JPH05148519A - Method for detecting activating condition in furnace core in blast furnace operation - Google Patents
Method for detecting activating condition in furnace core in blast furnace operationInfo
- Publication number
- JPH05148519A JPH05148519A JP33396091A JP33396091A JPH05148519A JP H05148519 A JPH05148519 A JP H05148519A JP 33396091 A JP33396091 A JP 33396091A JP 33396091 A JP33396091 A JP 33396091A JP H05148519 A JPH05148519 A JP H05148519A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- core
- condition
- furnace core
- blast furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Blast Furnaces (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、炉芯内の通気・通液性
を良好に維持しながら高炉を操業する上で必要な炉芯の
活性状態を検出する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting an active state of a core required for operating a blast furnace while maintaining good ventilation and liquid permeability in the core.
【0002】[0002]
【従来の技術】高炉内に存在する炉芯の通気・通液性が
悪化すると、炉内の通気性も悪化し、出銑比は低下す
る。更に、その現象が進行すると、冷込み等の重大なト
ラブルが発生する。そのため、炉芯の通気・通液性を維
持することは、安定した高炉操業を行う上で不可欠であ
る。特に、高出銑比に重点を置いた高炉操業では、通気
・通液性の維持が重要である。2. Description of the Related Art When the air permeability / liquid permeability of a furnace core existing in a blast furnace is deteriorated, the air permeability in the furnace is deteriorated and the tap ratio is lowered. Furthermore, if the phenomenon progresses, serious troubles such as cooling will occur. Therefore, maintaining the ventilation and liquid permeability of the furnace core is essential for stable blast furnace operation. In particular, in blast furnace operation that emphasizes high tap ratio, it is important to maintain ventilation and liquid permeability.
【0003】炉芯の通気・通液性は、炉芯コークス層内
に蓄積した粉コークスの量に依存する。たとえば、粉コ
ークス量が増大するほど、炉芯の通気・通液性が悪化す
る。したがって、通気・通液性を良好に維持するために
は、粉コークスの蓄積量を低く抑える必要がある。そこ
で、悪化した通気・通液性を回復させる時、コークス比
の増大,挿入物分布の変更,送風湿分の増加等の操業条
件を調整している。The air permeability and liquid permeability of the furnace core depend on the amount of powder coke accumulated in the core coke layer. For example, as the amount of coke powder increases, the air permeability and liquid permeability of the furnace core deteriorate. Therefore, in order to maintain good ventilation and liquid permeability, it is necessary to keep the amount of powdered coke accumulated low. Therefore, when recovering the deteriorated ventilation and liquid permeability, operating conditions such as increase of coke ratio, change of insert distribution, increase of blast moisture content are adjusted.
【0004】たとえば、高炉の中心部にコークスを選択
的に挿入する方法,羽口から吹き込まれるエアの湿分を
増大させる方法等がある。しかし、これらの方法は、コ
ークス比の増大を招く欠点があるため、連続して実施で
きるものではない。しかも、通液性を健全なレベルまで
戻すためには、数ヶ月にもわたる長期間を要している。For example, there are a method of selectively inserting coke into the center of the blast furnace, a method of increasing the moisture content of the air blown from the tuyere, and the like. However, these methods have the drawback of increasing the coke ratio, and therefore cannot be carried out continuously. Moreover, it takes a long period of several months to return the liquid permeability to a healthy level.
【0005】そこで、炉芯の通気・通液性が悪化する兆
候がみられた初期の段階で、コークスの選択的装入や湿
度の高いエアの吹込み等を行うことが考えられる。しか
し、炉芯は炉内に存在するものであり、炉体側壁に設け
たセンサー類で炉芯の通気・通液性悪化の前兆を予知す
るのは困難であった。Therefore, it is conceivable to perform selective charging of coke or blowing of high-humidity air at an early stage when signs of deterioration of air permeability and liquid permeability of the furnace core are observed. However, the core is present inside the furnace, and it was difficult to predict the precursor of deterioration of air permeability and liquid permeability of the core by sensors provided on the side wall of the furnace body.
