JPH0514707B2 - - Google Patents

Info

Publication number
JPH0514707B2
JPH0514707B2 JP59098237A JP9823784A JPH0514707B2 JP H0514707 B2 JPH0514707 B2 JP H0514707B2 JP 59098237 A JP59098237 A JP 59098237A JP 9823784 A JP9823784 A JP 9823784A JP H0514707 B2 JPH0514707 B2 JP H0514707B2
Authority
JP
Japan
Prior art keywords
solid acid
alumina
imidazolidinone
reaction
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59098237A
Other languages
Japanese (ja)
Other versions
JPS60243071A (en
Inventor
Kazuhisa Ito
Yoshio Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawaken Fine Chemicals Co Ltd
Original Assignee
Kawaken Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawaken Fine Chemicals Co Ltd filed Critical Kawaken Fine Chemicals Co Ltd
Priority to JP59098237A priority Critical patent/JPS60243071A/en
Publication of JPS60243071A publication Critical patent/JPS60243071A/en
Publication of JPH0514707B2 publication Critical patent/JPH0514707B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、2−イミダゾリジノンとホルムアル
デヒドまたはパラホルムアルデヒドとを固体酸の
存在下、水素化触媒を用いて接触還元することを
特徴とする。1,3−ジメチル−2−イミダゾリ
ジノンの製造方法に関するものである。 1,3−ジメチル−2−イミダゾリジノンは、
極性非プロトン溶媒として重要な位置を占め、有
機合成反応用溶媒、高分子化合物の溶媒、石油精
製の際の芳香族炭化水素および不飽和炭化水素の
抽出溶媒なの広範な用途があり、工業的にきわめ
て有用な化合物である。 1,3−ジメチル−2−イミダゾリジノンを製
造する従来の方法としては、次のような方法が知
られている。 (1) 米国特許第2422400号明細書記載の方法 (a)2−イミダゾリジノンとホルムアルデヒド
からの塩基性雰囲気におけるメチロール中間体
の生成および分離の工程、(b)反応溶媒のPHを調
整した後、触媒により接触還元する工程、の2
工程を必要とする。 (2) 特開昭52−71419号公報記載の方法 2−イミダゾリジノンとホルムアルデヒドを
PH3〜5の酸性雰囲気中水素添加して、1,3
−ジメチル−2−イミダゾリジノンを1工程で
製造する方法が開占されている。特開昭52−
71419号公報には、反応液を酸性にするための
物質が特定されておらず不明であるが、実施例
1では、リン酸を添加して反応液をPH3とする
方法が記載されている。この方法を実施するに
は耐蝕性の反応装置が必要となり、しかも反応
終了後、反応液の中和によつて塩が生成し分離
が困難である。 (3) 特開昭53−98965号公報記載の方法 酸性物質の存在下、1,3−ビス(ヒドロキ
シメチル)−または1,3−ビス(アルコキシ
メチル)−2−イミダゾリジノンを水素化触媒
を用いて接触還元する方法が記載されている。
しかし、原料である1,3−ビス(ヒドロキシ
メチル)−または1,3−ビス(アルコキシメ
チル)−2−イミダゾリジノンを製造するには
米国特許第2422400号同様に、2−イミダゾリ
ジノンとホルムアルデヒドからメチロール化工
程を経由せねばならず、実質的には2段反応で
ある。さらに、酸性物質の存在下PH3以下で接
触還元を行うため、特開昭52−71419号と同じ
ように耐蝕性の装置が必要となり、反応終了後
中和によつて生成した塩の分離という問題が生
じる。 以上のように、従来方法は1,3−ジメチル−
2−イミダゾリジノンの工業的製造方法として満
足しうるものではなかつた。 本発明者らは、2−イミダゾリジノンから1工
程で、しかも工業的実施が可能な穏やかな条件で
1,3−ジメチル−2−イミダゾリジノンを製造
する方法を確立すべく鋭意研究し、特定の固体酸
が有効なことを見いだし本発明を完成するに至つ
た。 すなわち、本発明は、硫酸イオンおよびアルミ
ナあるいは硫酸イオン、リン酸イオンおよびアル
ミナを焼成して得られる固体酸の存在下に、2−
イミダゾリジノンとホルムアルデヒドまたはパラ
ホルムアルデヒドを水素化触媒を用いて接触還元
することを特徴とする1,3−ジメチル−2−イ
ミダゾリジノンの製造方法に関するものである。 本発明で用いられる固体酸は、硫酸イオンおよ
びアルミナ、または硫酸イオン、リン酸イオンお
よびアルミナを焼成して得られるものである。固
体酸を構成する各原子の比率は、硫酸イオンおよ
びアルミナ場合、S/Alが0.01ないし0.06、硫酸
