boss portion 3 onto the axle 1, and a plurality of excitation coils 4 are installed on both sides of the outer circumference of the brake disc 2, respectively.
The excitation coil 4 is arranged in the circumferential direction of the brake disc so as to be close to and opposite to the two surfaces of the brake disc.
The magnetic pole core 5 is fixed to a fixed frame 6, and is supported by a bogie frame 7 via the fixed frame 6.

このうず電流ブレーキ装置は、励磁コイル4を
励磁して回転中の制動円板2にうず電流を発生さ
せ、この制動円板2に発生したうず電流の作用に
より制動円板2にその回転方向(車軸1の回転方
向)と逆方向のブレーキトルクを生じさせて車軸
1にブレーキ力を与えるもので、従来のうず電流
ブレーキ装置では、制動円板2をはさんで対向す
る励磁コイル4を、制動円板2と対向する磁極面
の極性が異なる極性となる(一方の励磁コイル4
の制動円板2と対向する磁極面がN極となり他方
の励磁コイル4の制動円板2と対向する磁極面が
S極となる)ように励磁している。
This eddy current brake device excites the excitation coil 4 to generate eddy current in the rotating brake disc 2, and the action of the eddy current generated in the brake disc 2 causes the brake disc 2 to move in its rotational direction ( This device applies braking force to the axle 1 by generating a brake torque in the opposite direction to the direction of rotation of the axle 1. In the conventional eddy current brake device, the excitation coil 4 facing the brake disc 2 is The polarity of the magnetic pole surface facing the disk 2 is different (one excitation coil 4
The magnetic pole surface facing the braking disk 2 of the other excitation coil 4 becomes the north pole, and the magnetic pole surface facing the braking disk 2 of the other excitation coil 4 becomes the south pole.

(発明が解決しようとする課題) しかしながら、このように制動円板2をはさん
で対向する励磁コイル4の対向する磁極面の極性
を異なる極性としている異極対向方式のうず電流
ブレーキ装置では、制動円板2の局部加熱が発生
し、そのために制動円板2の寿命を縮める結果と
なるし、また低速度で車両が走行しているときの
ブレーキ力が小さくなつてしまうという問題があ
つた。
(Problem to be Solved by the Invention) However, in the eddy current braking device of the different polarity opposing type in which the polarities of the opposing magnetic pole surfaces of the excitation coils 4 facing each other with the braking disk 2 in between are set to different polarities, Local heating of the brake disc 2 occurs, which shortens the life of the brake disc 2, and there is also the problem that the braking force is reduced when the vehicle is running at low speeds. .

すなわち、制動円板2はうず電流が発生するこ
とによつて発熱するが、従来の異極対抗方式のう
ず電流ブレーキ装置では、制動円板2の外周部分
に磁束が集中するために、制動円板2のうず電流
による発熱温度分布が第3図に示すように制動円
板2の外周部付近に非常に高温のピークをもつ分
布となり、この局部加熱部分に大きな熱応力を発
生するために、制動円板2の熱劣化が激しく、表
面に亀裂等の損傷を生じて寿命を縮めてしまうこ
とになる。また、うず電流ブレーキ装置の励磁コ
イル4は、通常一定の励磁電流で励磁されている
が、従来のうず電流ブレーキ装置では、励磁電流
を一定とした場合の車両速度(制動円板2の回転
速度)に対するブレーキ特性が第4図に示すよう
になるために、車両の速度が下がるのにともなつ
てブレーキ力が極端に低下し、十分なブレーキ力
が得られなくなつてしまうから、うず電流ブレー
キ装置を大型化するか、あるいはエアブレーキ装
置等の他のブレーキ装置を併用することが必要と
なつていた。
In other words, the brake disk 2 generates heat due to the generation of eddy current, but in the conventional eddy current brake device of the different polarity opposing method, the magnetic flux concentrates on the outer circumference of the brake disk 2, so the brake disk As shown in Fig. 3, the heat generation temperature distribution due to the eddy current in the plate 2 has a very high temperature peak near the outer periphery of the brake disc 2, and large thermal stress is generated in this locally heated area. Thermal deterioration of the brake disc 2 is severe, causing damage such as cracks on the surface and shortening its life. In addition, the excitation coil 4 of the eddy current brake device is normally excited with a constant excitation current, but in the conventional eddy current brake device, the vehicle speed (rotational speed of the brake disc 2) when the excitation current is constant is ), as shown in Figure 4, the braking force decreases extremely as the vehicle speed decreases, making it impossible to obtain sufficient braking force. It has become necessary to increase the size of the device or to use other brake devices such as an air brake device.