【0006】炉芯状況を把握する手段としては、羽口コ
ークスサンプラーや炉芯ゾンデ等がある。羽口コークス
サンプラーにより炉芯内のコークスを採取し、粉コーク
スの蓄積量を実測できる。また、炉芯ゾンデは、稼働高
炉の炉芯を直接観測することに使用される。炉芯ゾンデ
を使用するとき、レースウェイ及び炉芯内の温度,ガス
組成,圧力等の情報と共に少量の炉内内容物が得られ
る。As a means for grasping the core condition, there is a tuyere coke sampler, a core sonde, or the like. The coke in the furnace core can be sampled with a tuyere coke sampler, and the amount of powder coke accumulated can be measured. In addition, the core SONDE is used to directly observe the core of the operating blast furnace. When using a coresonde, a small amount of core contents is obtained along with information such as raceway and core temperature, gas composition and pressure.
【0007】[0007]
【発明が解決しようとする課題】しかし、羽口コークス
サンプラーは、高炉を休風したときに使用可能なもので
あって、操業中の炉芯状況を観測することには不向きで
ある。However, the tuyere coke sampler can be used when the blast furnace is blown off, and is not suitable for observing the core condition during operation.
【0008】他方、炉芯ゾンデによる測定では、炉芯の
状況を正確に把握することができない。たとえば、炉芯
の通気・通液性が悪化した段階で、炉芯内の温度が低下
する場合もある。また、通気・通液性が良好で炉芯が活
性状態であるにも拘らず、未還元のFeOの滴下及びそ
の還元反応による吸熱反応のため、炉芯内の温度が低下
することもある。更に、稼働中の高炉における炉内内容
物の量やガス組成から炉芯での通気・通液性を判断する
ことはできない。On the other hand, it is impossible to accurately grasp the condition of the furnace core by the measurement using the furnace core sonde. For example, the temperature inside the core may decrease at the stage when the air permeability and liquid permeability of the core have deteriorated. In addition, the temperature inside the furnace core may decrease due to the endothermic reaction of unreduced FeO dropping and its reduction reaction despite the fact that the furnace core is in an active state with good ventilation and liquid permeability. Furthermore, it is not possible to judge the air permeability / liquid permeability in the furnace core from the amount of the contents in the furnace and the gas composition in the blast furnace in operation.
【0009】このように、炉芯の通気・通液性を適格に
判断できる方法は、知られていない。そのため、経験に
よって或いは過去に蓄積したデータから炉芯の活性度を
推定し、推定された活性度に応じて高炉を操業している
現状である。As described above, there is no known method for properly determining the air permeability / liquid permeability of the furnace core. For this reason, the activity of the core is estimated from experience or data accumulated in the past, and the blast furnace is operated according to the estimated activity.
【0010】本発明は、このような問題を解消すべく案
出されたものであり、炉芯の活性状態を直接的に把握す
ることによって、悪化の傾向がみられる初期にその傾向
を検出し、安定した炉況で高炉を操業することを目的と
する。The present invention has been devised to solve such a problem. By directly grasping the active state of the furnace core, the tendency can be detected at an early stage when a tendency of deterioration is observed. The purpose is to operate the blast furnace in a stable furnace condition.
【0011】[0011]
【課題を解決するための手段】本発明の炉芯活性化状態
の検出方法は、その目的を達成するため、操業中の高炉
羽口から炉芯内にCo,Ni,Cu,Cr等の元素を含
有する検出材を挿入した後、前記元素が排出されるまで
の時間を測定し、測定された時間の長短に基づいて炉芯
の活性度の変動を判定することを特徴とする。In order to achieve the object, the method for detecting the activated state of the furnace core of the present invention has an object to achieve the object from elements such as Co, Ni, Cu and Cr from the tuyere of the blast furnace during operation to the inside of the furnace core. It is characterized in that the time until the element is discharged after the detection material containing is inserted is measured, and the fluctuation of the activity of the furnace core is determined based on the length of the measured time.