イオン、リン酸イオンおよびアルミナの場合、
(P+S)/Alが0.02なしい0.2で、S/Pが0.02
ないし0.8である。固体酸を構成する原子がこの
範囲にあれば、活性、選択性とも良好な固体酸が
得られる。 本発明の固体酸を調製するには、硫酸、リン酸
あるいはそれらのアルミナウム塩またはアンモニ
ウム塩などを水に溶解して得た、硫酸イオンまた
硫酸イオンとリン酸イオンを含む水溶液にアルミ
ナを加えてよく混合し、乾燥後焼成すればよい。
なお、硫酸イオンとアルミナから固体酸を調製す
れには、上記方法以外に、硫酸イオンを含む水溶
液にアルミナを接触させた後ロ過し、得られた固
体を焼成してもよい。 本発明の固体酸を調製する際の焼成温度は、
300℃以上、好ましくは500ないし900℃であり、
焼成時間は1なしい10時間、好ましくは2ないし
4時間が適当である。得られた固体酸はそのま
ま、もしくは2ないし10倍量の水で煮沸した後、
ロ過水洗して反応に用いる。なお、固体酸に用い
るアルミナはとくに限定されないが、実用上粉末
またはビーズ状のγ−アルミナが好ましい。 本発明の原料の一つであるホルムアルデヒドま
たはパラホルムアルデヒドは、水溶液あるいはメ
タノール溶液として反応し供し、その使用量は2
−イミダゾリジノンに対して2ないし4倍モルが
適当である。 本発明方法における水素化触媒は、パラジウ
ム、ニツケルまたは白金から得られる水素化触媒
であれば特に限定されないが、好ましくかパラジ
ウム炭素、ラネーニツケルおよび白金炭素触媒か
ら選ばれる少なくとも1種であり、特に好ましく
はパラジウム炭素である。その使用量は、2−イ
ミダゾリジノンに対して0.1なしい10重量%が好
ましい。固体酸の使用量は、原料の2−イミダゾ
リジノンに対して1ないし10重量%が適当であ
り、反応溶媒は水もしくはアルコール系溶媒が適
当である。反応温度は100ないし200℃、好ましく
は140ないし170℃、接触還元の際の水素圧力は20
ないし150Kg/cm2、好ましくは40ないし100Kg/cm2
である。 本発明における固体酸は、焼成時に硫黄化合物
の発生もなく、さらに焼成物の重量等から硫黄化
合物およびリン化合物が固体酸組成に組み込まれ
ていることが確認される。しかも、この固体酸
は、4倍量と水と2時間煮沸した後ロ過し水洗す
という操作を5回くり返しても、さらに900℃の
高温下で3時間焼成しても本反応における活性は
低下せず、この固体酸を本発明の反応に5回くり
返し再使用することが可能であつた。すなわち、
熱や水洗等による固体酸からの硫黄、リン化合物
の脱離はほとんどないと考えられる。 本発明の特徴的な効果として、本反応がPH6な
いし7の中性状態で行われることがあげられる。
反応中および反応終了後の反応液のPHが中性付近
であるため、反応装置の腐食の心配がなく、しか
も反応後中和する必要もない。したがつて、反応
終了後、固体酸と水素化触媒を反応液からロ別し
て蒸留するという簡単な操作により、高純度と
1,3−ジメチル−2−イミダゾリジノンを得る
ことができる。反応後、ロ過により回収された固
体酸と水素化触媒は分離することなくそのまま次
の反応に再使用できるため、本発明方法は工業的
にきわめて有利な方法である。 製造例 1 (固体酸の調製) 原子比のS/Alが0.03となるように、100mlの
水に98%硫酸5gを加え、この溶液に撹拌しなが
らγ−アルミナ粉末100gを加えた後、エバポレ
ーターを使用して減圧下蒸発乾燥し、さらに空気
雰囲気中500℃、3時間焼成し、固体酸102gを得
た。この固体酸は、ハメツトの酸度関数(以下
「Ho」で表わす)−8.2以下の酸強度を示す酸点を
多く有していた。また、上記操作において焼成時
硫黄化合物の発生は見られなかつた。 製造例 2 (固体酸の調製) 1N硫酸水溶液500mlにγ−アルミナ粉末100g
を加え10分間撹拌した後、ロ過した。ロ別された
γ−アルミナ粉末を乾燥した後、空気雰囲気中で
500℃、3時間焼成し、固体酸102gを得た。一方
ロ液は適定し、ロ液中の硫酸イオン濃度を測定し
た。ロ液中に含まれる硫酸イオンから硫酸イオン
の減少分を求め、得られた固体酸の原子比を算出
したところ、S/Alは0.03であつた。この固体酸
はHo<−8.2の酸強度を示す酸点を多く有してい
た。なお焼成時に硫黄化合物の発生は認められな
かつた。 製造例 3 (固体酸の調製) 原子比の(S+P)/Alが0.11で、S/Pが
0.41となるように、100mlの水に98%硫酸5gと
80%リン酸12.5gを溶解し、この溶液に撹拌しな
がらγ−アルミナ100gを加えた後、エパポレー
ターを使用して減圧下蒸発乾燥し、さらに空気雰
囲気中500℃、3時間焼成し、固体酸108gを得
た。このものはHo<−8.2の酸強度を示す酸点を
多く有していた。また、焼成時には硫黄化合物の
発生は認められなかつた。 製造例 4 (固体酸の調製) 原子比の(S+P)/Alが0.09で、S/Pが
0.16となるように、100mlの水に98%硫酸2gと
80%リン酸12.5gを溶解し、この溶解に撹拌しな
がらγ−アルミナ100gを加えた後、製造例3に
従つて固体酸107gを得た。このものは、Ho<−
8.2の酸強度を示す酸点を多く有していた。また、
焼成時硫黄化合物の発生は見られなかつた。 製造例 5 (固体酸の調製) 製造例3で得られた固体酸100gに300mlの水を
加え、2時間煮沸後ロ別水洗を行なつた。同様な
操作をさらに4回くり返した後乾燥し、空気雰囲
気中900℃で3時間焼成して、固体酸99gを得た。
このものは、Ho<−8.2で、焼成中硫黄化合物の
発生は見られなかつた。 実施例 1 2−イミダゾリジノン(純度86.3%、含水率
