JPH05148191A - Production of amino compound - Google Patents

Production of amino compound

Info

Publication number
JPH05148191A
JPH05148191A JP3316471A JP31647191A JPH05148191A JP H05148191 A JPH05148191 A JP H05148191A JP 3316471 A JP3316471 A JP 3316471A JP 31647191 A JP31647191 A JP 31647191A JP H05148191 A JPH05148191 A JP H05148191A
Authority
JP
Japan
Prior art keywords
amino compound
catalyst
ruthenium
hydrogen
cyclohexanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3316471A
Other languages
Japanese (ja)
Other versions
JP3020697B2 (en
Inventor
Kazuya Uehara
一哉 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP3316471A priority Critical patent/JP3020697B2/en
Publication of JPH05148191A publication Critical patent/JPH05148191A/en
Application granted granted Critical
Publication of JP3020697B2 publication Critical patent/JP3020697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To efficiently obtain a high-purity amino compound useful as a chemical for rubber, etc., by aminating an alicyclic alcohol in the presence of a ruthenium-based catalyst treated with hydrogen. CONSTITUTION:An alicyclic alcohol such as cyclohexanol is aminated by introducing ammonium under 30-50kgcm<2> at 150-190 deg.C reaction temperature in the presence of a ruthenium-based catalyst pretreated under 10-30kg/cm<2> hydrogen pressure at 130-180 deg.C to give the objective compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アミノ化合物の製造方
法に関し、詳しくは寿命が長く、また活性の高いルテニ
ウム系触媒を用いることによって、脂環式アルコールか
らアミノ化合物を効率よく製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an amino compound, and more particularly to a method for efficiently producing an amino compound from an alicyclic alcohol by using a ruthenium-based catalyst having a long life and high activity. ..

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
シクロヘキシルアミンを製造する方法としては、フェノ
ールを原料に用いるとともに、ニッケル触媒を用いるも
のが知られている(特公昭64−3862号公報)。し
かし、触媒としてニッケルを用いた場合、副生成物であ
るジシクロヘキシルアミンが全生成物の20%近くを占
め、シクロヘキシルアミンの収率は低いものであった。
また、フェノールにパラジウム触媒を用いる方法も知ら
れている(特開昭55−51042号公報)が、アミノ
化反応の転化率は60%前後、目的物の選択率は50%
前後であり、シクロヘキシルアミンの収率は低いもので
あった。フェノールを原料にして、ルテニウム触媒を用
いる方法も知られている(特公昭49−34677号公
報)が、触媒の再生処理において酢酸が使用されてお
り、再生コストが高くなるとともに、設備の腐蝕や排水
処理の問題が生じている。さらに、フェノールにロジウ
ム触媒を用いる方法も提案されている(特公昭41−1
5103号公報)が、触媒が高価であってコスト高とな
り、実用的でない。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
As a method for producing cyclohexylamine, a method in which phenol is used as a raw material and a nickel catalyst is used is known (Japanese Patent Publication No. Sho 38-3862). However, when nickel was used as a catalyst, the by-product dicyclohexylamine accounted for nearly 20% of the total product, and the yield of cyclohexylamine was low.
A method of using a palladium catalyst for phenol is also known (JP-A-55-51042), but the conversion of amination reaction is around 60% and the selectivity of the target product is 50%.
The yield of cyclohexylamine was low. A method of using a ruthenium catalyst using phenol as a raw material is also known (Japanese Patent Publication No. Sho 49-34677). However, acetic acid is used in the catalyst regeneration treatment, which raises the regeneration cost and causes equipment corrosion and corrosion. Wastewater treatment problems are occurring. Furthermore, a method using a rhodium catalyst for phenol has also been proposed (Japanese Patent Publication No. 41-1).
No. 5103), the catalyst is expensive and the cost is high, which is not practical.

【0003】[0003]

【課題を解決するための手段】本発明者らは、上記従来
技術の問題点を解決すべく鋭意検討した結果、脂環式ア
ルコールをアミノ化する際に、水素で前処理したルテニ
ウム触媒を用いることによって、上記問題を解決できる
ことを見出した。本発明はかかる知見に基づいて完成し
たものである。すなわち本発明は、脂環式アルコール
を、水素で前処理されたルテニウム系触媒の存在下でア
ミノ化することを特徴とするアミノ化合物の製造方法を
提供するものである。
DISCLOSURE OF THE INVENTION As a result of intensive studies made by the present inventors to solve the above-mentioned problems of the prior art, a ruthenium catalyst pretreated with hydrogen is used when aminating alicyclic alcohols. It has been found that the above problems can be solved by doing so. The present invention has been completed based on such findings. That is, the present invention provides a method for producing an amino compound, which comprises aminating alicyclic alcohol in the presence of a ruthenium-based catalyst pretreated with hydrogen.

【0004】本発明の方法に用いるルテニウム系触媒
は、水素で前処理されたものである。ここでルテニウム
系触媒を水素で前処理すると、触媒活性が長期間にわた
って有効に維持され、また目的生成物であるアミノ化合
物の純度が高度、例えば94%以上に保持される。上記
前処理すべきルテニウム系触媒は、様々なものがある
が、例えばルテニウム単独、他の金属を含むもの、ある
いは酸化ルテニウム等の各種ルテニウム化合物、さらに
はこれらが適当な担体に担持されたものなどが挙げら
れ、好ましくは担体に担持されたものである。担体とし
ては、例えばシリカ,アルミナ,シリカ−アルミナ,ジ
ルコニア,ハフニア,クロミア,チタニア,酸化鉄,酸
化コバルト,酸化ニオブ,酸化ガリウム,酸化タンタ
ル,希土類金属酸化物,酸化亜鉛などの金属酸化物、無
機塩類、活性炭、樹脂などが挙げられる。この水素前処
理は、様々な手法により行うことができるが、通常は水
素圧5〜50kg/cm2 、好ましくは10〜30kg
/cm2 、温度100〜190℃、好ましくは130〜
180℃の雰囲気下に、対象とするルテニウム系触媒を
10〜60分間、好ましくは20〜40分間程度保持す
ればよい。なお、この水素前処理は、上述の雰囲気下に
おいて、本発明の方法の原料化合物である脂環式アルコ
ール(例えばシクロヘキサノール)にルテニウム系触媒
を分散させて攪拌処理することも好ましい手法の一つで
ある。
The ruthenium-based catalyst used in the method of the present invention has been pretreated with hydrogen. When the ruthenium-based catalyst is pretreated with hydrogen, the catalytic activity is effectively maintained for a long period of time, and the purity of the target amino compound is maintained at a high level, for example, 94% or more. There are various ruthenium-based catalysts to be pretreated, for example, ruthenium alone, those containing other metals, or various ruthenium compounds such as ruthenium oxide, and those supported on a suitable carrier, etc. And those supported on a carrier are preferable. Examples of the carrier include silica, alumina, silica-alumina, zirconia, hafnia, chromia, titania, iron oxide, cobalt oxide, niobium oxide, gallium oxide, tantalum oxide, rare earth metal oxides, zinc oxide and other metal oxides, and inorganic oxides. Examples thereof include salts, activated carbon, resins and the like. This hydrogen pretreatment can be carried out by various methods, but the hydrogen pressure is usually 5 to 50 kg / cm 2 , preferably 10 to 30 kg.
/ Cm 2 , temperature 100-190 ℃, preferably 130-
The target ruthenium-based catalyst may be held for 10 to 60 minutes, preferably 20 to 40 minutes in an atmosphere of 180 ° C. In addition, this hydrogen pretreatment is also one of the preferable methods in which, under the above-mentioned atmosphere, the ruthenium-based catalyst is dispersed in the alicyclic alcohol (for example, cyclohexanol) that is the raw material compound of the method of the present invention and the mixture is stirred. Is.