【0012】[0012]
【作用】以下、図面を参照しながら、作用と共に本発明
を具体的に説明する。本発明は、たとえば図1に概略を
示す設備構成の高炉を使用して実施される。高炉10の
底部側壁に羽口11が設けられており、羽口11の下方
位置に出銑口12が設けられている。羽口11に装着さ
れた送風支管13から、高温の酸素富化空気等の熱風が
吹き込まれる。The present invention will be described in detail below with reference to the drawings together with the operation. The present invention is carried out by using, for example, a blast furnace having an equipment configuration schematically shown in FIG. A tuyere 11 is provided on the bottom side wall of the blast furnace 10, and a taphole 12 is provided below the tuyere 11. Hot air such as high-temperature oxygen-enriched air is blown from the blower branch pipe 13 attached to the tuyere 11.
【0013】高炉10の内部には、炉頂から装入された
鉱石原料や副原料等が順次還元反応を受け、溶融スラ
グ,溶銑等の液滴21として炉内を降下し、炉芯22に
到達する。また、炉芯22の周囲には、羽口11から吹
き込まれた熱風により、レースウェイ23が形成されて
いる。Inside the blast furnace 10, ore raw materials, auxiliary raw materials, etc. charged from the furnace top are sequentially subjected to a reduction reaction and descend in the furnace as droplets 21 of molten slag, hot metal, etc. To reach. A raceway 23 is formed around the furnace core 22 by the hot air blown from the tuyere 11.
【0014】この高炉10内に、送風支管13の後端側
から羽口ゾンデ30を炉芯22に達するまで挿入する。
羽口ゾンデ30の先端には、Co,Ni,Cu,Cr等
の元素を含有する検出材31が装着されている。検出材
31は、先端が炉芯22に達した羽口ゾンデ30を炉外
に引き抜くことによって炉芯22内に残留し、炉内の熱
で溶融する。検出体31の溶融によって生じた融液は、
溶銑,溶融スラグ等の液滴21と共に湯溜り24に滴下
し、出銑口12から炉外に排出される。The tuyere sonde 30 is inserted into the blast furnace 10 from the rear end side of the blower branch pipe 13 until the furnace core 22 is reached.
At the tip of the tuyere sonde 30, a detection material 31 containing elements such as Co, Ni, Cu, Cr is attached. The detection material 31 remains inside the furnace core 22 when the tuyere sonde 30 whose tip has reached the furnace core 22 is pulled out of the furnace, and is melted by the heat in the furnace. The melt generated by melting the detection body 31 is
Droplets 21 such as molten pig iron and molten slag are dropped into a pool 24 and discharged from the tap hole 12 to the outside of the furnace.
【0015】検出材31としては、Co,Ni,Cu,
Cr等の元素を含有する金属塊,フェロアロイ,鉱物粉
末,化合物等が使用される。Co,Ni,Cu,Cr等
のうち1種又は複数の元素を含むものを検出材31とし
て使用することができる。As the detecting material 31, Co, Ni, Cu,
Metal lumps containing elements such as Cr, ferroalloys, mineral powders, compounds, etc. are used. A material containing one or more elements of Co, Ni, Cu, Cr and the like can be used as the detection material 31.
【0016】Co,Ni,Cu等の金属元素は、本来、
溶銑中にほとんど含まれていない。そこで、これら金属
元素を含有するフェロアロイ,鉱石,化合物等を検出材
31として炉内に挿入すると、一定時間経過した後で溶
融し、溶銑中のCo,Ni,Cu等の濃度が上昇する。
この濃度上昇は、出銑口12から排出された溶銑の成分
分析によって知ることができる。そこで、濃度の経時的
変化を測定することにより、検出材が挿入された後、溶
融及び滴下を経て排出されるまでの炉内における滞留時
間を図ることができる。Metal elements such as Co, Ni and Cu are originally
Almost not contained in hot metal. Therefore, when a ferroalloy, an ore, a compound or the like containing these metal elements is inserted into the furnace as the detection material 31, it is melted after a certain period of time, and the concentrations of Co, Ni, Cu and the like in the hot metal increase.