13.5%)33.1gをメタノール40mlに溶かし、これ
に活性炭0.7gを加えて40〜50℃で30分間撹拌し
た。活性炭をロ別した後、46%ホルムアルデヒド
溶液(メタノール44%、水10%)47.8gと製造例
1で得られた固体酸2gと5%パラジウム炭素1
gとともにオートクレープに入れ、水素置換後水
素を導入して、140〜150℃、40〜80Kg/cm2で4時
間反応させた。反応終了後、内容物を取り出し触
媒と固体酸をロ別し、ロ液のPHをPHメーターで測
定したところ、6.1であつた。このロ液から水と
メタノールを留去した後、減圧蒸留を行なうと、
120℃/25mmHgで、1,3−ジメチル−2−イミ
ダゾリジノン32.3g得られた。このものは、収率
が85.0%、ガスクロマトグラフイーによる純度は
99%であつた。 実施例 2〜5 製造例2〜5で得られた固体酸を使用し、実施
例1に準じて反応と処理を行なつた。その結果を
第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized by catalytic reduction of 2-imidazolidinone and formaldehyde or paraformaldehyde using a hydrogenation catalyst in the presence of a solid acid. The present invention relates to a method for producing 1,3-dimethyl-2-imidazolidinone. 1,3-dimethyl-2-imidazolidinone is
It occupies an important position as a polar aprotic solvent, and has a wide range of uses such as solvents for organic synthesis reactions, solvents for polymer compounds, and extraction solvents for aromatic hydrocarbons and unsaturated hydrocarbons during petroleum refining. It is an extremely useful compound. The following methods are known as conventional methods for producing 1,3-dimethyl-2-imidazolidinone. (1) Method described in U.S. Patent No. 2,422,400 (a) Step of producing and separating methylol intermediate from 2-imidazolidinone and formaldehyde in a basic atmosphere, (b) After adjusting the pH of the reaction solvent , a step of catalytic reduction using a catalyst, Part 2
Requires a process. (2) Method described in JP-A-52-71419 2-imidazolidinone and formaldehyde
Hydrogenate in an acidic atmosphere with pH 3 to 5 to produce 1,3
A method for producing -dimethyl-2-imidazolidinone in one step has been developed. Unexamined Japanese Patent Publication 1972-
Although the substance for making the reaction solution acidic is not specified in Publication No. 71419 and is unclear, Example 1 describes a method for adjusting the reaction solution to pH 3 by adding phosphoric acid. In order to carry out this method, a corrosion-resistant reactor is required, and furthermore, after the reaction is completed, salts are generated by neutralizing the reaction solution and are difficult to separate. (3) Method described in JP-A-53-98965 In the presence of an acidic substance, 1,3-bis(hydroxymethyl)- or 1,3-bis(alkoxymethyl)-2-imidazolidinone is hydrogenated as a catalyst. A method for catalytic reduction using
However, in order to produce the raw material 1,3-bis(hydroxymethyl)- or 1,3-bis(alkoxymethyl)-2-imidazolidinone, 2-imidazolidinone and A methylolization process must be performed from formaldehyde, which is essentially a two-stage reaction. Furthermore, since the catalytic reduction is carried out in the presence of an acidic substance at a pH of 3 or less, a corrosion-resistant device is required as in JP-A-52-71419, and there is the problem of separation of salts produced by neutralization after the reaction is completed. occurs. As mentioned above, the conventional method is 1,3-dimethyl-
This method was not satisfactory as an industrial method for producing 2-imidazolidinone. The present inventors have conducted extensive research to establish a method for producing 1,3-dimethyl-2-imidazolidinone from 2-imidazolidinone in one step and under mild conditions that are industrially possible. They discovered that a specific solid acid was effective and completed the present invention. That is, in the present invention, 2-
The present invention relates to a method for producing 1,3-dimethyl-2-imidazolidinone, which comprises catalytically reducing imidazolidinone and formaldehyde or paraformaldehyde using a hydrogenation catalyst. The solid acid used in the present invention is obtained by firing sulfate ions and alumina, or sulfate ions, phosphate ions, and alumina. The ratio of each atom constituting the solid acid is: in the case of sulfate ions and alumina, S/Al is 0.01 to 0.06; in the case of sulfate ions, phosphate ions, and alumina,
(P+S)/Al is 0.2 without 0.02, S/P is 0.02
or 0.8. If the atoms constituting the solid acid are within this range, a solid acid with good activity and selectivity can be obtained. To prepare the solid acid of the present invention, alumina is added to an aqueous solution containing sulfate ions or sulfate ions and phosphate ions, which is obtained by dissolving sulfuric acid, phosphoric acid, or their aluminum or ammonium salts in water. Mix well, dry, and then bake.
In addition to the above method, to prepare a solid acid from sulfate ions and alumina, alumina may be brought into contact with an aqueous solution containing sulfate ions, followed by filtration, and the resulting solid may be calcined. The calcination temperature when preparing the solid acid of the present invention is
300°C or higher, preferably 500 to 900°C,
The firing time is suitably 1 to 10 hours, preferably 2 to 4 hours. The obtained solid acid can be used as is or after boiling with 2 to 10 times the amount of water.