本発明は上記のような実情にかんがみてなされ
たものであつて、その目的とするところは、制動
円板の発熱温度分布を平均化させることによつて
制動円板の寿命を永く保てるようにすると共に、
低速域でも十分なブレーキ力が得られるようにし
たうず電流ブレーキ装置を提供することにある。
The present invention was made in view of the above-mentioned circumstances, and its purpose is to prolong the life of the brake disc by equalizing the heat generation temperature distribution of the brake disc. At the same time,
To provide an eddy current brake device capable of obtaining sufficient braking force even in a low speed range.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明のうず電流ブレーキ装置は、車軸に固定
された制動円板の外周部の両側に、励磁コイルを
制動円板面に近接対向させて制動円板周方向に複
数個配置し、前記励磁コイルを励磁して制動円板
にうず電流を発生させて車軸にブレーキ力を与え
るうず電流ブレーキ装置において、前記制動円板
をはさんで対向する励磁コイルの制動円板と対向
する磁極面の極性を同じにしたことを特徴とする
ものである。
(Means for Solving the Problems) The eddy current brake device of the present invention has excitation coils placed on both sides of the outer periphery of a brake disc fixed to an axle in close opposition to the brake disc surface in the circumferential direction of the brake disc. In an eddy current braking device, a plurality of excitation coils are arranged in the eddy current brake system, and the excitation coil is excited to generate an eddy current in the brake disk to apply a braking force to the axle. The feature is that the polarity of the magnetic pole face facing the plate is the same.

(作用) すなわち、本発明は、制動円板をはさんで対向
する励磁コイルの制動円板と対向する磁極面の極
性を同じにすることによつて、制動円板の外周部
分への磁束の集中を避けることにより、制動円板
の発熱温度分布を均一化させると共に低速域での
ブレーキ力の低下を防ぐようにしたものである。
(Function) That is, the present invention reduces the magnetic flux to the outer circumferential portion of the braking disc by making the polarity of the magnetic pole surface facing the braking disc of the excitation coil the same as that of the excitation coil that faces the braking disc with the braking disc in between. By avoiding concentration, the heat generation temperature distribution of the brake disc is made uniform, and the braking force is prevented from decreasing in the low speed range.

(実施例) 以下、本発明の一実施例を図面を参照して説明
する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

このうず電流ブレーキ装置は、第5図に示すよ
うに、制動円板2をはさんで対向する励磁コイル
4を、その制動円板2と対向する磁極面の極性が
同じになるようにしている。すなわち、例えば第
5図に示されたものは、N極同士が対向するよう
に励磁されている。なお、この実施例のうず電流
ブレーキ装置は、前記励磁コイル4の極性に関す
る点を除けばその他の構成第1図及び第2図に示
した従来のうず電流ブレーキ装置と同じであるか
ら、その説明は図面に同符号を付して省略する。
As shown in FIG. 5, this eddy current brake device has an excitation coil 4 facing across a brake disk 2 so that the polarity of the magnetic pole surface facing the brake disk 2 is the same. . That is, for example, the one shown in FIG. 5 is excited so that the N poles are opposed to each other. The eddy current brake device of this embodiment has the same structure as the conventional eddy current brake device shown in FIGS. 1 and 2 except for the polarity of the excitation coil 4, so the explanation thereof will be omitted. are omitted with the same reference numerals in the drawings.

次に、上記実施例のうず電流ブレーキ装置の作
用について説明する。第6図は従来のうず電流ブ
レーキ装置の磁束分布を示す周方向展開図、第7
図は第6図の正面図であり、第8図は上記実施例
のうず電流ブレーキ装置の磁束分布を示す周方向
展開図、第9図は第8図の正面図である。
Next, the operation of the eddy current brake device of the above embodiment will be explained. Figure 6 is a circumferential development diagram showing the magnetic flux distribution of a conventional eddy current brake device;
6 is a front view of FIG. 6, FIG. 8 is a developed view in the circumferential direction showing the magnetic flux distribution of the eddy current brake device of the above embodiment, and FIG. 9 is a front view of FIG. 8.