This increase in concentration can be known by analyzing the components of the hot metal discharged from the tap hole 12. Therefore, by measuring the change over time in the concentration, it is possible to determine the residence time in the furnace after the detection material is inserted, and then melted and dropped, and then discharged.
【0017】また、溶銑中に通常含まれるCr等の元素
であっても、出銑された溶銑中の濃度が定常値よりも高
くなることを利用して、炉況に悪影響を与えない範囲で
検出材として使用することもできる。Further, even for elements such as Cr, which are usually contained in the hot metal, the fact that the concentration in the hot metal that has been tapped out is higher than the steady value can be used within the range that does not adversely affect the furnace conditions. It can also be used as a detection material.
【0018】たとえば、Coを検出材の有効元素として
使用した場合を例にとって、炉芯活性状態とCo滞留時
間との関係を説明する。炉芯の活性度が高い状態におけ
るCoの炉内滞留時間は、図2(a)に示すように比較
的短い時間である。また、出銑された溶銑中のCo濃度
も、短い周期で変動している。すなわち、挿入されたC
oは、短時間でほぼ全量が排出される。The relationship between the core active state and the Co residence time will be described by taking the case of using Co as an effective element of the detecting material as an example. The residence time of Co in the furnace when the activity of the furnace core is high is a relatively short time as shown in FIG. 2 (a). Further, the Co concentration in the tapped hot metal also fluctuates in a short cycle. That is, the inserted C
Almost all of o is discharged in a short time.
【0019】これに対し、炉芯が不活性な状態にあると
き、挿入されたCoが排出されるまでの滞留時間は、図
2(b)に示すように長くなっている。しかも、排出さ
れた溶銑のCo濃度は、長時間にわたって変動し、図2
(a)に示すようなシャープな変動曲線をたどらない。
これは、炉芯内の通液性悪化に応じて滞留時間が長くな
ることを示すものである。特に、炉内の通気性が悪化す
るほど炉芯内の通液性が極端に低下した場合、滞留時間
が異常に長くなる。しかも、装入されたCoのうち、僅
かな量しか炉外に排出されなくなる。On the other hand, when the furnace core is in an inactive state, the residence time until the inserted Co is discharged is long as shown in FIG. 2 (b). Moreover, the Co concentration of the discharged hot metal fluctuates over a long period of time.
It does not follow the sharp variation curve shown in (a).
This indicates that the residence time becomes longer as the liquid permeability in the furnace core deteriorates. In particular, when the liquid permeability inside the furnace core is extremely reduced as the air permeability inside the furnace is deteriorated, the residence time becomes abnormally long. Moreover, only a small amount of Co charged is discharged to the outside of the furnace.
【0020】すなわち、排出された溶銑に含まれるCo
の濃度変動は、炉芯の活性状態を的確に表すデータであ
る。そこで、Coの滞留時間を定期的に測定し、滞留時
間が長くなる傾向を示した時点により、炉芯の通液性が
悪化の傾向を示す初期を知ることができる。この時点で
通液性回復用の操業条件を採用すると、通液性が短時間
で回復し、安定した炉況の下での高炉操業が可能とな
る。That is, Co contained in the discharged hot metal
The fluctuation of the concentration is data that accurately represents the activated state of the furnace core. Therefore, the retention time of Co is regularly measured, and when the retention time tends to be long, the initial stage in which the liquid permeability of the furnace core tends to deteriorate can be known. If operating conditions for liquid permeability recovery are adopted at this point, liquid permeability will be restored in a short time, and blast furnace operation under stable furnace conditions will be possible.