Filter, wash with water and use for reaction. Although the alumina used for the solid acid is not particularly limited, powdered or beaded γ-alumina is preferred for practical purposes. Formaldehyde or paraformaldehyde, which is one of the raw materials of the present invention, is reacted and provided as an aqueous solution or a methanol solution, and the amount used is 2
A suitable amount is 2 to 4 times the molar amount of -imidazolidinone. The hydrogenation catalyst in the method of the present invention is not particularly limited as long as it is a hydrogenation catalyst obtained from palladium, nickel, or platinum, but is preferably at least one selected from palladium carbon, Raney nickel, and platinum carbon catalysts, and particularly preferably It is palladium on carbon. The amount used is preferably 0.1 to 10% by weight based on the 2-imidazolidinone. The amount of solid acid used is suitably 1 to 10% by weight based on the raw material 2-imidazolidinone, and the reaction solvent is suitably water or an alcoholic solvent. The reaction temperature is 100 to 200°C, preferably 140 to 170°C, and the hydrogen pressure during catalytic reduction is 20°C.
from 150Kg/cm 2 , preferably from 40 to 100Kg/cm 2
It is. The solid acid of the present invention does not generate any sulfur compounds during firing, and it is confirmed from the weight of the fired product that sulfur compounds and phosphorus compounds are incorporated into the solid acid composition. Moreover, even if this solid acid was boiled with 4 times the amount of water for 2 hours, filtered and washed with water 5 times, and then calcined at a high temperature of 900°C for 3 hours, the activity in this reaction remained. It was possible to reuse this solid acid in the reaction of the present invention five times without deterioration. That is,
It is thought that there is almost no desorption of sulfur and phosphorus compounds from the solid acid due to heat, water washing, etc. A characteristic effect of the present invention is that the reaction is carried out in a neutral state with a pH of 6 to 7.
Since the pH of the reaction solution during and after the reaction is near neutral, there is no fear of corrosion of the reaction equipment, and there is no need to neutralize after the reaction. Therefore, after the completion of the reaction, high purity 1,3-dimethyl-2-imidazolidinone can be obtained by a simple operation of filtering out the solid acid and hydrogenation catalyst from the reaction solution and distilling them. After the reaction, the solid acid and hydrogenation catalyst recovered by filtration can be reused as they are in the next reaction without being separated, so the method of the present invention is industrially very advantageous. Production example 1 (Preparation of solid acid) Add 5 g of 98% sulfuric acid to 100 ml of water so that the atomic ratio S/Al is 0.03, add 100 g of γ-alumina powder to this solution with stirring, and then add it to the solution using an evaporator. The solid acid was evaporated to dryness under reduced pressure using a vacuum cleaner, and further calcined at 500°C for 3 hours in an air atmosphere to obtain 102 g of a solid acid. This solid acid had many acid sites exhibiting an acid strength of Hammett's acidity function (hereinafter referred to as "Ho") -8.2 or less. Further, no generation of sulfur compounds was observed during firing in the above operation. Production example 2 (Preparation of solid acid) 100 g of γ-alumina powder in 500 ml of 1N sulfuric acid aqueous solution
was added and stirred for 10 minutes, then filtered. After drying the separated γ-alumina powder,
It was calcined at 500°C for 3 hours to obtain 102g of solid acid. On the other hand, the filtrate was adjusted and the sulfate ion concentration in the filtrate was measured. The decrease in sulfate ions was determined from the sulfate ions contained in the filtrate, and the atomic ratio of the obtained solid acid was calculated, and S/Al was 0.03. This solid acid had many acid sites exhibiting an acid strength of Ho<-8.2. Furthermore, no generation of sulfur compounds was observed during firing. Production example 3 (Preparation of solid acid) The atomic ratio (S+P)/Al is 0.11, and S/P is
0.41, add 5 g of 98% sulfuric acid to 100 ml of water.