【0005】本発明の方法は、上記水素前処理されたル
テニウム系触媒の存在下で、脂環式アルコールをアミノ
化するものであり、この反応は、各種の状況に応じて適
宜条件下で行えばよいが、通常は圧力10〜60kg/
cm2 、好ましくは30〜50kg/cm2 および反応
温度120〜210℃、好ましくは150〜190℃の
条件下で行われる。このような条件でアミノ化を行う
と、実用的な反応速度が維持され、また目的生成物であ
るアミノ化合物の純度が99%以上に保持され、有利で
ある。なお、このアミノ化は反応系にアンモニアを導入
して行われるが、さらに水素を共存させることが好まし
い。本発明の方法で原料として用いる脂環式アルコール
は、シクロペンタノール,シクロヘキサノール,メチル
シクロヘキサノールなどが挙げられる。この脂環式アル
コールは、各種の方法で得られたものを充当すればよい
が、例えばシクロヘキサノールについては、フェノール
をニッケル等の水素化触媒の存在下で核水素化すること
によって得られる。この核水素化は、好ましくはニッケ
ル触媒を用い、水素圧5〜40kg/cm2 ,反応温度
110〜190℃の条件で行うことが好ましく、このよ
うな条件にてフェノールを核水素化すると、反応が速や
かに進行し、しかも純度99.5%以上のシクロヘキサノ
ールが得られ、本発明の方法に用いる原料として好適な
ものとなる。
The method of the present invention is to aminate an alicyclic alcohol in the presence of the above-mentioned hydrogen-pretreated ruthenium-based catalyst, and this reaction is carried out under appropriate conditions depending on various situations. Usually, the pressure is 10 to 60 kg /
It is carried out under the conditions of cm 2 , preferably 30 to 50 kg / cm 2 and reaction temperature of 120 to 210 ° C, preferably 150 to 190 ° C. It is advantageous to carry out the amination under such conditions because a practical reaction rate is maintained and the purity of the target product amino compound is maintained at 99% or more. Although this amination is carried out by introducing ammonia into the reaction system, it is preferable to further coexist with hydrogen. Examples of the alicyclic alcohol used as a raw material in the method of the present invention include cyclopentanol, cyclohexanol, and methylcyclohexanol. As the alicyclic alcohol, those obtained by various methods may be used. For example, cyclohexanol can be obtained by nuclear hydrogenation of phenol in the presence of a hydrogenation catalyst such as nickel. This nuclear hydrogenation is preferably carried out under conditions of a hydrogen pressure of 5 to 40 kg / cm 2 and a reaction temperature of 110 to 190 ° C., preferably using a nickel catalyst. Rapidly progresses, and cyclohexanol having a purity of 99.5% or more is obtained, which is suitable as a raw material used in the method of the present invention.

【0006】本発明の方法は、様々な手法によって水素
前処理したルテニウム系触媒を用いるとともに、脂環式
アルコールを原料として用いればよく、前述したように
水素前処理の方法や脂環式アルコールの調製法等につい
ては、特に限定されない。しかし、例えば脂環式アルコ
ールとしてシクロヘキサノールを用いる場合、最も効率
的にしかも高純度のアミノ化合物を得るには、次のよう
な一連の方法が好適である。すなわち、フェノールを前
記条件にて核水素化して高純度のシクロヘキサノールを
得、このシクロヘキサノール中でルテニウム系触媒を前
述した条件にて水素前処理を施し、さらにこの系に引き
続いてアンモニアと水素を導入して、これもまた前述し
た条件にてアミノ化すれば、極めて効率よく、しかも高
純度のアミノ化合物(シクロヘキシルアミン)が生成さ
れる。
In the method of the present invention, a ruthenium-based catalyst pretreated by various methods may be used, and an alicyclic alcohol may be used as a raw material. As described above, the hydrogen pretreatment method or the alicyclic alcohol may be used. The preparation method and the like are not particularly limited. However, for example, when cyclohexanol is used as the alicyclic alcohol, the following series of methods are suitable for obtaining the amino compound of the highest efficiency and high purity. That is, phenol is nuclear-hydrogenated under the above conditions to obtain high-purity cyclohexanol, and ruthenium-based catalyst is subjected to hydrogen pretreatment in this cyclohexanol under the above-mentioned conditions, and further ammonia and hydrogen are added to this system. If introduced and also aminated under the above-mentioned conditions, an amino compound (cyclohexylamine) of extremely high efficiency and high purity can be produced.