まず、制動円板2の発熱温度分布を均一化させ
る理由について説明する。従来のうず電流ブレー
キ装置においては、制動円板2をはさんで対向す
る励磁コイル4の対向する磁極面の極性が異なる
異極対向となつているため、第6図及び第7図に
示すように、ブレーキ力にほとんど寄与せずに制
動円板2を貫通する磁束(図中破線で示す磁束)
が速度に無関係に存在する。
First, the reason for making the heat generation temperature distribution of the brake disc 2 uniform will be explained. In the conventional eddy current brake device, the opposing magnetic pole surfaces of the excitation coil 4 facing each other with the brake disc 2 in between are oppositely polarized with different polarities, as shown in FIGS. 6 and 7. The magnetic flux that penetrates the brake disc 2 without contributing almost to the braking force (magnetic flux indicated by the broken line in the figure)
exists regardless of speed.

この貫通磁束は表皮効果により制動円板の外周
にのみ発生するが、その理由について以下に説明
する。制動円板上の1点から磁束をみた場合に
は、異なる磁極が並んでいるため、直流励磁をし
ても見かけ上交流の磁束が観測される。このよう
な場合には一般に、マツクスウエルの方程式によ
り導かれる表皮効果により磁束は表面に集中し、
厚さ方向に進むにしたがつて磁束は指数関数的に
減少することが知られている。磁極を異極対向と
した場合には、制動円板の外周も表面となり得る
ため、この部分を通つて一部の磁束が対向する磁
極に到達する。しかしながら、制動円板の外周以
外の部分に関しては磁束は貫通できないため隣り
合う磁極に流れる。このため上述したように、制
動円板2の外周部付近が局部加熱されていた。一
方、上記実施例のうず電流ブレーキ装置において
は、制動円板2をはさんで対向する励磁コイル4
の対向する磁極面の極性が同じであるため、第8
図及び第9図に示すように、制動円板2を貫通す
る磁束はなく、磁束はすべて隣接する磁極へ入る
ことになる。このため、制動円板2の外周部付近
が局部加熱されることはない。
This penetrating magnetic flux is generated only on the outer periphery of the brake disk due to the skin effect, and the reason for this will be explained below. When looking at the magnetic flux from one point on the brake disk, since different magnetic poles are lined up, an apparent alternating current magnetic flux is observed even when DC excitation is applied. In such cases, the magnetic flux is generally concentrated on the surface due to the skin effect derived from Maxwell's equation,
It is known that magnetic flux decreases exponentially as it progresses in the thickness direction. When the magnetic poles are opposite to each other, the outer periphery of the brake disk can also become a surface, and a part of the magnetic flux reaches the opposing magnetic poles through this portion. However, the magnetic flux cannot pass through the parts other than the outer periphery of the brake disc, and therefore flows to adjacent magnetic poles. Therefore, as described above, the vicinity of the outer circumference of the brake disc 2 is locally heated. On the other hand, in the eddy current brake device of the above embodiment, the excitation coils 4 facing each other with the brake disc 2 in between are
Since the polarities of the opposing magnetic pole faces are the same, the eighth
As shown in the figure and FIG. 9, there is no magnetic flux passing through the brake disc 2, and all the magnetic flux will enter the adjacent magnetic poles. Therefore, the vicinity of the outer periphery of the brake disc 2 is not locally heated.

このように、上記実施例のうず電流ブレーキ装
置においては、制動円板2をはさんで対向する励
磁コイル4の制動円板2と対向する磁極面の極性
を同じにしているので、上述の理由により制動円
板2の外周部分への磁束の集中を避けることがで
き、磁極全体から隣接する磁極に平均して流れる
ため、制動中における制動円板2の発熱温度分布
は、第10図に実線で示すように同図に破線で示
した従来のうず電流ブレーキ装置における制動円
板の発熱温度分布に比べて高温のピークがない均
一化された温度分布となる。従つて、このうず電
流ブレーキ装置によれば、制動円板2の局部加熱
をなくして制動円板2の熱劣化をおさえ、制動円
板2の寿命を永く保つことができる。
In this way, in the eddy current brake device of the above embodiment, the polarity of the magnetic pole surface facing the braking disc 2 of the excitation coil 4 facing the braking disc 2 is the same, so that the above-mentioned reason can be solved. This prevents the concentration of magnetic flux on the outer circumferential portion of the brake disc 2, and the magnetic flux flows from the entire magnetic pole to the adjacent magnetic pole on average. Therefore, the heat generation temperature distribution of the brake disc 2 during braking is shown by the solid line in Figure 10. As shown in the figure, the temperature distribution is more uniform with no high-temperature peaks than the heat generation temperature distribution of the brake disk in the conventional eddy current brake device shown by the broken line in the figure. Therefore, according to this eddy current brake device, local heating of the brake disc 2 can be eliminated, thermal deterioration of the brake disc 2 can be suppressed, and the life of the brake disc 2 can be maintained for a long time.