【0021】[0021]
【実施例】出銑比2.3トン/m3 ・日で炉内容積21
50m3 の高炉を操業しているとき、Co含有率50%
の金属塊40kgを、羽口ゾンデを使用して7日おきに
炉芯内に挿入した。このときの操業諸元及びCoの滞留
時間の推移を、図3に示す。[Example] The internal volume of the furnace is 21 at a tap ratio of 2.3 tons / m 3 · day
When operating a 50m 3 blast furnace, the Co content is 50%
40 kg of the metal lump of No. 2 was inserted into the core every 7 days using a tuyere sonde. Changes in the operating specifications and the residence time of Co at this time are shown in FIG.
【0022】当初、Coの滞留時間は、40分であっ
た。高炉操業が21日を超えるようになると、Coの滞
留時間が長くなる傾向がみられた。そして、操業日数2
8日で、Coの滞留時間が58分まで長くなった。その
時点で、コークス比を20kg/THMだけ増大したと
ころ、Coの滞留時間は、7日後に40分まで短くなっ
た。そこで、コークス比を元のレベル400Kg/TH
Mに戻し、操業を継続した。なお、PC比は、全期間を
通じて100Kg/THMの一定値に保った。Initially, the residence time of Co was 40 minutes. When the blast furnace operation exceeds 21 days, the residence time of Co tends to be long. And the number of operating days is 2
At 8 days, the residence time of Co increased to 58 minutes. At that point, when the coke ratio was increased by 20 kg / THM, the residence time of Co decreased to 40 minutes after 7 days. Therefore, the coke ratio was set to the original level of 400 Kg / TH.
Returned to M and continued operation. The PC ratio was maintained at a constant value of 100 Kg / THM throughout the entire period.
【0023】全操業期間を通じて、通気性の悪化はみら
れず、出銑比を2.3T/m3 ・日に維持することがで
きた。このことから明らかなように、通液性の悪化傾向
を極めて早い段階で知ることができるため、炉況の回復
に長期間を要することなく、高出銑比での高炉操業が可
能となる。Throughout the entire operation period, no deterioration of air permeability was observed, and the tap ratio could be maintained at 2.3 T / m 3 · day. As is clear from this, since the tendency of deterioration of liquid permeability can be known at an extremely early stage, it is possible to operate the blast furnace with a high tap ratio without requiring a long period of time to recover the furnace condition.
【0024】[0024]
【発明の効果】以上に説明したように、本発明法におい
ては、炉芯に挿入された検出材が排出されるまでの時間
に基づいて、炉芯の活性状態を正確に且つ定期的に検出
している。これにより、炉芯が不活性化し始める初期を
的確に把握することができ、炉況回復に必要な操業条件
を早期に取ることができる。その結果、炉況回復に長期
間を要することなく、生産性よく高炉を操業することが
できる。As described above, in the method of the present invention, the active state of the core is accurately and regularly detected based on the time until the detection material inserted into the core is discharged. is doing. As a result, it is possible to accurately grasp the initial stage when the furnace core begins to be inactivated, and it is possible to take operating conditions necessary for the recovery of the furnace condition at an early stage. As a result, it is possible to operate the blast furnace with high productivity without requiring a long period of time to recover the furnace condition.
【図1】 本発明が実施される高炉の要部を示した概略
図FIG. 1 is a schematic view showing a main part of a blast furnace in which the present invention is implemented.
【図2】 炉芯の活性状態がCoの滞留時間に与える影
響を示したグラフFIG. 2 is a graph showing the effect of the active state of the furnace core on the residence time of Co.
【図3】 本発明実施例における操業諸元とCoの滞留
時間との関係を示したグラフFIG. 3 is a graph showing the relationship between operating specifications and the residence time of Co in the example of the present invention.