【0007】[0007]

【実施例】次に本発明を参考例および実施例に基いてさ
らに詳細に説明する。 参考例 容積100ccの電磁攪拌式オートクレーブに、5%R
u/Al2 3 触媒0.5g,シクロヘキサノール24.9
gおよびアンモニア5.2gを仕込み、175℃で水素加
圧下、全圧40kg/cm2 において3時間アミノ化反
応を行った。得られた反応結果は、シクロヘキサノール
の転化率45%およびシクロヘキシルアミンの選択率9
9%であった。しかし、その後、上記と同じ条件でアミ
ノ化反応を繰り返し行ったところ、触媒活性は触媒の反
復使用ごとに低下し、4バッチ目の転化率は33%にな
った。5バッチ目以降は、毎回、触媒を60℃の温水1
0ミリリットル,10%酢酸5ミリリットルおよび純水
5ミリリットルで順次洗浄,風乾して再使用したが、1
1バッチ目の転化率は19%にまで低下した。このバッ
チ回数と転化率の関係を図1に示す。
The present invention will be described in more detail with reference to Reference Examples and Examples. Reference example Add 5% R to an electromagnetic stirring autoclave with a volume of 100cc.
u / Al 2 O 3 catalyst 0.5 g, cyclohexanol 24.9
g and 5.2 g of ammonia were charged, and an amination reaction was performed at 175 ° C. under a hydrogen pressure at a total pressure of 40 kg / cm 2 for 3 hours. The reaction results obtained are as follows: cyclohexanol conversion 45% and cyclohexylamine selectivity 9
It was 9%. However, after that, when the amination reaction was repeatedly performed under the same conditions as above, the catalyst activity decreased with each repeated use of the catalyst, and the conversion rate in the fourth batch was 33%. After the 5th batch, the catalyst was warmed to 60 ° C with warm water 1 time each time.
It was washed with 0 ml, 5 ml of 10% acetic acid and 5 ml of pure water in this order, dried in air and reused.
The conversion rate of the first batch dropped to 19%. The relationship between the number of batches and the conversion rate is shown in FIG.

【0008】実施例1 容積100ccの電磁攪拌式オートクレーブに、参考例
で使用して劣化した11バッチ使用済触媒0.39gおよ
びシクロヘキサノール24.9gを仕込み、150℃で水
素加圧下、全圧20kg/cm2 において30分間攪拌
し、触媒の水素前処理を行った。その後、放冷,脱圧
し、アンモニア5.2gを導入し、175℃で水素加圧
下、全圧40kg/cm2 において3時間アミノ化反応
を行った。その結果は、シクロヘキサノールの転化率は
58%に向上し、シクロヘキシルアミンの選択率は99
%であった。この11バッチ目での転化率を図1に示
す。
Example 1 An electromagnetic stirring type autoclave having a volume of 100 cc was charged with 0.39 g of 11 batches of spent catalyst and 24.9 g of cyclohexanol, which had been deteriorated after being used in the reference example. The catalyst was subjected to hydrogen pretreatment by stirring for 30 minutes at / cm 2 . Then, the mixture was allowed to cool and depressurized, 5.2 g of ammonia was introduced, and an amination reaction was carried out at 175 ° C. under a hydrogen pressure at a total pressure of 40 kg / cm 2 for 3 hours. As a result, the conversion of cyclohexanol was improved to 58% and the selectivity of cyclohexylamine was 99%.
%Met. The conversion rate of the 11th batch is shown in FIG.