次に、低速域でも十分なブレーキ力が得られる
理由について説明する。
Next, the reason why sufficient braking force can be obtained even in the low speed range will be explained.

従来のうず電流ブレーキ装置においては、異極
対向であるため、磁極を出た磁束は第6図及び第
7図に示すように、制動円板2の周方向を通つて
隣接する磁極に入る磁束(図に実線で示す磁束)
と、制動円板2の外周部を貫通して対向する磁極
に入る磁束(図に破線で示す磁束)に分流する。
ところが上記実施例のうず電流ブレーキ装置は、
同極対向であるため、磁極を出た磁束は第8図及
び第9図に示すように、すべて制動円板2の周方
向を通つて隣接する磁極に入る。
In a conventional eddy current brake device, since the magnetic poles are opposite to each other, the magnetic flux exiting the magnetic poles passes through the circumferential direction of the brake disc 2 and enters the adjacent magnetic pole, as shown in FIGS. 6 and 7. (Magnetic flux shown as a solid line in the figure)
Then, the magnetic flux is divided into magnetic fluxes (magnetic flux shown by broken lines in the figure) that penetrate the outer circumference of the brake disk 2 and enter the opposing magnetic poles.
However, the eddy current brake device of the above embodiment,
Since the magnetic poles are opposite to each other, all the magnetic flux leaving the magnetic pole passes through the circumferential direction of the brake disc 2 and enters the adjacent magnetic pole, as shown in FIGS. 8 and 9.

そして、低速域(すなわち制動円板の回転周波
数が小さい場合)では、マツクスウエルの方程式
により明らかなように、磁束の浸透深さが深くな
るため、磁気飽和しなくなり磁気抵抗が小さくな
る。従つて、磁極の励磁によつて得られる励磁ア
ンペアターンの大部分は最も磁気抵抗の高い空隙
部で消費されることになる。これより、「励磁ア
ンペアターン≒空隙アンペアターン」が成立す
る。
In a low speed range (that is, when the rotational frequency of the brake disc is low), as is clear from Maxwell's equation, the penetration depth of the magnetic flux becomes deeper, so magnetic saturation does not occur and the magnetic resistance decreases. Therefore, most of the excitation ampere turns obtained by excitation of the magnetic poles will be consumed in the air gap where the magnetic resistance is highest. From this, "excitation ampere turn≒air gap ampere turn" is established.

このうず電流ブレーキ装置の励磁電流を一定と
したときの車両速度(制動円板2の回転速度)に
対するブレーキ力特性は、制動円板の厚さを所定
の条件にした場合には、磁極の配置を同極対向と
することにより低速域でのブレーキ力は増大する
が、速度が上昇して行くにしたがつて制動円板へ
の磁束の浸透深さが浅くなるため、磁気飽和し易
くなり磁気抵抗が大きくなるので、その分だけ減
少することが実験により裏付けられた。
When the excitation current of this eddy current brake device is kept constant, the braking force characteristics with respect to the vehicle speed (rotational speed of the brake disc 2) are as follows: When the thickness of the brake disc is set to a predetermined condition, the magnetic pole arrangement By arranging the same poles to face each other, the braking force increases in the low speed range, but as the speed increases, the depth of penetration of the magnetic flux into the brake disc becomes shallower, making it easier for magnetic saturation to occur. Experiments have confirmed that as the resistance increases, it decreases by that amount.

第11図は異極対向と同極対向とのブレーキ力
特性を対比するためのもので、制動円板としては
板厚36mmの特殊鍛鋼を採用し、渦電流ブレーキ装
置の極数を片側4極のNSNS配置として、励磁電
流を100Aとした場合の速度ブレーキ力特性の実
測データを用いて作成された表であり、実線は同
極対向配置を、破線は異極対向配置を示してい
る。図中、同極対向配置を示す実線のブレーキ力
特性は、異極対向配置を示す破線のブレーキ力特
性に比べて、大きなブレーキ力が必要となる低速
域でのブレーキ力の低下は非常に小さく、高速域
から低速域まで十分なブレーキ力で安定した車両
制動を行なうことができた。
Figure 11 is for comparing the braking force characteristics of different-pole opposing and same-pole opposing.Special forged steel with a plate thickness of 36 mm is used as the braking disc, and the number of poles of the eddy current brake device is set to 4 on one side. This is a table created using actual measured data of speed braking force characteristics when the excitation current is 100A for the NSNS arrangement.The solid line shows the same-polarity opposing arrangement, and the broken line shows the different-polarity opposing arrangement. In the figure, the braking force characteristic indicated by the solid line indicating the same-pole opposing arrangement has a very small decrease in braking force in the low-speed range where a large braking force is required, compared to the brake force characteristic indicated by the broken line indicating the opposite-pole opposing arrangement. The vehicle was able to brake stably with sufficient braking force from high speed to low speed ranges.

ここで、制動円板の板厚としては、磁極を異極
対向としたときに、少なくとも中低速度領域で磁
束が貫通しない程度の厚さを有していれば良く、
具体的には例えば所定の(ある程度大きな)制動
トルクが必要な最低列車速度を時速約20Km(第1
1図の回転数では150rpm程度)とした場合に必
要な板厚は、列車の諸条件によつて変わつてくる
が、約20mm程度になるので、これ以上の板厚があ
ればよい。
Here, the thickness of the braking disk should be such that when the magnetic poles are opposite to each other, the magnetic flux does not penetrate at least in the medium and low speed region,
Specifically, for example, the minimum train speed that requires a predetermined (somewhat large) braking torque is set at approximately 20km/h (first
The required plate thickness will vary depending on the conditions of the train, but it will be approximately 20 mm if the rotation speed shown in Figure 1 is approximately 150 rpm, so any plate thickness greater than this is sufficient.

以上説明した通り本発明の上述した実施例によ
れば、制動円板の板厚を、磁極を異極対向とした
ときに、少なくとも中低速度領域で磁束が貫通し
ない程度の厚さとすることにより、制動円板の局
部加熱をなくして発熱温度分布を平均化させるこ
とにより制動円板の寿命を永く保つことができる
と共に、低速域でのブレーキ力の低下を抑え、十
分なブレーキ力を得ることができるので、安定し
た車両制動を行なうことが可能になる。
As explained above, according to the above-described embodiment of the present invention, the thickness of the braking disk is set to such a thickness that magnetic flux does not penetrate at least in the medium and low speed range when the magnetic poles are opposite to each other. By eliminating local heating of the brake disc and averaging the heat generation temperature distribution, the life of the brake disc can be maintained for a long time, and the reduction in braking force at low speeds can be suppressed to obtain sufficient braking force. This makes it possible to perform stable vehicle braking.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、制動円板の発熱温度分布を平
均化させて制動円板の寿命を永く保つことができ
ると共に、低速域でも十分なブレーキ力を得るこ
とができる。
According to the present invention, the heat generation temperature distribution of the brake disc can be averaged to extend the life of the brake disc, and sufficient braking force can be obtained even in a low speed range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のうず電流ブレーキ装置の側面
図、第2図は第1図の−線に沿う断面図、第
3図及び第4図は従来のうず電流ブレーキ装置に
おける制動円板の発熱温度分布図及びブレーキ力
特性図、第5図は本発明の一実施例を示すうず電
流ブレーキ装置の縦断面図、第6図は従来のうず
電流ブレーキ装置の磁束分布を示す周方向展開
図、第7図は第6図の正面図、第8図は本発明の
うず電流ブレーキ装置の磁束分布を示す周方向展
開図、第9図は第8図の正面図、第10図及び第
11図は本発明のうず電流ブレーキ装置における
制動円板の発熱温度分布図及びブレーキ力特性図
である。 1……車軸、2……制動円板、4……励磁コイ
ル、5……磁極鉄心。
Fig. 1 is a side view of a conventional eddy current brake device, Fig. 2 is a sectional view taken along the - line in Fig. 1, and Figs. 3 and 4 are heat generation temperatures of the brake disc in a conventional eddy current brake device. Distribution diagram and brake force characteristic diagram; FIG. 5 is a vertical cross-sectional view of an eddy current brake device showing an embodiment of the present invention; FIG. 6 is a circumferential developed view showing the magnetic flux distribution of a conventional eddy current brake device; 7 is a front view of FIG. 6, FIG. 8 is a circumferential developed view showing the magnetic flux distribution of the eddy current brake device of the present invention, FIG. 9 is a front view of FIG. 8, and FIGS. 10 and 11 are FIG. 3 is a heat generation temperature distribution diagram and a brake force characteristic diagram of a brake disc in the eddy current brake device of the present invention. 1... Axle, 2... Braking disk, 4... Excitation coil, 5... Magnetic pole iron core.

Claims (1)

【特許請求の範囲】[Claims] 1 車軸に固定された制動円板が励磁コイルを異
極対向としたときに少なくとも中低速度領域で磁
束がその外周部分に集中するような厚さを有し、
この制動円板の両側に励磁コイルを制動円板面に
近接対向させて制動円板周方向に複数個配置し、
前記励磁コイルを励磁して制動円板にうず電流を
発生させて車軸にブレーキ力を与えるうず電流ブ
レーキ装置において、前記制動円板をはさんで対
向する励磁コイルの制動円板と対向する磁極面の
極性を同じにしたことを特徴とするうず電流ブレ
ーキ装置。
1. The brake disc fixed to the axle has a thickness such that when the excitation coils are oppositely polarized, the magnetic flux is concentrated on the outer circumference at least in the medium and low speed range,
A plurality of excitation coils are arranged on both sides of the brake disc in the circumferential direction of the brake disc so as to closely face the brake disc surface,
In the eddy current brake device that excites the excitation coil to generate eddy current in the brake disk to apply a braking force to the axle, a magnetic pole surface facing the brake disk of the excitation coil that faces across the brake disk. An eddy current brake device characterized by having the same polarity.
JP9613283A 1983-05-31 1983-05-31 Eddy current brake device Granted JPS59222072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9613283A JPS59222072A (en) 1983-05-31 1983-05-31 Eddy current brake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9613283A JPS59222072A (en) 1983-05-31 1983-05-31 Eddy current brake device

Publications (2)

Publication Number Publication Date
JPS59222072A JPS59222072A (en) 1984-12-13
JPH0515146B2 true JPH0515146B2 (en) 1993-02-26

Family

ID=14156861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9613283A Granted JPS59222072A (en) 1983-05-31 1983-05-31 Eddy current brake device

Country Status (1)

Country Link
JP (1) JPS59222072A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602069A (en) * 1983-06-17 1985-01-08 Mitsubishi Electric Corp Disk type eddy current brake

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119747A (en) * 1976-03-31 1977-10-07 Hitachi Metals Ltd Magnetic coupling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119747A (en) * 1976-03-31 1977-10-07 Hitachi Metals Ltd Magnetic coupling

Also Published As

Publication number Publication date
JPS59222072A (en) 1984-12-13

Similar Documents

Publication Publication Date Title
US6148967A (en) Non-contacting and torquer brake mechanism
JP2000245085A (en) Motor
Luo et al. Research on an integrated electromagnetic auxiliary disc brake device for motor vehicle
JPH0515146B2 (en)
JP3653838B2 (en) Permanent magnet type synchronous rotating machine rotor
US20040262105A1 (en) Eddy-current wheelend retarder featuring modified rotor skin effect
US6400060B1 (en) Electrical machine with stator and claw pole rotor system
US4668886A (en) Eddy current retarders
US3447012A (en) Rotor construction
EP3961203B1 (en) Leakage magnetic flux flaw inspection device
Takasugi et al. Development of contactless dynamic spindle testing using an eddy current brake
JPS61161955A (en) Eddy current brake for vehicle
JP3765290B2 (en) Eddy current reducer
WO2022201396A1 (en) Synchronous reluctance motor
US5942826A (en) Eddy current apparatus
JPS60194750A (en) Eddy current brake device
Sato et al. Fundamental study on eddy current brake of using a three phase AC excitation method
JP3484992B2 (en) Eddy current speed reducer
Mishra et al. Identification and analysis of different parameters for eddy current braking system along with its applications
JPS60213260A (en) Eddy current brake device
JPS60102870A (en) Eddy current brake device
JPH07243444A (en) Thrust magnetic bearing device
JPH0610943A (en) Temperature control type magnetic roll
JP3690486B2 (en) Eddy current reducer
JPS60153681U (en) Disc type eddy current brake