JPH05149866A - Particle detector - Google Patents

Particle detector

Info

Publication number
JPH05149866A
JPH05149866A JP3342438A JP34243891A JPH05149866A JP H05149866 A JPH05149866 A JP H05149866A JP 3342438 A JP3342438 A JP 3342438A JP 34243891 A JP34243891 A JP 34243891A JP H05149866 A JPH05149866 A JP H05149866A
Authority
JP
Japan
Prior art keywords
pulse
time
photoelectric conversion
particle
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3342438A
Other languages
Japanese (ja)
Other versions
JP2589616B2 (en
Inventor
Tomonobu Matsuda
朋信 松田
Yukihiro Kimoto
幸弘 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP3342438A priority Critical patent/JP2589616B2/en
Publication of JPH05149866A publication Critical patent/JPH05149866A/en
Application granted granted Critical
Publication of JP2589616B2 publication Critical patent/JP2589616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the occurrence of a counting error in the case of the generation of a self noise, by receiving focused light with a plurality of optoelectric transducers, and by transmitting to count a pulse for detecting a particle, only where pulses for detecting scattered lights outputted from the respective elements are in a fixed time. CONSTITUTION:A focused light LA2 moves from one split optoelectric transducer 11A to the other one 11B separated respectively, and the signal is supplied to a circuit 12 for generating a counting pulse, delaying by the time lag TA for moving. Delay circuits 26, 27 supply an AND circuit 28 with a continuous pulse signal from the time of the pulse generation to the lapse of a fixed continuous time TB. The circuit 28 makes the logical operation of continuous pulse signals S14 and S24, and gives a circuit 13 for counting the number of particles the detecting signals S31 during the overlapping of continuous pulses, and the circuit 13 counts them. Counting errors can be reduced even where pulses overlap each other and self noises generate, by selecting the time TB longer than the time difference TA.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粒子検出装置に関し、特
に気体又は液体でなる液体中の粒子の濃度を、例えばレ
ーザ光でなる光ビームを用いて検出するいわゆる光散乱
方式の粒子検出装置に適用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle detecting device, and more particularly to a so-called light scattering type particle detecting device for detecting the concentration of particles in a liquid which is a gas or a liquid, for example, using a light beam which is a laser beam. It is suitable for application.

【0002】[0002]

【従来の技術】従来、光散乱式粒子検出装置として、例
えば半導体製造工程においてクリーンルームの清浄度を
測定する場合に、図3に示すように流入側ノズル1から
流入した試料空気AIRを例えばレーザビームでなる粒
子検出用光ビーム2を横切るように排出側ノズル3に噴
射させるように構成したものが用いられている。
2. Description of the Related Art Conventionally, as a light scattering type particle detector, for example, when measuring the cleanliness of a clean room in a semiconductor manufacturing process, a sample air AIR flowing from an inflow side nozzle 1 as shown in FIG. The discharge-side nozzle 3 is configured to jet the particle-detecting light beam 2 composed of the following.

【0003】試料空気AIRに含まれている粒子PCL
は光ビーム2を横切る際に散乱光LA1を発生させ、こ
の散乱光LA1が集光レンズ4によつて光電変換素子で
なる受光部5に集光させる。
Particle PCL contained in the sample air AIR
Generates scattered light LA1 when it traverses the light beam 2, and causes the scattered light LA1 to be condensed by the condenser lens 4 onto the light receiving section 5 which is a photoelectric conversion element.

【0004】かくして受光部5は、粒子PCLが通過す
るごとに図4(A)に示すように散乱光LA1の光量従
つて粒子PCLの粒径に相当する波高値を有する粒子検
出パルスP1を含む電圧信号でなる光電変換出力S1を
発生し、この光電変換出力S1を増幅処理回路部6に供
給する。
Thus, the light receiving section 5 includes a particle detection pulse P1 having a crest value corresponding to the light quantity of the scattered light LA1 and hence the particle diameter of the particle PCL as shown in FIG. 4A every time the particle PCL passes. A photoelectric conversion output S1 composed of a voltage signal is generated, and this photoelectric conversion output S1 is supplied to the amplification processing circuit unit 6.

【0005】増幅処理回路部6は、光電変換出力S1の
電圧レベルが所定の粒径Dに相当するしきい値電圧でな
る粒子選別レベルK0を超えたとき図4(B)に示すよ
うな検出パルスP2を発生し、これを検出パルス出力S
2として粒子数カウント部7に与え、これにより粒子数
カウント部7において通過した試料空気AIRの単位体
積に含まれている粒子数をカウントするようになされて
いる。
When the voltage level of the photoelectric conversion output S1 exceeds a particle selection level K0 having a threshold voltage corresponding to a predetermined particle size D, the amplification processing circuit section 6 detects the voltage as shown in FIG. 4 (B). Generates pulse P2 and detects this pulse output S
The number 2 is given to the particle number counting unit 7 to count the number of particles contained in the unit volume of the sample air AIR passed through the particle number counting unit 7.

【0006】[0006]

【発明が解決しようとする課題】ところが、実際上、光
電変換素子でなる受光部5の光電変換出力S1には、光
電変換素子においてランダムに発生するノイズN1(こ
れを自己ノイズと呼ぶ)が重畳されており、当該自己ノ
イズN1のレベルが何らかの原因によつて図4(A)に
おいてノイズ波形N1に示すように、粒子選別レベルK
0を超えたときこれに応じて図4(B)に示すように増
幅処理回路部6がノイズパルスPN1を発生することに
より、粒子数カウント部7が誤計数するおそれがある。
However, in practice, noise N1 randomly generated in the photoelectric conversion element (this is called self-noise) is superimposed on the photoelectric conversion output S1 of the light receiving portion 5 formed of the photoelectric conversion element. For some reason, the level of the self-noise N1 is, as shown by the noise waveform N1 in FIG.
When it exceeds 0, the amplification processing circuit unit 6 generates a noise pulse PN1 as shown in FIG. 4B, and the particle number counting unit 7 may erroneously count.

【0007】本発明は以上の点を考慮してなされたもの
で、光電変換素子において自己ノイズが発生した場合に
おいても粒子カウント結果に誤計数が生ずる確立を実用
上十分に抑制することができるようにした粒子検出装置
を提案しようとするものである。
The present invention has been made in consideration of the above points, and it is possible to sufficiently suppress the possibility that the particle count result will be erroneously counted even if self-noise occurs in the photoelectric conversion element. The present invention intends to propose a particle detection device according to the above.

【0008】[0008]

【課題を解決するための手段】かかる課題を解決するた
め本発明においては、複数の光電変換素子11A及び1
1Bを有し、複数の光電変換素子11A及び11Bは、
試料流体AIR中に含まれる粒子PCLが粒子検出用光
ビーム2内を移動する際に生ずる散乱光LA1の集束光
LA2が粒子PCLの移動に応じて移動する方向に順次
隣接するように配設されると共に集束光LA2が通過す
るごとに順次散乱光検出パルスP11及びP12を出力
する受光部11と、1つの光電変換素子11A又は11
Bから散乱光検出パルスP11又はP12が発生するご
とに集束光LA2が複数の光電変換素子11A及び11
Bを通過するのに必要な時間差TA以上の所定の持続時
間TBを有する持続パルスP31及びP32をそれぞれ
出力する持続パルス形成手段26及び27と、持続パル
スP31及びP32の論理積演算を実行することにより
持続パルス形成手段26及び27から出力される持続パ
ルスP31及びP32が重複する時間に相当するパルス
幅の粒子検出パルスP41を送出する論理積演算手段2
8と、粒子検出パルスP41を計数するパルス計数手段
13とを設けた。
In order to solve such a problem, in the present invention, a plurality of photoelectric conversion elements 11A and 1A are used.
1B, the plurality of photoelectric conversion elements 11A and 11B are
The focused light LA2 of the scattered light LA1 generated when the particles PCL contained in the sample fluid AIR move in the particle detection light beam 2 are arranged so as to be sequentially adjacent in the moving direction according to the movement of the particles PCL. The photoelectric conversion element 11A or 11 and the light receiving unit 11 that sequentially outputs the scattered light detection pulses P11 and P12 each time the focused light LA2 passes.
Each time the scattered light detection pulse P11 or P12 is generated from B, the focused light LA2 is converted into a plurality of photoelectric conversion elements 11A and 11A.
Performing AND operation of the sustain pulses P31 and P32 with the sustain pulse forming means 26 and 27 respectively outputting the sustain pulses P31 and P32 having the predetermined duration TB equal to or longer than the time difference TA required to pass B. AND logic operation means 2 for sending out a particle detection pulse P41 having a pulse width corresponding to the time when the continuous pulses P31 and P32 outputted from the continuous pulse forming means 26 and 27 overlap with each other.
8 and pulse counting means 13 for counting the particle detection pulse P41.

【0009】[0009]

【作用】1つの粒子PCLによる散乱光LA1の集束光
LA2を複数の光電変換素子11A及び11Bで受光す
ると共に、このとき当該複数の光電変換素子11A及び
11Bのそれぞれから順次出力される散乱光検出パルス
P11及びP12が所定の時間TB内にある場合のとき
だけ論理積演算手段28が粒子検出パルスP41を送出
してパルス計数手段13に計数させるようにしたことに
より、各光電変換素子11A又は11Bにおいて粒子選
別レベルK0を越える自己ノイズN1が発生した場合に
おいても、効果的に誤計数が生ずることを回避し得、か
くして誤計数が少なく計数値の信頼性の高い測定をなし
得る粒子検出装置10を実現できる。
The converged light LA2 of the scattered light LA1 by one particle PCL is received by the plurality of photoelectric conversion elements 11A and 11B, and at the same time, scattered light detection sequentially output from each of the plurality of photoelectric conversion elements 11A and 11B is detected. Only when the pulses P11 and P12 are within the predetermined time TB, the logical product calculating means 28 sends out the particle detection pulse P41 and causes the pulse counting means 13 to count, whereby each photoelectric conversion element 11A or 11B. Even when self-noise N1 that exceeds the particle selection level K0 occurs in the above, it is possible to effectively avoid the occurrence of false counting, and thus the false counting is small, and the count value can be measured with high reliability. Can be realized.

【0010】[0010]

【実施例】以下図面について、本発明の一実施例を詳述
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to the drawings.

【0011】図3との対応部分に同一符号を付して示す
図1において、10は全体として光散乱式粒子検出装置
を示し、受光部11はそれぞれフオトダイオードでなる
2つの分割光電変換素子11A及び11Bを有すると共
に、当該分割光電変換素子11A及び11Bは粒子検出
用光ビーム2内を粒子PCLが移動する際に、集光レン
ズ4を介して得られる集束光LA2が移動する方向に順
次隣接するように配設されている。
In FIG. 1 in which parts corresponding to those in FIG. 3 are designated by the same reference numerals, 10 indicates a light scattering type particle detecting device as a whole, and a light receiving portion 11 is two divided photoelectric conversion elements 11A each of which is a photodiode. And 11B, the divided photoelectric conversion elements 11A and 11B are sequentially adjacent to each other in the direction in which the focused light LA2 obtained via the condenser lens 4 moves when the particle PCL moves in the particle detection light beam 2. It is arranged to do.

【0012】かくして、試料空気AIR中の粒子PCL
が流入側ノズル1方向から光ビーム2内に突入した後排
出側ノズル3方向に抜け出すまでの間に、当該散乱光L
A1の集束光LA2が粒子PCLの動きに応じて分割光
電変換素子11A及び11Bの受光面上を分割光電変換
素子11Aから分割光電変換素子11Bに向けて移動し
て行き、その結果、分割光電変換素子11A及び11B
から、それぞれ図2(A)及び図2(B)に示すように
当該集束光LA2の動きに応じて移動時間差TAだけ時
間的にずれて発生する散乱光検出パルスP11及びP1
2を含む一対の光電変換出力信号S11及びS21がそ
れぞれ計数パルス発生回路12に供給される。
Thus, the particle PCL in the sample air AIR
Between the inflow side nozzle 1 direction and the outflow side nozzle 3 direction after the light beam has entered the light beam 2 and exits in the discharge side nozzle 3 direction.
The focused light LA2 of A1 moves from the divided photoelectric conversion element 11A to the divided photoelectric conversion element 11B on the light receiving surfaces of the divided photoelectric conversion elements 11A and 11B in accordance with the movement of the particle PCL, and as a result, the divided photoelectric conversion is performed. Elements 11A and 11B
2A and 2B, respectively, scattered light detection pulses P11 and P1 are generated which are temporally shifted by the movement time difference TA according to the movement of the focused light LA2.
A pair of photoelectric conversion output signals S11 and S21 including 2 are supplied to the counting pulse generating circuit 12, respectively.

【0013】光電変換出力信号S11及びS21は、そ
れぞれ計数パルス発生回路12の増幅回路20及び21
を介して直流交流分離回路22及び23に供給され、図
2(A)及び図2(B)に示すように光電変換出力信号
S11及びS21に含まれる交流成分だけが検出信号S
12及びS22として比較回路24及び25に供給され
る。
The photoelectric conversion output signals S11 and S21 are amplified by the amplification circuits 20 and 21 of the counting pulse generation circuit 12, respectively.
Is supplied to the DC / AC separation circuits 22 and 23 via the DC line, and only the AC component contained in the photoelectric conversion output signals S11 and S21 is detected as shown in FIGS. 2 (A) and 2 (B).
12 and S22 are supplied to the comparison circuits 24 and 25.

【0014】比較回路24及び25は、検出信号S12
及びS22をそれぞれ粒径選別レベルK1及びK2と比
較し、図2(C)及び図2(D)に示すように検出信号
S12及びS22の信号レベルが粒径選別レベルK1及
びK2を超えたとき論理「1」レベルに立ち上がる計数
パルスP21及びP22を含む計数パルス信号S13及
びS23をそれぞれ遅延回路26及び27に供給する。
Comparing circuits 24 and 25 detect the detection signal S12.
And S22 are compared with the particle size selection levels K1 and K2, respectively, and when the signal levels of the detection signals S12 and S22 exceed the particle size selection levels K1 and K2 as shown in FIGS. 2 (C) and 2 (D). The count pulse signals S13 and S23 including the count pulses P21 and P22 rising to the logic "1" level are supplied to the delay circuits 26 and 27, respectively.

【0015】遅延回路26及び27は図2(E)及び図
2(F)に示すように、検出パルス信号S13及びS2
3にパルスが発生した時、その時点から所定の持続時間
TBが経過するまでの期間論理「1」レベルに立ち上が
る持続パルスP31及びP32を含む持続パルス信号S
14及びS24を論理積回路28に供給する。
The delay circuits 26 and 27, as shown in FIGS. 2 (E) and 2 (F), detect pulse signals S13 and S2.
3 when a pulse is generated, the continuous pulse signal S including the continuous pulses P31 and P32 which rises to the logic "1" level during the period from that time until the predetermined duration TB elapses.
14 and S24 are supplied to the AND circuit 28.

【0016】ここで持続時間TBは、検出パルス信号S
13及びS23に散乱光検出パルスP11及びP12に
対応する検出パルスP21及びP22が順次発生したと
き両者間に生ずる移動時間差TAより僅かに長い大きさ
に予め選定され、これにより、一方の検出パルスP21
に対応する持続パルスP31の後縁部分に他方の検出パ
ルスP22に対応する持続パルスP32の前縁部分が時
間的に重複するようになされている。
Here, the duration TB is the detection pulse signal S
When the detection pulses P21 and P22 corresponding to the scattered light detection pulses P11 and P12 are sequentially generated in 13 and S23, they are preselected to have a size slightly longer than the movement time difference TA that occurs between them, whereby one detection pulse P21
The leading edge portion of the sustain pulse P32 corresponding to the other detection pulse P22 temporally overlaps the trailing edge portion of the sustain pulse P31 corresponding to.

【0017】論理積回路28は持続パルス信号S14及
びS24を論理積演算することにより図2(G)に示す
ように持続パルスP31及びP32が重複している間論
理「1」レベルに立ち上がる粒子検出パルスP41を含
む粒子検出信号S31を粒子数計数回路13に与えてカ
ウントさせる。
The logical product circuit 28 performs the logical product operation of the continuous pulse signals S14 and S24 to detect the particle which rises to the logic "1" level while the continuous pulses P31 and P32 overlap as shown in FIG. 2 (G). The particle detection signal S31 including the pulse P41 is given to the particle number counting circuit 13 to be counted.

【0018】以上の構成において、試料空気AIRによ
つて粒子PCLが運ばれて来たとき、集束光LA2の受
光部11上の照射位置が粒子PCLの移動に応じて移動
することにより、分割光電変換素子11Aが照射される
状態が得られた後、分割光電変換素子11Bが照射され
る状態に変化して行く(図2(A)及び図2(B))。
In the above structure, when the particle PCL is carried by the sample air AIR, the irradiation position of the focused light LA2 on the light receiving portion 11 moves in accordance with the movement of the particle PCL, so that the divided photoelectric charges are generated. After the state where the conversion element 11A is irradiated is obtained, the divided photoelectric conversion element 11B is changed to the state where the divided photoelectric conversion element 11B is irradiated (FIGS. 2A and 2B).

【0019】従つて計数パルス発生回路12の比較回路
24及び25から、集束光LA2が分割光電変換素子1
1A側から分割光電変換素子11Bに移動するのに要す
る時間に相当する時間差TAをもつ検出パルスP21及
びP22が順次発生する(図2(C)及び図2
(D))。
Accordingly, the focused light LA2 is divided by the comparison circuits 24 and 25 of the counting pulse generation circuit 12 into the divided photoelectric conversion element 1.
Detection pulses P21 and P22 having a time difference TA corresponding to the time required to move from the 1A side to the divided photoelectric conversion element 11B are sequentially generated (FIG. 2 (C) and FIG. 2).
(D)).

【0020】かくして遅延回路26及び27から一部が
互いに重複するような持続時間TBを有する持続パルス
P31及びP32が発生され(図2(E)及び図2
(F))、この結果粒子検出用光ビーム2を粒子PCL
が通過するごとに論理積回路28から持続パルスP31
及びP32の重複期間に相当するパルス幅を有する粒子
検出パルスP41が得られることにより、粒子数計数回
路13において試料空気AIRによつて運ばれる粒子の
数を計数することができる。
Thus, the delay circuits 26 and 27 generate the sustaining pulses P31 and P32 having the durations TB which partially overlap each other (FIGS. 2E and 2).
(F)) As a result, the particle detection light beam 2 is directed to the particle PCL.
Pulse passes from the AND circuit 28 every time
By obtaining the particle detection pulse P41 having a pulse width corresponding to the overlap period of P1 and P32, the number of particles carried by the sample air AIR can be counted in the particle number counting circuit 13.

【0021】このような粒子検出動作の間に、例えば図
2の時点txにおいて、例えば一方の分割光電変換素子
11Aにパルス状自己ノイズN2(図2(A))が発生
することにより、対応するノイズパルスPN2(図2
(C))が比較回路24から得られる検出パルス信号S
13に混入すると、このノイズパルスPN2に対応する
持続パルスPN3(図2(E))が遅延回路26の持続
パルス信号S14に混入する。
During such a particle detection operation, for example, at time tx in FIG. 2, pulse-shaped self-noise N2 (FIG. 2A) is generated in one of the divided photoelectric conversion elements 11A, for example. Noise pulse PN2 (Fig. 2
(C) is a detection pulse signal S obtained from the comparison circuit 24.
When mixed in 13, the continuous pulse PN3 (FIG. 2E) corresponding to the noise pulse PN2 is mixed in the continuous pulse signal S14 of the delay circuit 26.

【0022】しかしながらこのとき、他方の分割光電変
換素子11Bには自己ノイズが発生していないので(図
2(B)、図2(D))、他方の遅延回路27から持続
パルスが発生しない(図2(F))。従つて論理積回路
28の粒子検出信号S31には、分割光電変換素子11
Aの自己ノイズに基づく誤検出パルスは発生しない(図
2(G))。
However, at this time, no self-noise is generated in the other divided photoelectric conversion element 11B (FIG. 2 (B), FIG. 2 (D)), and therefore the other delay circuit 27 does not generate a continuous pulse ( FIG. 2 (F). Accordingly, the divided photoelectric conversion element 11 is included in the particle detection signal S31 of the AND circuit 28.
The false detection pulse based on the self-noise of A does not occur (FIG. 2 (G)).

【0023】以上の構成によれば、粒子PCLの移動に
応じて集束光が分割光電変換素子11A及び11B上を
移動させるようにすると共に、各光電変換出力信号S1
2及びS22に基づいて発生させる持続パルスP31及
びP32の持続時間TBを集束光の移動時間差TAより
大きい値に選定することにより互いに重複させるように
したことにより、分割光電変換素子11A及び11Bに
おいてそのいずれか一方に自己ノイズが発生した場合に
おいても誤計数をする確立を一段と低減できる。
According to the above construction, the focused light is caused to move on the divided photoelectric conversion elements 11A and 11B in accordance with the movement of the particle PCL, and at the same time, each photoelectric conversion output signal S1.
2 and S22, the durations TB of the duration pulses P31 and P32 generated on the basis of 2 and S22 are selected to be larger than the movement time difference TA of the focused light so that the durations TB overlap each other. Even if self-noise occurs in either one, it is possible to further reduce the probability of erroneous counting.

【0024】因に実際上、2つの分割光電変換素子11
A及び11Bに同時に自己ノイズが発生する確立は極く
小さく、実験によれば、分割光電変換素子11A及び1
1Bの一方から得られる光電変換出力信号S12又はS
22の粒子パルスに対するホワイトノイズの比S/Nが
2程度でも、分割光電変換素子11A及び11Bから発
生する自己ノイズなどによる誤計数は1時間に1個以下
に抑えることができた。
Actually, two divided photoelectric conversion elements 11 are used.
The probability that self-noise will occur in A and 11B at the same time is extremely small, and according to experiments, the divided photoelectric conversion elements 11A and 1B are
1B photoelectric conversion output signal S12 or S obtained from one side
Even if the ratio S / N of the white noise to the particle pulse of 22 was about 2, the miscount due to self-noise generated from the divided photoelectric conversion elements 11A and 11B could be suppressed to 1 or less per hour.

【0025】なお上述の実施例においては、受光部11
がフオトダイオードから構成される場合について述べた
が、本発明はこれに限らず、要は光電変換作用を生ずる
ものであれば受光部11の材料として種々のものを適用
し得る。また上述の実施例においては、受光部11は2
分割する場合について述べたが、本発明はこれに限ら
ず、2個の個別の光電変換素子を近接して粒子の通過す
る方向と同じ方向に並べて配設するようにしても良い。
In the above embodiment, the light receiving section 11
However, the present invention is not limited to this, and various materials can be applied as the material of the light receiving portion 11 as long as they can generate a photoelectric conversion action. Further, in the above-described embodiment, the light receiving unit 11 has two
Although the case of division is described, the present invention is not limited to this, and two individual photoelectric conversion elements may be arranged side by side in the same direction as the direction in which particles pass.

【0026】さらに上述の実施例においては、受光部1
1が2分割されている場合について述べたが、本発明は
これに限らず、光電変換素子が3分割又はそれ以上に分
割されていると共に各分割素子から得られる光電変換出
力信号に基づいて論理積回路12が粒子検出信号S31
を出力するようにしても良い。
Further, in the above embodiment, the light receiving section 1
Although the case where 1 is divided into 2 has been described, the present invention is not limited to this, and the photoelectric conversion element is divided into 3 or more divisions and the logic based on the photoelectric conversion output signal obtained from each division element. The product circuit 12 outputs the particle detection signal S31.
May be output.

【0027】[0027]

【発明の効果】上述のように本発明によれば、試料流体
に照射した粒子検出用光ビームの散乱光を粒子の移動時
間に応じた時間差を有する複数の粒子検出パルス信号に
変換すると共に移動時間より長い持続時間を有する複数
の持続パルスを当該粒子検出パルス信号に基づいて発生
させ、両者の重複部に対応する粒子検出パルスを得るよ
うにしたことにより、各光電変換素子において自己ノイ
ズが発生した場合においても、効果的に誤計数が生ずる
ことを回避し得、かくして誤計数が少なく計数値の信頼
性の高い測定をなし得る粒子検出装置を実現し得る。
As described above, according to the present invention, the scattered light of the particle detection light beam applied to the sample fluid is converted into a plurality of particle detection pulse signals having a time difference according to the moving time of the particles, and the particles are moved. Self-noise is generated in each photoelectric conversion element by generating a plurality of continuous pulses having a longer duration than the time based on the particle detection pulse signal and obtaining a particle detection pulse corresponding to the overlapping portion of both. Even in such a case, it is possible to effectively prevent erroneous counting from occurring, and thus it is possible to realize a particle detection device with few erroneous counting and highly reliable measurement of the count value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光散乱式粒子検出装置の一実施例
を示すブロツク図である。
FIG. 1 is a block diagram showing an embodiment of a light scattering type particle detection device according to the present invention.

【図2】各信号に生ずる電気パルスの波形を示す信号波
形図である。
FIG. 2 is a signal waveform diagram showing a waveform of an electric pulse generated in each signal.

【図3】従来の光散乱式粒子検出装置を示すブロツク図
である。
FIG. 3 is a block diagram showing a conventional light-scattering particle detection device.

【図4】粒子検出信号に生ずる電気パルスの波形を示す
信号波形図である。
FIG. 4 is a signal waveform diagram showing a waveform of an electric pulse generated in a particle detection signal.

【符号の説明】[Explanation of symbols]

2……粒子検出用光ビーム(光ビーム)、10……粒子
検出装置、11……受光部、11A、11B……光電変
換素子(分割光電変換素子)、13……パルス計数手段
(粒子数計数回路)、26、27……持続パルス形成手
段(遅延回路)、28……論理積演算手段(論理積回
路)、LA1……散乱光、LA2……集束光、P11、
P12……散乱光検出パルス、P31、P32……持続
パルス、P41……粒子検出パルス、AIR……試料流
体(試料空気)、PCL……粒子、TA……時間差、T
B……持続時間。
2 ... Particle detection light beam (light beam), 10 ... Particle detection device, 11 ... Light receiving part, 11A, 11B ... Photoelectric conversion element (divided photoelectric conversion element), 13 ... Pulse counting means (number of particles) Counting circuit), 26, 27 ... Continuous pulse forming means (delay circuit), 28 ... Logical product calculating means (logical product circuit), LA1 ... Scattered light, LA2 ... Focused light, P11,
P12 ... Scattered light detection pulse, P31, P32 ... Continuous pulse, P41 ... Particle detection pulse, AIR ... Sample fluid (sample air), PCL ... Particle, TA ... Time difference, T
B ... Duration.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数の光電変換素子を有し、上記複数の光
電変換素子は、試料流体中に含まれる粒子が粒子検出用
光ビーム内を移動する際に生ずる散乱光の集束光が上記
粒子の移動に応じて移動する方向に順次隣接するように
配設されると共に上記集束光が通過するごとに順次散乱
光検出パルスを出力する受光部と、 1つの上記光電変換素子から上記散乱光検出パルスが発
生するごとに上記集束光が上記複数の光電変換素子を通
過するのに必要な時間差以上の所定の持続時間を有する
持続パルスをそれぞれ出力する持続パルス形成手段と、 上記持続パルスの論理積演算を実行することにより上記
持続パルス形成手段から出力される上記持続パルスが重
複する時間に相当するパルス幅の粒子検出パルスを送出
する論理積演算手段と、 上記粒子検出パルスを計数するパルス計数手段とを具え
ることを特徴とする粒子検出装置。
1. A plurality of photoelectric conversion elements, wherein in the plurality of photoelectric conversion elements, focused light of scattered light generated when particles contained in a sample fluid move in a particle detection light beam is used. A light receiving portion which is arranged so as to be adjacent to each other in the direction of movement in accordance with the movement of the above, and which sequentially outputs a scattered light detection pulse each time the focused light passes through; Each time a pulse is generated, a continuous pulse forming means for outputting a continuous pulse having a predetermined duration longer than the time difference required for the focused light to pass through the plurality of photoelectric conversion elements, and a logical product of the continuous pulses AND operation means for transmitting a particle detection pulse having a pulse width corresponding to the time at which the continuous pulses output from the continuous pulse forming means overlap by executing the operation, and the particle detection means. Particle detector, characterized in that it comprises a pulse counting means for counting the pulses.
JP3342438A 1991-11-30 1991-11-30 Light scattering particle counter Expired - Lifetime JP2589616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3342438A JP2589616B2 (en) 1991-11-30 1991-11-30 Light scattering particle counter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3342438A JP2589616B2 (en) 1991-11-30 1991-11-30 Light scattering particle counter

Publications (2)

Publication Number Publication Date
JPH05149866A true JPH05149866A (en) 1993-06-15
JP2589616B2 JP2589616B2 (en) 1997-03-12

Family

ID=18353742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3342438A Expired - Lifetime JP2589616B2 (en) 1991-11-30 1991-11-30 Light scattering particle counter

Country Status (1)

Country Link
JP (1) JP2589616B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017025619A1 (en) * 2015-08-12 2017-02-16 Avl List Gmbh Method and device for detecting signal pulses

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421338A (en) * 1987-07-17 1989-01-24 Hitachi Ltd Apparatus for measuring fine particle in fluid
JPH03185335A (en) * 1989-12-15 1991-08-13 Canon Inc Apparatus and method for measuring sample

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421338A (en) * 1987-07-17 1989-01-24 Hitachi Ltd Apparatus for measuring fine particle in fluid
JPH03185335A (en) * 1989-12-15 1991-08-13 Canon Inc Apparatus and method for measuring sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017025619A1 (en) * 2015-08-12 2017-02-16 Avl List Gmbh Method and device for detecting signal pulses
US10447256B2 (en) 2015-08-12 2019-10-15 Avl List Gmbh Method and device for detecting signal pulses

Also Published As

Publication number Publication date
JP2589616B2 (en) 1997-03-12

Similar Documents

Publication Publication Date Title
US7569843B2 (en) Method for processing receiver signal and optical sensor
JP2003243694A (en) Method and device for detecting single photon
KR101395330B1 (en) Single photon detector, photon number resolving detector and detecting method thereof
WO2005079230A2 (en) Method and apparatus for operating a laser in an extinction-type optical particle detector
JP2003207569A (en) Photoelectric proximity switch
JPH1123462A (en) Smoke sensing device
JPH05149866A (en) Particle detector
JPH0882681A (en) Radiation measuring system
JP3183592B2 (en) Distance measuring device
JP2004518979A (en) Method for counting photons in a laser scanning device
JPH0560870A (en) Radiation detector
JP2001021654A (en) Radiation measurement system
JP3062265B2 (en) Photoelectric switch
JP2003177086A (en) Counting method of particle-counting apparatus
JPS6259879A (en) Photoelectric signal processing circuit
JP2001216663A (en) Tracking error signal detector
JP3198528B2 (en) Optical sensor and operation method thereof
JP3351901B2 (en) Photoelectric sensor
JPH077860B2 (en) Synchronous control device for multi-stage amplified pulse laser
JPH05273354A (en) Radiation measuring instrument with abnormality detecting function
JPH0619320B2 (en) Particle detector
JP3311772B2 (en) Photoelectric switch and photoelectric switch control device
JPH01277792A (en) Counting device of radiation pulse
JP2545769B2 (en) Pulse width identification circuit
JPH0718814B2 (en) Surface inspection device