【0009】実施例2 1バッチ目の反応は参考例と同様に、容積100ccの
電磁攪拌式オートクレーブに、5%Ru/Al2 3
媒0.5g,シクロヘキサノール24.9gおよびアンモニ
ア5.2gを仕込み、175℃で水素加圧下、全圧40k
g/cm2 において3時間アミノ化反応を行った。得ら
れた反応結果は、シクロヘキサノールの転化率45%お
よびシクロヘキシルアミンの選択率99%であった。2
〜20バッチ目の反応は実施例1と同様に、容積100
ccの電磁攪拌式オートクレーブに、直前のバッチで劣
化した使用済触媒0.39gおよびシクロヘキサノール2
4.9gを仕込み、150℃で水素加圧下、全圧20kg
/cm2 において30分間攪拌した。その後、放冷,脱
圧し、アンモニア5.2gを導入し、175℃で水素加圧
下、全圧40kg/cm2 において3時間アミノ化反応
を行った。その結果、20バッチ目の反応においても、
新触媒以上の活性を示した。また、選択率は2〜20バ
ッチを通じて95±1%の範囲であった。このバッチ回
数と転化率の関係を図1に示す。
Example 2 In the reaction of the first batch, 0.5 g of 5% Ru / Al 2 O 3 catalyst, 24.9 g of cyclohexanol and 5.2 g of ammonia were placed in an electromagnetic stirring autoclave having a volume of 100 cc as in the case of Reference Example. Was charged at 175 ° C under hydrogen pressure, total pressure 40k
The amination reaction was carried out at g / cm 2 for 3 hours. The obtained reaction results were a conversion of cyclohexanol of 45% and a selectivity of cyclohexylamine of 99%. Two
The reaction for the -20th batch was carried out in the same manner as in Example 1 with a volume of 100.
In a cc electromagnetic stirring autoclave, 0.39 g of spent catalyst and cyclohexanol 2 deteriorated in the previous batch.
Charge 4.9g, under hydrogen pressure at 150 ℃, total pressure 20kg
/ Cm 2 It was stirred for 30 minutes. Then, the mixture was allowed to cool and depressurized, 5.2 g of ammonia was introduced, and an amination reaction was carried out at 175 ° C. under a hydrogen pressure at a total pressure of 40 kg / cm 2 for 3 hours. As a result, even in the reaction of the 20th batch,
The activity was higher than that of the new catalyst. The selectivity was in the range of 95 ± 1% over 2 to 20 batches. The relationship between the number of batches and the conversion rate is shown in FIG.

【0010】[0010]

【発明の効果】以上の如く、本発明の方法によれば、使
用する触媒の寿命が長く、しかもその触媒再生コストが
安価であり、その上、効率よく目的とするアミノ化合物
を製造することができる。また、本発明の方法によって
製造したアミノ化合物は、高純度であるため品質がよ
く、したがって、このアミノ化合物は、ゴム用薬品,清
缶剤,染色助剤,界面活性剤,殺虫剤,酸素吸収剤,防
錆剤,不凍液など様々な分野で幅広く利用される。
As described above, according to the method of the present invention, the life of the catalyst used is long, and the cost for regenerating the catalyst is low, and moreover, the desired amino compound can be efficiently produced. it can. Further, the amino compound produced by the method of the present invention is of high quality because of its high purity. Therefore, this amino compound is used as a chemical for rubber, a canning agent, a dyeing aid, a surfactant, an insecticide, an oxygen absorbing agent. Widely used in various fields such as chemicals, rust preventives and antifreeze.

【図面の簡単な説明】[Brief description of drawings]

【図1】参考例および実施例におけるシクロヘキサノー
ルの転化率とバッチ数との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the conversion of cyclohexanol and the number of batches in Reference Examples and Examples.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 脂環式アルコールを、水素で前処理され
たルテニウム系触媒の存在下でアミノ化することを特徴
とするアミノ化合物の製造方法。
1. A method for producing an amino compound, which comprises aminating an alicyclic alcohol in the presence of a ruthenium-based catalyst pretreated with hydrogen.
【請求項2】 脂環式アルコールが、シクロヘキサノー
ルである請求項1記載のアミノ化合物の製造方法。
2. The method for producing an amino compound according to claim 1, wherein the alicyclic alcohol is cyclohexanol.
【請求項3】 シクロヘキサノールがフェノールを水素
化したものであり、かつアミノ化合物がシクロヘキシル
アミンである請求項2記載のアミノ化合物の製造方法。
3. The method for producing an amino compound according to claim 2, wherein the cyclohexanol is hydrogenated phenol, and the amino compound is cyclohexylamine.
【請求項4】 アミノ化を、水素の存在下で行う請求項
1記載のアミノ化合物の製造方法。
4. The method for producing an amino compound according to claim 1, wherein the amination is carried out in the presence of hydrogen.
JP3316471A 1991-11-29 1991-11-29 Method for producing alicyclic amine Expired - Fee Related JP3020697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3316471A JP3020697B2 (en) 1991-11-29 1991-11-29 Method for producing alicyclic amine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3316471A JP3020697B2 (en) 1991-11-29 1991-11-29 Method for producing alicyclic amine

Publications (2)

Publication Number Publication Date
JPH05148191A true JPH05148191A (en) 1993-06-15
JP3020697B2 JP3020697B2 (en) 2000-03-15

Family

ID=18077470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3316471A Expired - Fee Related JP3020697B2 (en) 1991-11-29 1991-11-29 Method for producing alicyclic amine

Country Status (1)

Country Link
JP (1) JP3020697B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043319A (en) * 2002-07-09 2004-02-12 Asahi Kasei Chemicals Corp Method for producing alicyclic amine compound
JP2017530186A (en) * 2014-07-18 2017-10-12 レイニッシュ−ヴェストフェリッシェ テヒニッシェ ホッホシューレ(エルヴェーテーハー)アーヘンRheinisch−Westfalische Technische Hochschlule(RWTH)Aachen Process for the synthesis of primary isohexamines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043319A (en) * 2002-07-09 2004-02-12 Asahi Kasei Chemicals Corp Method for producing alicyclic amine compound
JP4582992B2 (en) * 2002-07-09 2010-11-17 旭化成ケミカルズ株式会社 Method for producing alicyclic amine compound
JP2017530186A (en) * 2014-07-18 2017-10-12 レイニッシュ−ヴェストフェリッシェ テヒニッシェ ホッホシューレ(エルヴェーテーハー)アーヘンRheinisch−Westfalische Technische Hochschlule(RWTH)Aachen Process for the synthesis of primary isohexamines

Also Published As

Publication number Publication date
JP3020697B2 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
US5536691A (en) Cobalt catalysts and a process required for their preparation
RU2434676C2 (en) Catalysts based on mixed oxides for hydrogenating organic compounds, production method thereof and hydrogenation method
US20110313188A1 (en) Method for improving the catalytic activity of monolithic catalysts
US20110313186A1 (en) Hydrogenation catalysts, the production and the use thereof
US3544485A (en) Method of activating catalytic alloys
JPS6120343B2 (en)
EP1630155B1 (en) Hydrogenation of methylenedianiline
KR19990044669A (en) Metal compounds for new catalysts
MXPA01001716A (en) Fixed bed raney copper catalyst.
JPH0747125B2 (en) Method for producing acetic acid derivative
US2166151A (en) Catalytic hydrogenation of adiponitriles to produce hexamethylene diamines
JPH05148191A (en) Production of amino compound
CA1126761A (en) Hydrogenation of aromatic amines
JP3955349B2 (en) Nuclear hydrogenation process for substituted aromatic compounds
US6114277A (en) Process for preparing cyano group-containing aromatic methylamines
CN1318385C (en) Process for the catalytic hydrogenation of a nitrile
JPH061758A (en) Production of amino compound
JP3071950B2 (en) Amine production method
JP4418080B2 (en) Primary amine production method and catalytic reduction catalyst
US3441610A (en) Catalytic hydrogenation of nitro-alkanes to n-alkylhydroxylamines
JP3367117B2 (en) Catalyst for hydrogenating nitriles and method for producing amines
JPS6242956A (en) Continuous production of tolylenediamine
US5124485A (en) Catalysts and methods of separation thereof
JP3835841B2 (en) Method for producing tertiary amine having long-chain saturated aliphatic group
JPH0418935A (en) Catalyst for hydrogenation of aromatic amines and production of cyclohexylamines

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees