JPS60102870A - Eddy current brake device - Google Patents
Eddy current brake deviceInfo
- Publication number
- JPS60102870A JPS60102870A JP20862083A JP20862083A JPS60102870A JP S60102870 A JPS60102870 A JP S60102870A JP 20862083 A JP20862083 A JP 20862083A JP 20862083 A JP20862083 A JP 20862083A JP S60102870 A JPS60102870 A JP S60102870A
- Authority
- JP
- Japan
- Prior art keywords
- disc
- poles
- disk
- magnetic
- eddy current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K49/00—Dynamo-electric clutches; Dynamo-electric brakes
- H02K49/02—Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
- H02K49/04—Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type
- H02K49/046—Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type with an axial airgap
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明はディスクタイプのうず電済ブレーキに関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a disc type eddy electric brake.
従来のディスクタイプうず電流グV−キとしるディスク
で口伝軸(1)に装着さn、ている。(3)は一対以上
より成る磁極で、ディスク(2)の両側1に空隙を持ち
磁極(3)が複数対の時はディスク(2)の同じ側に並
んだ磁極(3)は隣り合った磁極(3)が5極性となる
ように配置さ扛ている。(4)は磁極(3)?励磁する
界磁巻線、(5)は磁極(3)を支える磁極枠である。A conventional disc type eddy current V-key disc is mounted on the transmission shaft (1). (3) is a magnetic pole consisting of one or more pairs, with an air gap on both sides 1 of the disk (2), and when there are multiple pairs of magnetic poles (3), the magnetic poles (3) lined up on the same side of the disk (2) are adjacent to each other. The magnetic poles (3) are arranged so as to have five polarities. (4) is magnetic pole (3)? The field winding to be excited (5) is a magnetic pole frame that supports the magnetic pole (3).
次に動作について説明する。界磁巻線(4)に一定 ゛
と
の直流電流?通すオ各磁極+3)によジ固定子側に定在
磁束分布が得られる。この定在磁束分布の中をディスク
(2)全回転軸(1)ヲ介して回転させると、ディスク
(2)の内部にうす電流が誘起さ几、ディスクで2)に
制動トルクが働く。第4図は対向する磁層(2)を同極
性にした時の主磁束の流ルを示し、第5図は異極性にし
た時の主磁束?示し、破線はディスク(2)全貫通する
磁束を示す。この貫通磁束の量を調整することによって
実線で示す主磁束が調整され制動トルクが調整出来る。Next, the operation will be explained. Is there a constant DC current in the field winding (4)? A standing magnetic flux distribution is obtained on the stator side by passing each magnetic pole +3). When the disk (2) is rotated through the entire rotating shaft (1) in this standing magnetic flux distribution, a thin current is induced inside the disk (2), and a braking torque is applied to the disk (2). Figure 4 shows the flow of the main magnetic flux when the opposing magnetic layers (2) have the same polarity, and Figure 5 shows the flow of the main magnetic flux when they have different polarities. The broken line indicates the magnetic flux that completely penetrates the disk (2). By adjusting the amount of this penetrating magnetic flux, the main magnetic flux shown by the solid line can be adjusted and the braking torque can be adjusted.
第6図において曲線Aは磁極(3)の極数が8対で極間
のピッチが45°に配置さnた異極1生配置のうず電流
ブレーキでディスク(2)の回転数に対する制動トルク
を実測した特性である。なお、励磁電流は12000A
T/極にしである。In Fig. 6, curve A shows the braking torque relative to the rotational speed of the disc (2) for an eddy current brake with a different polarity configuration in which the number of magnetic poles (3) is 8 and the pitch between the poles is 45°. This is the characteristic that was actually measured. In addition, the excitation current is 12000A
It is on the T/ pole.
曲線Bは上記の他の条件は変えずに同極性にした時のデ
ィスク(2)の回転数に対する制動トルクの実測結果で
るる。Curve B shows the actual measurement result of braking torque with respect to the rotational speed of the disk (2) when the other conditions mentioned above are kept the same and the polarity is the same.
以上のような従来の磁極対向配置では同極性の場会ディ
スク(2)の回転数が比較的(1&い範囲では化11動
トルりが大きいが回転数が高くなるにつれて凹下する欠
点をもち、一方晶極性の場合巨11(云数汐≦中程度よ
り1氏下するにつ几て:n1lilIカド7シりカ玉著
しく1氏去するためになさルたもので、ディスクの四i
云数の広い範囲ではソ一定の制T!v+ )ルク14る
うず電流ブt/−斗′に提供することを目的として、少
なくとも一対の磁極?回転軸方向両側に回1云方向に互
いにずらして配Iざtしたものである。In the conventional magnetic pole facing arrangement as described above, the rotating speed of the field disk (2) of the same polarity is relatively large (in the range of 1 and 2, the dynamic torque is large, but it has the disadvantage that it becomes concave as the rotating speed increases). , on the other hand, in the case of crystal polarity, it was made to significantly remove 1 degree from the gigantic 11 (yum number ≦ medium), and the 4 i of the disk
In a wide range of numbers, there is a constant system T! v+) at least one pair of magnetic poles for the purpose of providing an eddy current of 14 hours. They are arranged so as to be offset from each other in the rotation direction on both sides in the direction of the rotation axis.
以下この発明の一実施例’k l”F+についてn免1
す1する。第71Z1、第s +=ばそnぞれ第2図、
第8図に対応するものでちり、符号はすべて同一である
ので説明は省略する。The following is an example of an embodiment of this invention.
S1. 71Z1, s + = Bason Fig. 2,
This corresponds to FIG. 8 and all the reference numerals are the same, so the explanation will be omitted.
第7図1・第8図において磁極(3)はディスク(2)
?挾んで従来磁@面が各々完全に対向していたものt回
転方向にずらせて配置されている。この回転方向にすら
T、量全調整することによりディスク(2)の回転数に
対する制動トルクは実験によると、第6図Cのようにな
る。In Figure 7 1 and Figure 8, the magnetic pole (3) is the disk (2)
? Conventionally, the magnetic surfaces were completely opposed to each other, but they are now placed offset in the rotational direction. According to experiments, the braking torque with respect to the rotational speed of the disk (2) becomes as shown in FIG. 6C by fully adjusting the amount T even in this direction of rotation.
この特性は、異極性配置でありディスクの片側の磁WA
ケ各々104°ずらした時の実測値でおる。This characteristic is due to the different polarity arrangement and the magnetic WA on one side of the disk.
*Actually measured values when shifted by 104°.
なお、上記実施例では磁極(3)に界磁巻線(4)?有
する場8−?示したが、磁極(3)が永久磁石であって
も上記実施例と同様な効果?奏する。In addition, in the above embodiment, the field winding (4) is connected to the magnetic pole (3). Place to have 8-? However, even if the magnetic pole (3) is a permanent magnet, is the same effect as in the above embodiment? play.
このようにこの発明によれば第6図の曲線Cに示さ几る
如く、対向する磁極ヲディスクの回転方向にずらすこと
により一定な界磁電流に対してディスクの回転数の広い
範囲ではソ一定の制動トルクが得られるうず電流ブレー
キが得らnるという効果がある。In this way, according to the present invention, as shown by curve C in FIG. 6, by shifting the opposing magnetic poles in the direction of rotation of the disk, the magnetic field current remains constant over a wide range of disk rotational speeds for a constant field current. This has the effect of providing an eddy current brake that provides braking torque.
第1図は従来のディスクタイプうず電流ブレーキの正面
図、第2図は第1図■−■線における断面全矢印方向に
見た断面図、@8図は第2図111−■線における断面
全矢印方向に見た円周方向の展開図、第4図は磁極対向
を同極性にした主磁束の流れを示した図、第6図は異極
性にした時の主磁束の流nk示した図、第6図はディス
クの回転数に対する制動力の関係を実測によって得らn
た結果を示す図、第7図は本発明の一実施例を示す磁極
の配置図、第8図は第7図Vlil −V!11線にお
ける旧i面を矢印方向より見た円周方向の展開図である
。
図において、C2)はディスク、(3)は磁極である。
なお、図において同一符号は同−又は相当部分?示す。
代理人 大岩増雄
第1図
第3図Figure 1 is a front view of a conventional disc type eddy current brake, Figure 2 is a cross-sectional view taken along line ■-■ in Figure 1, taken in the direction of the full arrow, and Figure @8 is a cross-section taken along line 111--■ in Figure 2. A developed view of the circumferential direction as seen in the direction of all the arrows. Figure 4 shows the flow of the main magnetic flux when the opposing magnetic poles have the same polarity. Figure 6 shows the flow of the main magnetic flux when the opposite polarities are set. Figure 6 shows the relationship between the braking force and the rotational speed of the disc, obtained by actual measurements.
FIG. 7 is a diagram showing the arrangement of magnetic poles showing one embodiment of the present invention, and FIG. 11 is a circumferential development view of the old i-plane viewed from the direction of the arrow. FIG. In the figure, C2) is a disk, and (3) is a magnetic pole. In addition, are the same symbols in the figures the same or equivalent parts? show. Agent Masuo Oiwa Figure 1 Figure 3
Claims (1)
転軸方向両側に回転方向に互いにずらせて配置さt’b
た少くとも一対の磁I′Cと全9INλたうず電流ブレ
ーキ。A disk consisting of a rotating magnetic pole body, and t'b arranged on both sides of the disk in the rotational axis direction so as to be offset from each other in the rotational direction.
At least one pair of magnetic I'C and a total of 9INλ current brakes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20862083A JPS60102870A (en) | 1983-11-07 | 1983-11-07 | Eddy current brake device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20862083A JPS60102870A (en) | 1983-11-07 | 1983-11-07 | Eddy current brake device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60102870A true JPS60102870A (en) | 1985-06-07 |
Family
ID=16559236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20862083A Pending JPS60102870A (en) | 1983-11-07 | 1983-11-07 | Eddy current brake device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60102870A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105591523A (en) * | 2016-01-08 | 2016-05-18 | 中国科学院电工研究所 | Permanent magnet electromagnetic composite disc type eddy current braking device |
CN112003450A (en) * | 2020-08-04 | 2020-11-27 | 南京航空航天大学 | Electromagnetic variable damping controller |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52119747A (en) * | 1976-03-31 | 1977-10-07 | Hitachi Metals Ltd | Magnetic coupling |
-
1983
- 1983-11-07 JP JP20862083A patent/JPS60102870A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52119747A (en) * | 1976-03-31 | 1977-10-07 | Hitachi Metals Ltd | Magnetic coupling |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105591523A (en) * | 2016-01-08 | 2016-05-18 | 中国科学院电工研究所 | Permanent magnet electromagnetic composite disc type eddy current braking device |
CN112003450A (en) * | 2020-08-04 | 2020-11-27 | 南京航空航天大学 | Electromagnetic variable damping controller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4144469A (en) | Stress protection for permanent magnet type synchronous motor | |
JPS61280744A (en) | Rotor with permanent magnet | |
US3564313A (en) | Self-compensating tachometer generator | |
JPS6256749B2 (en) | ||
JPH0279738A (en) | Rotor for synchronous type ac servomotor | |
JPH1051984A (en) | Permanent magnet synchronous motor | |
WO2022201396A1 (en) | Synchronous reluctance motor | |
JPS60102870A (en) | Eddy current brake device | |
CA1261383A (en) | Eddy current retarders | |
JPH11275784A (en) | Electric vehicle | |
JP3525635B2 (en) | Electric dynamometer and chassis dynamometer using the same | |
JPH0116382Y2 (en) | ||
JPH09261901A (en) | Permanent magnet dynamo-electric machine and motor-driven vehicle using the machine | |
JPH0787680B2 (en) | Radial magnetic bearing device | |
JPS6325903Y2 (en) | ||
SU1684689A1 (en) | Electricity meter | |
JPS59222072A (en) | Eddy current brake device | |
SU1153355A2 (en) | Reception-feed unit of tape transport | |
JPS60170458A (en) | Brake device of vehicle | |
JPS58221182A (en) | Timer of eddy current plate type | |
JPS602069A (en) | Disk type eddy current brake | |
JPS5851767A (en) | Flat unipolar motor | |
JPS63274359A (en) | Eddy-current retarder | |
JPS61161955A (en) | Eddy current brake for vehicle | |
JPH0474944B2 (en) |