JPH05149793A - Wavelength detecting device - Google Patents

Wavelength detecting device

Info

Publication number
JPH05149793A
JPH05149793A JP31644191A JP31644191A JPH05149793A JP H05149793 A JPH05149793 A JP H05149793A JP 31644191 A JP31644191 A JP 31644191A JP 31644191 A JP31644191 A JP 31644191A JP H05149793 A JPH05149793 A JP H05149793A
Authority
JP
Japan
Prior art keywords
wavelength
detector
light
semiconductor laser
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31644191A
Other languages
Japanese (ja)
Inventor
Nobuhiko Hayashi
伸彦 林
Hisashi Abe
寿 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP31644191A priority Critical patent/JPH05149793A/en
Publication of JPH05149793A publication Critical patent/JPH05149793A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To easily detect the oscillating wavelength of a semiconductor laser device, etc., by detecting laser light with a light output detector and another light output detector incorporating a filter, the transmissivity of which has a wavelength dependency, and comparing the output signals of both detectors with each other. CONSTITUTION:Laser light from a semiconductor laser element 3 is equally emitted to the light output detectors 7a and 7b of this wavelength detector 5. Since a filter 8, the transmissivity (k) of which has a monotonous wavelength dependency over its wavelength detecting extent, is provided on the light receiving surface of the detector 7a, the signal intensity Ia of the detector 7a becomes Ia=kXIb, where Ib represents the signal intensity of the detector 7b. Therefore, since the signal intensity ratio Ia/Ib obtained by means of a signal comparator becomes a function proportional to the transmissivity (k), the wavelength of the laser light can be detected by detecting the ratio Ia/Ib. In addition, when the ratio Ia/Ib deviates from a preset wavelength, a Peltier element drive circuit is actuated and controls the temperature of a Peltier element 2 so as to tune the laser light from the element 3 to a preset wavelength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザ装置等の発
振波長を検出する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting an oscillation wavelength of a semiconductor laser device or the like.

【0002】[0002]

【従来の技術】近年、半導体レーザ装置は光情報処理、
光通信、及び固体レーザ装置の励起用光源等として活発
に研究されている。例えば、固体レーザ装置の励起用光
源への応用としては、レーザ研究,第16巻,第3号,
昭和63年の第41頁〜第50頁に記載されている。
2. Description of the Related Art In recent years, semiconductor laser devices have been used for optical information processing,
It has been actively studied as a light source for optical communication and excitation of a solid-state laser device. For example, as an application of a solid-state laser device to a light source for excitation, laser research, Vol. 16, No. 3,
It is described on pages 41 to 50 of 1988.

【0003】半導体レーザ装置を固体レーザ装置の励起
用光源へ応用する場合、固体レーザ装置のレーザ媒質を
十分に励起するために、半導体レーザ装置が出力するレ
ーザ光の発振波長を前記レーザ媒質の所望の吸収スペク
トルのピーク波長に同調させる必要がある。例えばYA
G(Ndドープ)レーザ装置やYLF(Ndドープ)レ
ーザ装置は、レーザ媒質の吸収スペクトルのピーク波長
がそれぞれ805〜809nm、795〜805nmに
あるが、この固体レーザ装置励起用の半導体レーザ装置
のレーザ光の波長は前記ピーク波長に対して±0.5n
mの範囲内に制御しなければならない。
When the semiconductor laser device is applied to a light source for exciting a solid-state laser device, in order to sufficiently excite the laser medium of the solid-state laser device, the oscillation wavelength of the laser light output from the semiconductor laser device is set to a desired value of the laser medium. It is necessary to tune to the peak wavelength of the absorption spectrum of. For example, YA
In the G (Nd-doped) laser device and the YLF (Nd-doped) laser device, the peak wavelengths of the absorption spectrum of the laser medium are 805 to 809 nm and 795 to 805 nm, respectively. The wavelength of light is ± 0.5n with respect to the peak wavelength
It must be controlled within the range of m.

【0004】ところで、半導体レーザ装置はその発振波
長に個体差を有するが、温度1℃の昇温又は降温によっ
て、波長がそれぞれ約0.3nm長波長側又は短波長に
シフトする性質をもつので、従来は、例えばペルチェ素
子上に半導体レーザ装置を設置し、このペルチェ素子に
より半導体レーザ装置の温度を変化させて、固体レーザ
装置のピーク波長と半導体レーザ装置の発振波長を同調
させている。
By the way, the semiconductor laser device has an individual difference in its oscillation wavelength, but has a property that the wavelength is shifted to about 0.3 nm long wavelength side or short wavelength side by the temperature rise or fall of 1 ° C., respectively. Conventionally, for example, a semiconductor laser device is installed on a Peltier device, and the temperature of the semiconductor laser device is changed by this Peltier device to tune the peak wavelength of the solid-state laser device and the oscillation wavelength of the semiconductor laser device.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来、
固体レーザ装置のピーク波長と半導体レーザ装置の発振
波長の同調の確認は、一般に固体レーザ装置が出力する
レーザ光の強度をモニターして行われており、半導体レ
ーザ装置の発振波長を調整することが非常に繁雑である
といった問題があった。また、他の場合における光源の
発振波長を検出する際にも大がかりな分光器等の装置が
必要であり、簡単に波長の値を調べることができなかっ
た。
[Problems to be Solved by the Invention] However, in the past,
The confirmation of the tuning of the peak wavelength of the solid-state laser device and the oscillation wavelength of the semiconductor laser device is generally performed by monitoring the intensity of the laser light output by the solid-state laser device, and the oscillation wavelength of the semiconductor laser device can be adjusted. There was a problem that it was very complicated. In addition, a large-scale device such as a spectroscope is required to detect the oscillation wavelength of the light source in other cases, and the wavelength value cannot be easily checked.

【0006】斯る問題点を鑑み、本発明はレーザ装置等
の光源から出力される光の波長を簡単に検出することを
目的とする。
In view of such a problem, the present invention has an object of simply detecting the wavelength of light output from a light source such as a laser device.

【0007】[0007]

【課題を解決するための手段】本発明の波長検出装置
は、光出力検出器と、透過率に波長依存性のあるフィル
ターを有する光出力検出器と、これら光出力検出器の出
力信号を比較する信号比較器からなることを特徴とす
る。
A wavelength detector of the present invention compares an optical output detector, an optical output detector having a filter having wavelength dependence of transmittance, and output signals of these optical output detectors. It is characterized by comprising a signal comparator for

【0008】[0008]

【作用】レーザ等の光源から出力された光を光出力検出
器と波長依存性のあるフィルターを有する光出力検出器
で検出して得られた出力信号の強度比は、波長に対して
所定の値を持つので、簡単に光源の発振波長を検出でき
る。
The intensity ratio of the output signal obtained by detecting the light output from the light source such as a laser with the optical output detector and the optical output detector having a wavelength-dependent filter has a predetermined value with respect to the wavelength. Since it has a value, the oscillation wavelength of the light source can be easily detected.

【0009】また、光出力検出器と、透過率に波長依存
性のあるフィルターを有する光出力検出器と、信号比較
器とで構成することにより、小型化できる。
Further, the optical output detector, the optical output detector having a filter having wavelength dependency of the transmittance, and the signal comparator can reduce the size.

【0010】[0010]

【実施例】本発明に係る一実施例を図面を参照しつつ説
明する。図1乃至図3は図4に示す波長検出装置を半導
体レーザ装置に適用したものを示しており、それぞれ要
部概略斜視図、要部概略正面図、及び概略ブロック図で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described with reference to the drawings. 1 to 3 show a semiconductor laser device to which the wavelength detection device shown in FIG. 4 is applied, and are a schematic perspective view of a main part, a schematic front view of the main part, and a schematic block diagram, respectively.

【0011】図中、1はTO−3型パッケージであり、
このパッケージ1内にはペルチェ素子2が設置されてい
る。このペルチェ素子2上には先端面及び後端面からレ
ーザ光を出力する半導体レーザ素子3が側部に固定され
た銅ブロック4、また半導体レーザ素子3の下方に該レ
ーザ素子3の後端面から出力される光を受光する波長検
出装置5が設置されている。
In the figure, 1 is a TO-3 type package,
A Peltier element 2 is installed in the package 1. On this Peltier element 2, a semiconductor laser element 3 for outputting laser light from the front and rear end surfaces is fixed to a copper block 4, and below the semiconductor laser element 3, the semiconductor laser element 3 is output from the rear end surface of the laser element 3. A wavelength detector 5 for receiving the generated light is installed.

【0012】前記波長検出装置5は、図4に示すように
セラミック製の絶縁基板6上に例えばPIN型フォトダ
イオードからなる光出力検出器7a、7bが前記半導体
レーザ素子3から出力された光を例えば等量受光するよ
うに隣接した状態で銀ペースト等により固定設置されて
いる。前記光出力検出器7a、7bのうち、一方の検出
器7aの受光面上には、前記半導体レーザ素子3の発振
可能な波長範囲において、透過率(反射率)に単調な波
長依存性を有する材料からなるフィルター8が形成され
ている。例えば、半導体レーザ素子3が810nm付近
の光を発振する場合、フィルター8は図5で示す透過率
特性をもつSiO2膜(屈折率:1.46)とTiO2
(屈折率:2.36)からなる多層膜を用いることがで
きる。この多層膜はTiO2膜間にSiO2膜が構成され
るようにTiO2膜とSiO2膜が交互に積層された総数
23膜からなり、4、20膜目のSiO2膜の膜厚が2
77.4nmであり、12膜目の膜厚が554.8nm
である以外は、全てのTiO2膜及びSiO2膜の膜厚が
それぞれ85.8nm、138.7nmである。
In the wavelength detecting device 5, as shown in FIG. 4, optical output detectors 7a and 7b, which are PIN photodiodes, for example, are provided on a ceramic insulating substrate 6 to detect the light output from the semiconductor laser device 3. For example, they are fixedly installed by a silver paste or the like in an adjacent state so as to receive equal amounts of light. On the light-receiving surface of one of the optical output detectors 7a and 7b, the transmittance (reflectance) has a monotonous wavelength dependence in the wavelength range in which the semiconductor laser element 3 can oscillate. A filter 8 made of a material is formed. For example, when the semiconductor laser device 3 oscillates light near 810 nm, the filter 8 has a SiO 2 film (refractive index: 1.46) and a TiO 2 film (refractive index: 2.36) having the transmittance characteristics shown in FIG. Can be used. The multilayer film is made from the total number 23 film TiO 2 film and the SiO 2 film are laminated alternately as SiO 2 film is constituted between the TiO 2 film, the film thickness of the SiO 2 film 4, 20 film th Two
77.4 nm, and the film thickness of the 12th film is 554.8 nm
Except that the thicknesses of all TiO 2 films and SiO 2 films are 85.8 nm and 138.7 nm, respectively.

【0013】前記ペルチェ素子2、半導体レーザ素子3
及び波長検出装置5はそれぞれ金からなるワイヤー線
9、9、・・・によりパッケージ1の電気接続ピンに1
0、10、・・・に接続されている。前記光出力検出器
7a、7bから出力された各信号は電気接続ピン10、
10、・・・を介して差動アンプ等からなる信号比較器
11に入力され、信号処理される。この信号処理された
信号はペルチェ素子駆動回路12を介して温度制御を行
うペルチェ素子2を駆動する。また前記光出力検出器7
bから出力された前記信号は図示しない自動パワー制御
(APC)回路、及び半導体レーザ駆動回路13を通し
て半導体レーザ素子3の光出力が一定になるように制御
する。尚、前記半導体レーザ素子3は自動電流制御(A
CC)回路により半導体レーザ駆動回路13を通して半
導体レーザ素子3の光出力を一定に制御してもよい。
The Peltier device 2 and the semiconductor laser device 3
, And the wavelength detection device 5 are connected to the electrical connection pins of the package 1 by the gold wire lines 9, 9 ,.
0, 10 ... Each signal output from the optical output detectors 7a and 7b is an electrical connection pin 10,
The signal is input to the signal comparator 11 including a differential amplifier via 10, ... The signal subjected to the signal processing drives the Peltier device 2 for controlling the temperature via the Peltier device driving circuit 12. Also, the optical output detector 7
The signal output from b is controlled by an automatic power control (APC) circuit (not shown) and the semiconductor laser driving circuit 13 so that the optical output of the semiconductor laser element 3 becomes constant. The semiconductor laser device 3 is automatically controlled by the current (A
The optical output of the semiconductor laser device 3 may be controlled to be constant through the semiconductor laser drive circuit 13 by the CC) circuit.

【0014】次に、斯る波長検出装置5の動作について
説明する。
Next, the operation of the wavelength detecting device 5 will be described.

【0015】半導体レーザ素子3から出力されたレーザ
光は、波長検出装置5の光出力検出器7a、7bに例え
ば等量照射される。光出力検出器7aはその受光面上に
波長検出範囲において透過率k(反射率)に単調な波長
依存性を有するフィルター8を有するので、光出力検出
器7bの信号強度がIbとすると、光出力検出器7aの
信号強度Iaは、
The laser light output from the semiconductor laser element 3 is applied to the light output detectors 7a and 7b of the wavelength detecting device 5 in equal amounts, for example. Since the light output detector 7a has a filter 8 with a monotonic wavelength dependence transmittance k (reflectance) in the wavelength detection range on the light receiving surface, when the signal intensity of the optical output detector 7b is a I b, The signal intensity I a of the optical output detector 7a is

【0016】[0016]

【数1】 [Equation 1]

【0017】となる。従って、前記信号比較器11で比
較して得られる信号強度比Ia/Ibとなる信号はフィル
ター8の透過率kに比例する関数となるので、信号強度
比Ia/Ibとなる信号を検出することにより、半導体レ
ーザ素子3から出力されたレーザ光の波長の値を検出で
きるのである。
[0017] Therefore, the signal having the signal intensity ratio I a / I b obtained by comparison in the signal comparator 11 is a function proportional to the transmittance k of the filter 8, and thus the signal having the signal intensity ratio I a / I b. The value of the wavelength of the laser beam output from the semiconductor laser element 3 can be detected by detecting

【0018】従って、前記信号強度比Ia/Ibとなる信
号があらかじめ設定された波長からずれている場合の信
号と相違している場合、前記信号強度比Ia/Ibとなる
信号に基づいてペルチェ素子駆動回路12が作動して、
ペルチェ素子2の温度制御を行い、半導体レーザ素子3
から出力される光の波長を上記設定波長に同調させるの
である。
Therefore, when the signal having the signal intensity ratio I a / I b is different from the signal having a deviation from the preset wavelength, the signal having the signal intensity ratio I a / I b is selected. The Peltier device drive circuit 12 operates based on
The semiconductor laser device 3 is controlled by controlling the temperature of the Peltier device 2.
The wavelength of the light output from is tuned to the set wavelength.

【0019】上記実施例では、TO−3のパッケージに
半導体装置及び波長検出装置を内蔵するように構成して
いるが、TO−5、TO−18等のパッケージに内蔵し
てもよく、ペルチェ素子を用いないようなものにも適用
でき、種々の応用が可能である。更に、本発明の波長検
出装置は半導体レーザ装置の波長検出に限らず、他の光
源用としても利用できる。尚、光源から出力される光の
広がり角が狭く、光出力器7a、7bの両方に入射され
ない場合は、ビームスプリッタ等の適当な光分離器を用
いればよい。
In the above embodiment, the semiconductor device and the wavelength detecting device are built in the TO-3 package, but they may be built in the TO-5, TO-18, etc. package, and the Peltier device is also included. It can also be applied to those that do not use, and various applications are possible. Further, the wavelength detecting device of the present invention is not limited to the wavelength detection of the semiconductor laser device, but can be used for other light sources. When the divergence angle of the light output from the light source is so narrow that it does not enter both of the light output devices 7a and 7b, an appropriate light splitter such as a beam splitter may be used.

【0020】又、光出力検出器7a、7bからの信号強
度は上述のように信号強度比から波長を検出している
が、光源からの出力が所定の強度に設定されている場合
は、前記信号強度の差から波長を検出できる。
The signal intensity from the optical output detectors 7a and 7b detects the wavelength from the signal intensity ratio as described above, but when the output from the light source is set to a predetermined intensity, the The wavelength can be detected from the difference in signal strength.

【0021】又、上記実施例ではSiO2膜とTiO2
からなる多層膜をフィルターとして用いたが、該多層膜
以外にもa−Si(アモルファスシリコン)とSiO2
の多層膜等の誘電体多層膜も使用できる。尚、多層膜で
構成されるフィルターの場合は、膜厚や積層数を適宜変
更して波長検出領域を変えることができる。この他、波
長検出範囲において透過率(反射率)に単調な波長依存
性を有する材料であれば利用できる。但し、単調な波長
依存性とは所望の波長検出分解能の点から単調であれば
よい。
Further, in the above embodiment, the multilayer film composed of the SiO 2 film and the TiO 2 film was used as a filter. However, in addition to the multilayer film, a-Si (amorphous silicon) and SiO 2 are used.
A dielectric multilayer film such as the above multilayer film can also be used. In the case of a filter composed of a multilayer film, the wavelength detection region can be changed by appropriately changing the film thickness or the number of laminated layers. In addition, any material can be used as long as it has a monotonic wavelength dependence in transmittance (reflectance) in the wavelength detection range. However, the monotonic wavelength dependence may be monotonic in terms of desired wavelength detection resolution.

【0022】又、光出力検出器は、波長検出の範囲で波
長依存性が略一定であれば、PINフォトダイオードに
限らず、種々のものが使用できるが、検出器7a、7b
はフィルターを有しない状態で同一の特性をもつものが
望ましい。
Further, the optical output detector is not limited to the PIN photodiode as long as the wavelength dependence is substantially constant in the wavelength detection range, and various types can be used, but the detectors 7a and 7b are also usable.
Are desirable to have the same characteristics without a filter.

【0023】更に、上記実施例ではフィルターを直接光
出力検出器の受光面に構成したが、光源から受光面の間
にフィルターが介在するようにした光出力検出器を用い
てもよい。
Further, although the filter is directly formed on the light receiving surface of the light output detector in the above embodiment, a light output detector having a filter interposed between the light source and the light receiving surface may be used.

【0024】本発明の波長検出装置は半導体レーザ装置
等が出力する波長を簡単に検出できる。また、本発明の
波長検出装置は非常に小さく簡単な構造であるので、例
えば上述の実施例のように半導体レーザ装置のパッケー
ジ内に内蔵することができる。
The wavelength detector of the present invention can easily detect the wavelength output by a semiconductor laser device or the like. Further, since the wavelength detecting device of the present invention has a very small and simple structure, it can be built in the package of the semiconductor laser device as in the above-mentioned embodiments.

【0025】[0025]

【発明の効果】本発明の波長検出装置は半導体レーザ装
置等の光源が出力する光を光出力検出器と波長依存性の
あるフィルターを有する光出力検出器で検出して得られ
た出力信号を信号比較器で比較することにより、前記出
力する光の波長を検出できるので、検出が簡単に行え、
また装置の小型化できる。
According to the wavelength detector of the present invention, an output signal obtained by detecting light output from a light source such as a semiconductor laser device by an optical output detector and an optical output detector having a wavelength-dependent filter is used. By comparing with a signal comparator, the wavelength of the light to be output can be detected, so detection can be performed easily,
Further, the device can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例の波長検出装置を示す概
略斜視図である。
FIG. 1 is a schematic perspective view showing a wavelength detection device according to an embodiment of the present invention.

【図2】上記波長検出装置の要部概略正面図である。FIG. 2 is a schematic front view of a main part of the wavelength detection device.

【図3】上記波長検出装置の概略ブロック図である。FIG. 3 is a schematic block diagram of the wavelength detection device.

【図4】上記波長検出装置の拡大斜視図である。FIG. 4 is an enlarged perspective view of the wavelength detection device.

【図5】上記波長検出器に用いられる一例のフィルタの
透過率特性を示す図である。
FIG. 5 is a diagram showing a transmittance characteristic of an example of a filter used in the wavelength detector.

【符号の説明】[Explanation of symbols]

5 波長検出装置 7a 光出力検出器 7b 光出力検出器 8 フィルタ 11 信号比較器 5 wavelength detector 7a optical output detector 7b optical output detector 8 filter 11 signal comparator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光出力検出器と、透過率に波長依存性の
あるフィルターを有する光出力検出器と、これら光出力
検出器の出力信号を比較する信号比較器からなる波長検
出装置。
1. A wavelength detecting device comprising an optical output detector, an optical output detector having a filter having wavelength dependency of transmittance, and a signal comparator for comparing output signals of these optical output detectors.
JP31644191A 1991-11-29 1991-11-29 Wavelength detecting device Pending JPH05149793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31644191A JPH05149793A (en) 1991-11-29 1991-11-29 Wavelength detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31644191A JPH05149793A (en) 1991-11-29 1991-11-29 Wavelength detecting device

Publications (1)

Publication Number Publication Date
JPH05149793A true JPH05149793A (en) 1993-06-15

Family

ID=18077126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31644191A Pending JPH05149793A (en) 1991-11-29 1991-11-29 Wavelength detecting device

Country Status (1)

Country Link
JP (1) JPH05149793A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6801553B2 (en) 2000-12-06 2004-10-05 Mitsubishi Denki Kabushiki Kaisha Wavelength monitor and semiconductor laser device
JP2007171191A (en) * 2005-12-22 2007-07-05 Palo Alto Research Center Inc Photon detection by each subrange within photon energy range
JP2007192747A (en) * 2006-01-20 2007-08-02 Konica Minolta Sensing Inc Device for measuring spectral characteristic, and method of deriving shift amount
JP2012208134A (en) * 2007-06-08 2012-10-25 Hamamatsu Photonics Kk Spectroscope
US8368885B2 (en) 2007-06-08 2013-02-05 Hamamatsu Photonics K.K. Spectroscopic module
KR101418308B1 (en) * 2013-02-25 2014-07-10 우송대학교 산학협력단 LED Wavelength Comparator and Method thereof
WO2021111091A1 (en) * 2019-12-04 2021-06-10 Safran Optical spectrometer and associated method for characterising a source

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6801553B2 (en) 2000-12-06 2004-10-05 Mitsubishi Denki Kabushiki Kaisha Wavelength monitor and semiconductor laser device
JP2007171191A (en) * 2005-12-22 2007-07-05 Palo Alto Research Center Inc Photon detection by each subrange within photon energy range
JP2007192747A (en) * 2006-01-20 2007-08-02 Konica Minolta Sensing Inc Device for measuring spectral characteristic, and method of deriving shift amount
JP2012208134A (en) * 2007-06-08 2012-10-25 Hamamatsu Photonics Kk Spectroscope
US8368885B2 (en) 2007-06-08 2013-02-05 Hamamatsu Photonics K.K. Spectroscopic module
US8411269B2 (en) 2007-06-08 2013-04-02 Hamamatsu Photonics K.K. Spectroscopic module
US8477306B2 (en) 2007-06-08 2013-07-02 Hamamatsu Photonics K.K. Spectroscope
US8477305B2 (en) 2007-06-08 2013-07-02 Hamamatsu Photonics K.K. Spectroscope
KR101418308B1 (en) * 2013-02-25 2014-07-10 우송대학교 산학협력단 LED Wavelength Comparator and Method thereof
WO2014129729A1 (en) * 2013-02-25 2014-08-28 Woosong University Industry-Academy Cooperation Foundation Led wavelength comparator and method thereof
WO2021111091A1 (en) * 2019-12-04 2021-06-10 Safran Optical spectrometer and associated method for characterising a source
FR3104254A1 (en) * 2019-12-04 2021-06-11 Safran Optical spectrometer and associated source characterization method

Similar Documents

Publication Publication Date Title
EP0709659B1 (en) Spectrometer
US7701984B2 (en) Laser module and method of controlling wavelength of external cavity laser
JP3827343B2 (en) Chemical substance detection system, chemical substance detection method, and semiconductor laser output build-up system
JPH11238946A (en) Laser module and method for stabilizing wave length and optical power thereof simultaneously
JP2000353856A (en) Semiconductor laser module
EP1946388B1 (en) Wavelength stabilized light source
JPH05149793A (en) Wavelength detecting device
US7103075B2 (en) Solid laser apparatus
EP0390525B1 (en) An optical pumping-type solid-state laser apparatus with a semiconductor laser device
JP2950815B1 (en) Laser light source device
JP3196300B2 (en) Semiconductor laser device
JP2950813B1 (en) Tunable laser light source device
US20020141463A1 (en) Optical feedback system
US11050218B2 (en) Method to tune emission wavelength of laser apparatus
JP4626042B2 (en) Light emitting module
JPH10133157A (en) Variable light attenuator
JPH04111370A (en) Output control apparatus for laser
DeSilva Spectral analyzer for Thomson scattering
JPH1093165A (en) Semiconductor laser for exciting solid-state laser
JPS63128773A (en) Photodetector
JP2003060291A (en) Wavelength control apparatus
EP0622877A1 (en) Tunable lasers based on absorbers in standing waves
JP2003204112A (en) Semiconductor laser module
JP2004186576A (en) External resonator laser
JPH03144322A (en) Laser apparatus