After dissolving 12.5 g of 80% phosphoric acid and adding 100 g of γ-alumina to this solution with stirring, it was evaporated to dryness under reduced pressure using an evaporator, and then calcined in an air atmosphere at 500°C for 3 hours to form a solid acid. Obtained 108g. This product had many acid sites showing an acid strength of Ho<-8.2. Further, no generation of sulfur compounds was observed during firing. Production example 4 (Preparation of solid acid) The atomic ratio (S+P)/Al is 0.09, and S/P is
0.16, add 2 g of 98% sulfuric acid to 100 ml of water.
After dissolving 12.5 g of 80% phosphoric acid and adding 100 g of γ-alumina to the solution with stirring, 107 g of solid acid was obtained according to Production Example 3. This one is Ho<-
It had many acid sites showing an acid strength of 8.2. Also,
No generation of sulfur compounds was observed during firing. Production Example 5 (Preparation of Solid Acid) 300 ml of water was added to 100 g of the solid acid obtained in Production Example 3, and after boiling for 2 hours, it was washed separately with water. The same operation was repeated four more times, followed by drying and calcining at 900° C. for 3 hours in an air atmosphere to obtain 99 g of solid acid.
This product had Ho<-8.2, and no sulfur compounds were observed to be generated during firing. Example 1 2-imidazolidinone (purity 86.3%, water content
13.5%) was dissolved in 40 ml of methanol, 0.7 g of activated carbon was added thereto, and the mixture was stirred at 40 to 50°C for 30 minutes. After separating the activated carbon, 47.8 g of a 46% formaldehyde solution (44% methanol, 10% water), 2 g of the solid acid obtained in Production Example 1, and 1 gram of 5% palladium on carbon were added.
After hydrogen substitution, hydrogen was introduced into the autoclave, and the mixture was reacted at 140 to 150°C and 40 to 80 kg/cm 2 for 4 hours. After the reaction was completed, the contents were taken out, the catalyst and solid acid were filtered out, and the pH of the filtrate was measured with a PH meter, and it was found to be 6.1. After water and methanol are distilled off from this filtrate, vacuum distillation is performed.
At 120°C/25mmHg, 32.3g of 1,3-dimethyl-2-imidazolidinone was obtained. This product has a yield of 85.0% and a purity determined by gas chromatography.
It was 99%. Examples 2 to 5 Using the solid acids obtained in Production Examples 2 to 5, reactions and treatments were performed according to Example 1. The results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 硫酸イオンおよびアルミナ、または硫酸イオ
ン、リン酸イオンおよびアルミナを焼成して得ら
れる固体酸の存在下に、2−イミダゾリジノンと
ホルムアルデヒドまたはパラホルムアルデヒドを
水素化触媒を用いて接触還元することを特徴とす
る1,3−ジメチル−2−イミダゾリジノンの製
造方法。 2 固体酸を構成する原子比が、硫酸イオンおよ
びアルミナの場合、S/Alが0.01ないし0.06、硫
酸イオン、リン酸イオンおよびアルミナの場合、
(S+P)/Alが0.02ないし0.2で、S/Pが0.02
ないし0.8の固体酸である特許請求の範囲第1項
記載の方法。 3 固体酸が、硫酸イオンまたは硫酸イオンとリ
ン酸イオンを含有する水溶液とアルミナの混合物
を乾燥後、300℃以上で焼成することによつて得
られる固体酸である特許請求の範囲第1項記載の
方法。 4 水素化触媒が、パラジウム、ニツケルまたは
白金から得られる少なくとも1種の水素化触媒で
ある特許請求の範囲第1項記載の方法。
[Claims] 1. In the presence of sulfate ions and alumina, or a solid acid obtained by calcining sulfate ions, phosphate ions and alumina, 2-imidazolidinone and formaldehyde or paraformaldehyde are combined using a hydrogenation catalyst. A method for producing 1,3-dimethyl-2-imidazolidinone, which comprises carrying out catalytic reduction. 2 When the atomic ratio constituting the solid acid is sulfate ion and alumina, S/Al is 0.01 to 0.06, and when sulfate ion, phosphate ion and alumina are used,
(S+P)/Al is 0.02 to 0.2 and S/P is 0.02
The method according to claim 1, wherein the solid acid has a concentration of 0.8 to 0.8. 3. Claim 1, wherein the solid acid is a solid acid obtained by drying a mixture of alumina and an aqueous solution containing sulfate ions or sulfate ions and phosphate ions, and then calcining the mixture at 300°C or higher. the method of. 4. The method according to claim 1, wherein the hydrogenation catalyst is at least one hydrogenation catalyst obtained from palladium, nickel or platinum.
JP59098237A 1984-05-16 1984-05-16 Production of 1,3-dimethyl-2-imidazolidinone Granted JPS60243071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59098237A JPS60243071A (en) 1984-05-16 1984-05-16 Production of 1,3-dimethyl-2-imidazolidinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59098237A JPS60243071A (en) 1984-05-16 1984-05-16 Production of 1,3-dimethyl-2-imidazolidinone

Publications (2)

Publication Number Publication Date
JPS60243071A JPS60243071A (en) 1985-12-03
JPH0514707B2 true JPH0514707B2 (en) 1993-02-25

Family

ID=14214348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59098237A Granted JPS60243071A (en) 1984-05-16 1984-05-16 Production of 1,3-dimethyl-2-imidazolidinone

Country Status (1)

Country Link
JP (1) JPS60243071A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492528B1 (en) 1998-10-09 2002-12-10 Mitsui Chemicals, Inc. 1,3-dialkyl-2-imidazolidinones and a manufacturing process therefor
KR100464193B1 (en) 2001-01-04 2005-01-03 미쯔이가가꾸가부시끼가이샤 Process for Producing 1,3-Dialkyl-2-Imidazolidinone Compound
JP2006312605A (en) * 2005-05-09 2006-11-16 Neos Co Ltd Method for producing high-purity 1,3-dimethyl-2-imidazolidinone
CN114394936B (en) * 2022-02-19 2023-11-24 河北康壮环保科技股份有限公司 Method for synthesizing 1, 3-dimethyl-2-imidazolone based on continuous hydrogenation of series microreactors

Also Published As

Publication number Publication date
JPS60243071A (en) 1985-12-03

Similar Documents

Publication Publication Date Title
DE60005318T2 (en) METHOD FOR PRODUCING ALPHA METHYLENE LACTONES
JPS6339288B2 (en)
EP0182078B1 (en) Catalyst for oxidation reactions and process for its preparation
EP0118085B1 (en) Process for preparation of tertiary olefins
JPS63434B2 (en)
JPH0421650B2 (en)
DE102014112363B4 (en) METHOD FOR PRODUCING A STRUCTURY-DIGITANT MEDIUM
JPH0514707B2 (en)
US4617400A (en) Process for preparing cyclic urea derivatives
JPS59152350A (en) Condensation of organic compound
EP0215964B1 (en) Process for preparing cyclic urea derivatives
KR102146094B1 (en) Catalyst for dehydration of preparing n-substituted maleimides, method of preparing the same, and preparing method of n-substituted maleimides
JP3523566B2 (en) Method for producing triethylenediamine using phosphate catalyst
CN114805255A (en) Preparation and membrane separation and purification method of 5-hydroxymethylfurfural
JP4197763B2 (en) Method for producing anhydrous 2-amino-1-methoxypropane
JPH10158255A (en) Production of oxetane alcohol
JPH08500608A (en) Method for Isomerizing Lactone to Pentenoic Acid with Acidic or Basic Catalyst
DE2532755A1 (en) PROCESS FOR THE PRODUCTION OF ISOPRENE
JPS591246B2 (en) Method for producing cyclohexylbenzenes
CN115160182B (en) Method for producing salicylonitrile by methyl salicylate continuous method
JPS61151145A (en) Production of phenylacetaldehyde
JPH0656726A (en) Method for synthesizing alkyl tert-alkyl ether using clay catalyst modified with phosphoric acid
EP0071225B1 (en) Process for forming alkyl vanadates using a catalyst
JPH0242537B2 (en)
JP3259030B2 (en) Production method of tertiary carboxylic acid using strong acidic solid acid catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees