JPH0514869U - Heat flux detector - Google Patents

Heat flux detector

Info

Publication number
JPH0514869U
JPH0514869U JP6796591U JP6796591U JPH0514869U JP H0514869 U JPH0514869 U JP H0514869U JP 6796591 U JP6796591 U JP 6796591U JP 6796591 U JP6796591 U JP 6796591U JP H0514869 U JPH0514869 U JP H0514869U
Authority
JP
Japan
Prior art keywords
heat
heat receiving
temperature difference
difference generating
lead wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6796591U
Other languages
Japanese (ja)
Inventor
滋 山口
勇人 中島
剛 横沢
和雄 関根
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP6796591U priority Critical patent/JPH0514869U/en
Publication of JPH0514869U publication Critical patent/JPH0514869U/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

(57)【要約】 【目的】 熱流束検出器の熱流束測定の応答性を向上さ
せる。 【構成】 基準温度部1に温度差発生部14を介して固
着された受熱部15に、受熱部側リード線5の一端を超
音波溶接16によって接続するようにしているので、受
熱部15を箔状に形成することができ、また、受熱部1
5とともに温度差発生部14を箔状に形成しているの
で、受熱部15及び温度差発生部14の熱容量が小さく
なって、受熱部15及び温度差発生部14が昇温されや
すく、速やかに温度が定常状態となり、且つ熱を逃がし
やすくなるので、受熱部15に入射する熱線の熱エネル
ギー量の変動に対しての起電力変化の追従性、すなわち
熱流束検出器の応答性が良くなる。
(57) [Abstract] [Purpose] To improve the responsiveness of heat flux measurement of a heat flux detector. [Structure] Since one end of the heat receiving part side lead wire 5 is connected to the heat receiving part 15 fixed to the reference temperature part 1 via the temperature difference generating part 14 by ultrasonic welding 16, the heat receiving part 15 is It can be formed into a foil shape, and the heat receiving portion 1 can be formed.
Since the temperature difference generating unit 14 is formed in a foil shape together with 5, the heat capacity of the heat receiving unit 15 and the temperature difference generating unit 14 becomes small, and the heat receiving unit 15 and the temperature difference generating unit 14 are likely to be heated and quickly. Since the temperature is in a steady state and the heat is easily released, the followability of the electromotive force change with respect to the variation of the heat energy amount of the heat ray incident on the heat receiving section 15, that is, the response of the heat flux detector is improved.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は熱流束検出器に関するものである。 The present invention relates to a heat flux detector.

【0002】[0002]

【従来の技術】[Prior Art]

図2は従来より用いられている熱流束検出器の一例を示し、該熱流束検出器の 構成を説明すると、銅を円柱状に形成した基準温度部1の一端面に、銅よりも熱 伝導性が低いコンスタンタン(銅、ニッケル合金)を円盤状に形成した温度差発 生部2の一面をろう付けあるいは拡散接合により固着し、該温度差発生部2の他 面に、銅をフランジ部10を有する円盤状に形成した受熱部3の反フランジ部1 0側の面をろう付けあるいは拡散接合により固着している。 FIG. 2 shows an example of a heat flux detector that has been conventionally used. To explain the structure of the heat flux detector, one end surface of the reference temperature part 1 formed of copper in a cylindrical shape is more thermally conductive than copper. One surface of the temperature difference generating part 2 formed of disk-shaped constantan (copper, nickel alloy) having low heat resistance is fixed by brazing or diffusion bonding, and copper is flanged on the other surface of the temperature difference generating part 2. The surface on the side opposite to the flange portion 10 of the heat receiving portion 3 formed in the shape of a disc having the above is fixed by brazing or diffusion bonding.

【0003】 前記受熱部3のフランジ部10に設けたリード線取り付け穴4には、銅製の受 熱部側リード線5の一端が挿入され、該受熱部側リード線5の一端は受熱部3に 対してろう付け6により接続されている。One end of a copper-made heat receiving portion side lead wire 5 is inserted into a lead wire mounting hole 4 provided in the flange portion 10 of the heat receiving portion 3, and one end of the heat receiving portion side lead wire 5 has a heat receiving portion 3 Are connected by brazing 6.

【0004】 更に、受熱部側リード線5の他端と基準温度部側リード線7の他端は、前記受 熱部3と基準温度部1との間に温度差が発生したときに生じる起電力を測定する ための起電力測定部8に接続されている。Further, the other end of the heat receiving part side lead wire 5 and the other end of the reference temperature part side lead wire 7 occur when a temperature difference occurs between the heat receiving part 3 and the reference temperature part 1. It is connected to an electromotive force measuring unit 8 for measuring electric power.

【0005】 なお、図中9は基準温度部1内に設けられた冷却媒体流路であり、該冷却媒体 流路9に冷却媒体12を流通させることにより、受熱部3に入射した熱量を除去 するようになっている。Reference numeral 9 in the figure denotes a cooling medium passage provided in the reference temperature portion 1. By circulating the cooling medium 12 through the cooling medium passage 9, the amount of heat incident on the heat receiving portion 3 is removed. It is supposed to do.

【0006】 図2に示す熱流束検出器では、受熱部3のフランジ部10側の面に、レーザー 光線等の熱線13が入射することにより、受熱部3の温度が上昇して受熱部3と 基準温度部1の間に温度差が発生すると、受熱部3と基準温度部1との間に前記 温度差に比例した起電力が生じ、該起電力は受熱部側リード線5、基準温度部側 リード線7を介し起電力測定部8によって測定されるようになっている。In the heat flux detector shown in FIG. 2, when the heat ray 13 such as a laser beam is incident on the surface of the heat receiving portion 3 on the flange portion 10 side, the temperature of the heat receiving portion 3 rises and the heat receiving portion 3 and When a temperature difference occurs between the reference temperature part 1, an electromotive force proportional to the temperature difference is generated between the heat receiving part 3 and the reference temperature part 1. The electromotive force is the heat receiving part side lead wire 5, the reference temperature part. It is adapted to be measured by the electromotive force measuring unit 8 via the side lead wire 7.

【0007】[0007]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところが、上述した熱流束検出器では、受熱部3に受熱部側リード線5をろう 付け6によって固着する際に、受熱部3及び温度差発生部2が熱によって変形し たり、あるいは溶融しないようにするために、受熱部3及び温度差発生部2の厚 さを5mm程度にしているので、受熱部3及び温度差発生部2の熱容量が比較的 大きい。 However, in the heat flux detector described above, when the heat receiving part-side lead wire 5 is fixed to the heat receiving part 3 by brazing 6, the heat receiving part 3 and the temperature difference generating part 2 are not deformed or melted by heat. For this reason, the thickness of the heat receiving portion 3 and the temperature difference generating portion 2 is set to about 5 mm, so that the heat capacity of the heat receiving portion 3 and the temperature difference generating portion 2 is relatively large.

【0008】 そこで、図3に示すように、横軸に時刻T(図3において横軸一目盛は0.1 秒を表わしている)を、縦軸に熱流束検出器が出力する起電力Wをとり、熱線1 3が受熱部3に入射してから熱流束検出器が出力する起電力Wが受熱部3に入射 している熱線13の熱エネルギーに相当する値になるまでに要する時間を調べて みると、図2に示す熱流束検出器では、前述したように受熱部3及び温度差発生 部2の熱容量が比較的大きく、受熱部3及び温度差発生部2が昇温されにくいの で、図3に破線で示すように時刻Taより時刻Tbの間に発射された熱線13が 受熱部3に入射してから、熱流束検出器が出力する起電力Wが受熱部3に入射し ている熱線13の熱エネルギーに相当する値になるのに約1.5秒以上掛かる。Therefore, as shown in FIG. 3, the horizontal axis represents time T (in FIG. 3, one scale on the horizontal axis represents 0.1 second), and the vertical axis represents the electromotive force W output by the heat flux detector. And the time required for the electromotive force W output from the heat flux detector to reach a value corresponding to the thermal energy of the heat ray 13 incident on the heat receiving section 3 after the heat ray 13 enters the heat receiving section 3. Upon examination, in the heat flux detector shown in FIG. 2, as described above, the heat capacities of the heat receiving part 3 and the temperature difference generating part 2 are relatively large, and it is difficult for the heat receiving part 3 and the temperature difference generating part 2 to rise in temperature. Then, as shown by the broken line in FIG. 3, after the heat ray 13 emitted from the time Ta to the time Tb enters the heat receiving section 3, the electromotive force W output from the heat flux detector enters the heat receiving section 3. It takes about 1.5 seconds or more to reach the value corresponding to the thermal energy of the heating wire 13.

【0009】 また、受熱部3及び温度差発生部2の熱容量が大きいということは、受熱部3 及び温度差発生部2が熱線13により一旦昇温されると、熱を逃しにくい性質を 有していることになる。Further, the large heat capacities of the heat receiving part 3 and the temperature difference generating part 2 have a property that once the temperature of the heat receiving part 3 and the temperature difference generating part 2 is raised by the heating wire 13, it is difficult for heat to escape. It will be.

【0010】 従って、図2に示す熱流束検出器では、短時間のうちに熱エネルギー量が変動 する熱線等に対して起電力の変化を機敏に追従させることができず、受熱部3に 入射する熱線の熱エネルギー量の変動に対しての起電力変化の追従性、すなわち 熱流束検出器の応答性が良いとはいえない。Therefore, in the heat flux detector shown in FIG. 2, the change in electromotive force cannot be swiftly followed with respect to the heat ray or the like in which the amount of heat energy fluctuates within a short time, and the heat flux is incident on the heat receiving unit 3. It cannot be said that the followability of changes in electromotive force with respect to changes in the amount of heat energy of the heating wire, that is, the response of the heat flux detector is good.

【0011】 本考案は、上述した問題点を解決するもので、熱流束測定の応答性が良い熱流 束検出器を提供することを目的としている。The present invention solves the above-mentioned problems, and an object of the present invention is to provide a heat flux detector having good response in heat flux measurement.

【0012】[0012]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は、金属をブロック状に形成した基準温度部の一面に、該基準温度部を 形成する金属よりも熱伝導性が低い金属を箔状に形成した温度差発生部の一面を 固相接合またはろう接により固着し、該温度差発生部の他面に、前記基準温度部 を形成する金属と同一の金属を箔状に形成した受熱部を固相接合により固着し、 該受熱部に受熱部側リード線の一端を超音波溶接により接続し、前記基準温度部 に基準温度部側リード線の一端を接続し、前記受熱部側リード線の他端と基準温 度部側リード線の他端を起電力測定部に接続したものである。 The present invention provides solid-phase bonding of one surface of a temperature difference generating portion, which is a foil-shaped metal having a lower thermal conductivity than the metal forming the reference temperature portion, to one surface of the reference temperature portion where the metal is formed in a block shape. Alternatively, it is fixed by brazing, and the other surface of the temperature difference generating portion is fixed to the other surface of the reference temperature portion in the form of a foil with a heat-receiving portion fixed by solid-phase bonding, and the heat-receiving portion receives heat. One end of the lead wire on the part side is connected by ultrasonic welding, one end of the lead wire on the reference temperature part is connected to the reference temperature part, the other end of the lead wire on the heat receiving part side and the other lead wire on the reference temperature part side are connected. The end is connected to the electromotive force measurement unit.

【0013】[0013]

【作用】[Action]

本考案の熱流束検出器では、受熱部に受熱部側リード線の一端を超音波溶接に より接続しているので、受熱部を箔状に形成することができ、また、受熱部とと もに温度差発生部を箔状に形成しているので、受熱部及び温度差発生部の熱容量 が小さくなって、受熱部及び温度差発生部が昇温されやすく、速やかに温度が定 常状態となり且つ熱を逃しやすくなり、よって、短時間のうちに熱エネルギー量 が変動する熱線に対して起電力の変化を機敏に追従させることができ、受熱部に 入射する熱線の熱エネルギー量の変動に対しての起電力変化の追従性、すなわち 熱流束検出器の応答性が良くなる。 In the heat flux detector of the present invention, one end of the lead wire on the heat receiving portion side is connected to the heat receiving portion by ultrasonic welding, so that the heat receiving portion can be formed in a foil shape, and also with the heat receiving portion. Since the temperature difference generation part is formed in the shape of a foil, the heat capacity of the heat reception part and the temperature difference generation part becomes small, the temperature of the heat reception part and the temperature difference generation part is easily raised, and the temperature quickly becomes the normal state. In addition, the heat can be easily dissipated, so that the change in electromotive force can be swiftly followed by the change in the heat energy of which the amount of heat energy fluctuates within a short time. The followability of the change in electromotive force, that is, the response of the heat flux detector is improved.

【0014】[0014]

【実施例】【Example】

以下本考案の実施例を図面を参照しつつ説明する。 Embodiments of the present invention will be described below with reference to the drawings.

【0015】 図1は本考案の熱流束検出器の一実施例を示すもので、図中、図2と同一の符 号を付した部分は同一物を表わしている。FIG. 1 shows an embodiment of the heat flux detector of the present invention. In the figure, the same parts as those in FIG. 2 are the same.

【0016】 銅を円柱状に形成した基準温度部1の一面に、銅よりも熱伝導性が低いコンス タンタンを箔状に形成した温度差発生部14の一面を拡散接合(固相接合)によ り固着し、該温度差発生部14の他面に、銅を箔状に形成した受熱部15を拡散 接合により固着する。One surface of the reference temperature portion 1 formed of copper in a cylindrical shape and one surface of the temperature difference generation portion 14 formed of foil-like constantan having a lower thermal conductivity than copper are subjected to diffusion bonding (solid phase bonding). Then, the heat receiving portion 15 made of copper foil is fixed to the other surface of the temperature difference generating portion 14 by diffusion bonding.

【0017】 受熱部15に受熱部側リード線5の一端を超音波溶接16により、また、前記 基準温度部1に基準温度部側リード線7の一端を超音波による点溶接11により 接続し、前記受熱部側リード線5の他端と基準温度部側リード線7の他端を起電 力測定部8に接続する。One end of the heat receiving part side lead wire 5 is connected to the heat receiving part 15 by ultrasonic welding 16, and one end of the reference temperature part side lead wire 7 is connected to the reference temperature part 1 by ultrasonic point welding 11. The other end of the heat receiving part side lead wire 5 and the other end of the reference temperature part side lead wire 7 are connected to the electromotive force measuring part 8.

【0018】 このように、本実施例の熱流束検出器では、受熱部側リード線7の一端を超音 波溶接によって受熱部15に接合しているので、受熱部側リード線7を受熱部1 5に接合する際に、該受熱部15が熱による変形や損傷を受けることがなく、よ って、受熱部15を図2に示す受熱部3に比べて厚さが極めて薄い箔状にするこ とができる。As described above, in the heat flux detector of the present embodiment, since one end of the heat receiving portion side lead wire 7 is joined to the heat receiving portion 15 by ultrasonic welding, the heat receiving portion side lead wire 7 is connected to the heat receiving portion. The heat receiving portion 15 is not deformed or damaged by heat when it is joined to the heat receiving portion 15. Therefore, the heat receiving portion 15 is formed into a foil shape having an extremely thin thickness as compared with the heat receiving portion 3 shown in FIG. can do.

【0019】 上述した構成を有する熱流束検出器において、受熱部15の反温度差発生部側 の面に、レーザー光線等の熱線13が入射することにより、受熱部15の温度が 上昇して受熱部15と基準温度部1の間に温度差が発生すると、受熱部15と基 準温度部1との間に前記温度差に比例した起電力が生じ、該起電力は受熱部側リ ード線5、基準温度部側リード線7を介し起電力測定部8によって測定される。In the heat flux detector having the above-described configuration, when the heat ray 13 such as a laser beam is incident on the surface of the heat receiving portion 15 on the side opposite to the temperature difference generating portion, the temperature of the heat receiving portion 15 rises and the heat receiving portion 15 rises. When a temperature difference occurs between the heat receiving unit 15 and the reference temperature unit 1, an electromotive force proportional to the temperature difference is generated between the heat receiving unit 15 and the reference temperature unit 1, and the electromotive force is the heat receiving unit side lead wire. 5, measured by the electromotive force measuring unit 8 via the reference temperature unit side lead wire 7.

【0020】 このとき、本実施例の熱流束検出器では、受熱部15及び温度差発生部14を 箔状に形成して受熱部15、温度差発生部14の熱容量を小さくしているので、 受熱部15、温度差発生部14が昇温されやすく、速やかに温度が定常状態とな り、且つ熱を逃がしやすい。At this time, in the heat flux detector of the present embodiment, the heat receiving portion 15 and the temperature difference generating portion 14 are formed in a foil shape to reduce the heat capacities of the heat receiving portion 15 and the temperature difference generating portion 14. The temperature of the heat receiving portion 15 and the temperature difference generating portion 14 is easily raised, the temperature quickly becomes a steady state, and the heat is easily released.

【0021】 そこで、図3に示すように、横軸に時刻Tを、縦軸に熱流束検出器が出力する 起電力Wをとり、熱線13が受熱部15に入射してから熱流束検出器が出力する 起電力Wが受熱部15に入射している熱線13の熱エネルギーに相当する値にな るまでに要する時間を調べてみると、本実施例の熱流束検出器では、前述したよ うに受熱部15及び温度差発生部14の熱容量が小さく、受熱部15及び温度差 発生部14が昇温されやすく且つ熱を逃がしやすくなっているので、図3に実線 で示すように時刻Taより時刻Tbの間に発射された熱線13が受熱部15に入 射すると、熱線13が受熱部15に入射してから熱流束検出器が出力する起電力 Wが受熱部15に入射している熱線13の熱エネルギーに相当する値になるのに 約0.25秒程度しか掛からない。Therefore, as shown in FIG. 3, the horizontal axis represents the time T and the vertical axis represents the electromotive force W output by the heat flux detector, and the heat flux 13 enters the heat receiving unit 15 before the heat flux detector. When the time required for the electromotive force W output by the device to reach a value corresponding to the thermal energy of the heat ray 13 incident on the heat receiving portion 15 is examined, the heat flux detector of the present embodiment has the above-mentioned value. As described above, since the heat capacities of the heat receiving portion 15 and the temperature difference generating portion 14 are small and the heat receiving portion 15 and the temperature difference generating portion 14 are easily heated and easily dissipate heat, as shown by the solid line in FIG. When the heat ray 13 emitted during the time Tb enters the heat receiving portion 15, the electromotive force W output from the heat flux detector after the heat ray 13 is incident on the heat receiving portion 15 is incident on the heat receiving portion 15. It takes about 13 to reach the value equivalent to the heat energy of 13. It only takes about 0.25 seconds.

【0022】 また、時刻Tbより後に熱線13が受熱部15に入射しなくなると、熱流束検 出器が出力する起電力は約0.3秒程度で、時刻Taより前の熱線13が受熱部 15に入射していないときの起電力と略同等の値になる。When the heat ray 13 does not enter the heat receiving portion 15 after the time Tb, the electromotive force output from the heat flux detector is about 0.3 seconds, and the heat ray 13 before the time Ta is received by the heat receiving portion 15. The value is almost the same as the electromotive force when it is not incident on 15.

【0023】 従って、本実施例の熱流束検出器では、受熱部15及び温度差発生部14の熱 容量を小さくすることにより、短時間のうちに熱エネルギー量が変動する熱線に 対して起電力の変化を機敏に追従させることができ、受熱部15に入射する熱線 の熱エネルギー量の変動に対しての起電力変化の追従性、すなわち熱流束検出器 の熱エネルギー量の変動に対する応答性が良くなる。Therefore, in the heat flux detector of this embodiment, by reducing the heat capacities of the heat receiving portion 15 and the temperature difference generating portion 14, the electromotive force is applied to the heat ray whose heat energy amount fluctuates in a short time. Of the heat ray incident on the heat receiving portion 15, that is, the changeability of the electromotive force change with respect to the change of the heat energy of the heat ray, that is, the responsiveness to the change of the heat energy of the heat flux detector. Get better.

【0024】 なお、本考案の熱流束検出器は、上述の実施例にのみ限定されるものではなく 、本考案の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論であ る。It should be noted that the heat flux detector of the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

【0025】[0025]

【考案の効果】[Effect of the device]

以上述べたように、本考案の熱流束検出器によれば、受熱部に受熱部側リード 線の一端を超音波溶接により接続しているので、受熱部を箔状に形成することが でき、また、受熱部とともに温度差発生部を箔状に形成しているので、受熱部及 び温度差発生部の熱容量が小さくなって、受熱部及び温度差発生部が昇温されや すく、速やかに温度が定常状態となり且つ熱が逃げやすくなるので、受熱部に入 射する熱線の熱エネルギー量の変動に対しての起電力変化の追従性、すなわち熱 流束検出器の応答性が良くなるという優れた効果を奏し得る。 As described above, according to the heat flux detector of the present invention, since one end of the lead wire on the heat receiving portion side is connected to the heat receiving portion by ultrasonic welding, the heat receiving portion can be formed in a foil shape. Also, since the temperature difference generating part is formed in the shape of a foil together with the heat receiving part, the heat capacity of the heat receiving part and the temperature difference generating part becomes small, and the heat receiving part and the temperature difference generating part are likely to be heated, so that Since the temperature is in a steady state and heat easily escapes, the ability to follow the change in electromotive force with respect to changes in the amount of heat energy of the heat rays entering the heat receiving section, that is, the response of the heat flux detector is improved. It can exert an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の熱流束検出器の一実施例を示す断面図
である。
FIG. 1 is a sectional view showing an embodiment of a heat flux detector of the present invention.

【図2】従来の熱流束検出器の一例を示す断面図であ
る。
FIG. 2 is a sectional view showing an example of a conventional heat flux detector.

【図3】本考案の熱流束検出器と従来の熱流束検出器の
受熱部に熱線が入射した際の起電力の変化を示すグラフ
である。
FIG. 3 is a graph showing a change in electromotive force when a heat ray is incident on a heat receiving part of the heat flux detector of the present invention and a conventional heat flux detector.

【符号の説明】[Explanation of symbols]

1 基準温度部 5 受熱部側リード線 7 基準温度部側リード線 8 起電力測定部 14 温度差発生部 15 受熱部 16 超音波溶接 1 Reference temperature part 5 Heat receiving part side lead wire 7 Reference temperature part side lead wire 8 Electromotive force measuring part 14 Temperature difference generating part 15 Heat receiving part 16 Ultrasonic welding

フロントページの続き (72)考案者 関根 和雄 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社技術研究所内Front page continuation (72) Kazuo Sekine Inventor, Shin Nakahara Town, Isogo Ward, Yokohama City, Kanagawa Prefecture Ishikawajima Harima Heavy Industries Co., Ltd. Technical Research Institute

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 金属をブロック状に形成した基準温度部
の一面に、該基準温度部を形成する金属よりも熱伝導性
が低い金属を箔状に形成した温度差発生部の一面を固相
接合またはろう接により固着し、該温度差発生部の他面
に、前記基準温度部を形成する金属と同一の金属を箔状
に形成した受熱部を固相接合により固着し、該受熱部に
受熱部側リード線の一端を超音波溶接により接続し、前
記基準温度部に基準温度部側リード線の一端を接続し、
前記受熱部側リード線の他端と基準温度部側リード線の
他端を起電力測定部に接続したことを特徴とする熱流束
検出器。
1. A solid phase is formed on one surface of a reference temperature part formed by forming a metal in a block shape, and one surface of a temperature difference generating part formed by a foil-like metal having a lower thermal conductivity than the metal forming the reference temperature part. It is fixed by bonding or brazing, and a heat-receiving part, in which the same metal as the metal forming the reference temperature part is formed in a foil shape, is fixed on the other surface of the temperature-difference generating part by solid-phase bonding, and is fixed to the heat-receiving part. Connect one end of the heat receiving part side lead wire by ultrasonic welding, connect one end of the reference temperature part side lead wire to the reference temperature part,
A heat flux detector, wherein the other end of the heat receiving part side lead wire and the other end of the reference temperature part side lead wire are connected to an electromotive force measuring part.
JP6796591U 1991-07-31 1991-07-31 Heat flux detector Pending JPH0514869U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6796591U JPH0514869U (en) 1991-07-31 1991-07-31 Heat flux detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6796591U JPH0514869U (en) 1991-07-31 1991-07-31 Heat flux detector

Publications (1)

Publication Number Publication Date
JPH0514869U true JPH0514869U (en) 1993-02-26

Family

ID=13360194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6796591U Pending JPH0514869U (en) 1991-07-31 1991-07-31 Heat flux detector

Country Status (1)

Country Link
JP (1) JPH0514869U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030797A (en) * 2003-07-08 2005-02-03 Ishikawajima Harima Heavy Ind Co Ltd Heat flux meter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617677A (en) * 1984-06-22 1986-01-14 Mitsubishi Electric Corp Controller for laser output
JPS63262911A (en) * 1987-04-20 1988-10-31 Matsushima Kogyo Co Ltd Glass sealed piezoelectric vibrator
JPS6471192A (en) * 1987-09-11 1989-03-16 Komatsu Mfg Co Ltd Laser output control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617677A (en) * 1984-06-22 1986-01-14 Mitsubishi Electric Corp Controller for laser output
JPS63262911A (en) * 1987-04-20 1988-10-31 Matsushima Kogyo Co Ltd Glass sealed piezoelectric vibrator
JPS6471192A (en) * 1987-09-11 1989-03-16 Komatsu Mfg Co Ltd Laser output control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030797A (en) * 2003-07-08 2005-02-03 Ishikawajima Harima Heavy Ind Co Ltd Heat flux meter

Similar Documents

Publication Publication Date Title
US4012770A (en) Cooling a heat-producing electrical or electronic component
US4595297A (en) Method and apparatus for measure of heat flux through a heat exchange tube
US6085833A (en) Heat sink
Zhao et al. Insertable thin film thermocouples for in situ transient temperature monitoring in ultrasonic metal welding of battery tabs
JPH0514869U (en) Heat flux detector
JPH01145537A (en) Thermocouple for measuring temperature
JP3034845B2 (en) Use of silver / copper / palladium hard solder and method of manufacturing composite device
JP2003315170A (en) Heat flux gauge, manufacturing method of the same, and assembly jig for the same
EP0165213B1 (en) Process and device for the non-destructive test of a joint between sheets made by electric spot welding
JPWO2009044640A1 (en) Ultrasonic sensor
JPS6021327B2 (en) heat flux meter
JPS6219943Y2 (en)
JP3498223B2 (en) Thermopile
JPH0594736U (en) Heat flux detector
JPS58199546A (en) Semiconductor cooler
US5653112A (en) Cryocooler system with welded cold tip
JP3468888B2 (en) Current leads for superconducting devices
JPH057650B2 (en)
JPH06685A (en) Solder material
KR102295491B1 (en) The heat dissipation plate module in which the embossing is formed
JP5166005B2 (en) Power probe
JP2018001176A (en) Ultrasonic bonding device and heat flow sensor fixing structure
JP4246449B2 (en) Bonding strip and bonding method using the strip
Mueller Effect of finned-tube assembly techniques on the heat-transfer characteristics of a space radiator
JPH0795575B2 (en) Semiconductor rectifier