10 高炉 11 羽口 12 出銑口
22 炉芯 30 羽口ゾンデ 31検出材10 Blast Furnace 11 Tuyere 12 Taphole 22 Furnace Core 30 Tuyere Sonde 31 Detection Material
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大楠 洋 広島県呉市昭和町11番1号 日新製鋼株式 会社鉄鋼研究所内 (72)発明者 柳川 俊雄 広島県呉市昭和町11番1号 日新製鋼株式 会社鉄鋼研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Okusu 11-1 Showa-cho, Kure City, Hiroshima Prefecture Nisshin Steel Co., Ltd. Steel Research Laboratories (72) Toshio Yanagawa 11-11 Showa-cho, Kure City, Hiroshima Prefecture New Steel Co., Ltd. Steel Research Laboratory
Claims (1)
i,Cu,Cr等の元素を含有する検出材を挿入した
後、前記元素が排出されるまでの時間を測定し、測定さ
れた時間の長短に基づいて炉芯の活性度の変動を判定す
ることを特徴とする高炉操業における炉芯活性状態の検
出方法。1. Co, N from the blast furnace tuyere during operation to the core
After inserting a detection material containing an element such as i, Cu, or Cr, the time until the element is discharged is measured, and the fluctuation of the activity of the furnace core is determined based on the length of the measured time. A method for detecting a core active state in a blast furnace operation, which is characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33396091A JPH05148519A (en) | 1991-11-21 | 1991-11-21 | Method for detecting activating condition in furnace core in blast furnace operation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33396091A JPH05148519A (en) | 1991-11-21 | 1991-11-21 | Method for detecting activating condition in furnace core in blast furnace operation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05148519A true JPH05148519A (en) | 1993-06-15 |
Family
ID=18271913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33396091A Withdrawn JPH05148519A (en) | 1991-11-21 | 1991-11-21 | Method for detecting activating condition in furnace core in blast furnace operation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05148519A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05295410A (en) * | 1992-04-23 | 1993-11-09 | Nippon Steel Corp | Method for operating blast furnace |
-
1991
- 1991-11-21 JP JP33396091A patent/JPH05148519A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05295410A (en) * | 1992-04-23 | 1993-11-09 | Nippon Steel Corp | Method for operating blast furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5924186B2 (en) | Method of decarburizing and refining hot metal in converter | |
JPH05148519A (en) | Method for detecting activating condition in furnace core in blast furnace operation | |
Hayes | Aspects of SAF smelting of ferrochrome | |
Reddy et al. | Zinc fuming from lead blast furnace slag | |
Shiau et al. | Development of slag flowability prediction formula for blast furnace operation and its application | |
US4329868A (en) | Method for the determination of hydrogen content in inorganic materials | |
JPH0625721A (en) | Operation of blast furnace | |
JPS59568B2 (en) | Oxygen converter blowing control method | |
Tholander et al. | On the classification of ancient slags by microstructure examination | |
JP2897363B2 (en) | Hot metal production method | |
Lee et al. | Rate of reoxidation of ultra-low carbon steel in contact with slag of various compositions | |
Coetsee | Ore smelting in high carbon ferromanganese production:“It works in practice, but does it work in theory?” | |
Tan | Applications of thermo-chemical and thermo-physical modeling in the copper converter industries' | |
JPH0625725A (en) | Detection of activation degree of core part in blast furnace | |
Pan et al. | Chromium distribution between slag and non-carbon saturated metal phases under changing partial pressure of carbon monoxide | |
Abramenko et al. | System for continuously monitoring gas composition over the radius of the top of blast furnaces | |
JP2002069517A (en) | Method for operating smelting reduction furnace | |
JPH0798968B2 (en) | Operation method of smelting reduction furnace | |
Safonov et al. | Material expenditures in deep desulfurization of steel in the ladle–furnace unit | |
JP3238037B2 (en) | Blast furnace operation | |
JPH036312A (en) | Method for controlling blowing in converter | |
JPH05239522A (en) | Production of molten iron | |
JPH0849012A (en) | Restraining of erosion of ladle referactory | |
Melcher | Iron, Steel, and Ferroalloys Investigated at Bruceton | |
JP3033263B2 (en) | Hot metal production furnace and hot metal production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990204 |