JPH0242537B2 - - Google Patents

Info

Publication number
JPH0242537B2
JPH0242537B2 JP62023412A JP2341287A JPH0242537B2 JP H0242537 B2 JPH0242537 B2 JP H0242537B2 JP 62023412 A JP62023412 A JP 62023412A JP 2341287 A JP2341287 A JP 2341287A JP H0242537 B2 JPH0242537 B2 JP H0242537B2
Authority
JP
Japan
Prior art keywords
catalyst
vanadium
precursor
acid
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62023412A
Other languages
Japanese (ja)
Other versions
JPS62258746A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of JPS62258746A publication Critical patent/JPS62258746A/en
Publication of JPH0242537B2 publication Critical patent/JPH0242537B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Furan Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の詳細な説明〕 本発明は、炭化水素を酸化して酸無水物、特
に、無水マレイン酸を製造するための触媒及びそ
の製造方法に関するものである。 例えば、ベンゼン;一般式R′−CH2−CH2
CH2−CH2R″(式中R′およびR″は水素またはアル
キル基であり、R′とR″における炭素原子は合計
で6個以下、好ましくは4個以下である)の炭化
水素;または−CH−CH2−CH2−CH−基(好ま
しくは環状)を有するシクロアルカン(例えばシ
クロヘキサン)のような炭化水素を酸化して無水
マレイン酸を製造することは公知である。炭化水
素の混合物、例えばナフサを使用することができ
るが、n−ブタンは好ましい原料である。n−ブ
テン類を使用することもできる。一般的には炭化
水素原料を酸素と共に気相で固体触媒と接触させ
ることにより酸化して、反応生成物から無水マレ
イン酸を回収する。酸素は空気の形で供給するこ
とができ、これを一般的には爆発下限濃度よりも
低い濃度(流動床の場合を除く)の炭化水素と混
合し、この混合物を適切な温度および圧力の条件
下で触媒と接触させる(貧燃料系:fuel lean
system)。この場合に反応生成ガスは無水マレイ
ン酸回収後に排出または燃焼するのが普通であ
る。 又、ドイツ特許公開明細書第2412913号に開示
されているように、炭化水素を空気とその爆発上
限濃度よりも高い濃度で混合し、その混合物を適
切な温度および圧力の条件下で触媒と接触させ、
反応生成ガスから無水マレイン酸を回収すること
(すなわち、富燃料系:fuel rich system)も可
能である。 流動床反応器を用いて爆発限界内で酸化反応を
実施することも可能である。 触媒が高選択性を有すること、すなわち、反応
で消費される炭化水素を基準として無水マレイン
酸の収率が可及的に高いことは重要である。未反
応炭化水素を再循環させる場合には、不当に高割
合の炭化水素を再循環させるのを回避するため
に、一回通過当りの高収率を達成するのが望まし
いが、それぞれの通過で消費される炭化水素を基
準にした無水マレイン酸の収率に関しての選択率
は相対的にさらに重要である。 本発明の一つの目的は、炭化水素を無水マレイ
ン酸に酸化させるための触媒であつて、貧燃料系
の場合には適切な反応条件下において得られる一
回通過収率で評価して許容しうる選択性を有する
触媒、そして貧燃料系の場合には適切な反応条件
下の許容しうる転化率において消費される炭化水
素を基準とした選択率で評価して許容しうる選択
性を有する触媒及びその製造方法を提供すること
にある。 炭化水素を無水マレイン酸に酸化するための触
媒は、バナジウム化合物と燐酸とを酸性溶液中で
反応させ、蒸発乾固してバナジウム/燐混合酸化
物からなる触媒前駆体を得、この触媒を加熱処理
によつて活性化することにより製造されてきた。
上記反応溶液は、例えば英国特許第1409094号明
細書に開示されるような水性溶液であつても、あ
るいは英国特許第1416099号明細書に開示されて
いるような有機溶媒の溶液であつてもよい。 別法として、南アフリカ特許出願1976年第41号
明細書に記載されているように、バナジウム/燐
酸溶液に対して制御された条件下で水を添加する
ことによつて触媒前駆体を沈澱させることもでき
る。しかしこの南アフリカ特許出願の方法は、単
に前駆体溶液を蒸発させることから成る方法と比
較して、制御がむずかしく、かつ余分の過工程
を必要とする。しかし前駆体溶液の蒸発法による
と化合物と相の混合物が生じ易く、そして活性化
により得られる触媒の表面積は低い傾向がある。
我々はこの際に存在する有害な一つの物質が、Z.
Chem.,1968,Vol.8,307−308においてG.ラド
ヴイツク(Iadwig)によつて一般式VO
(H2PO42を有する燐酸水素塩(強い水素結合を
有しない)として同定されたものであることを見
出した。かかる燐酸水素塩を本明細書では「相
E」と称する。 本発明は、バナジウム化合物と燐酸とを反応さ
せ、固体のバナジウム/燐混合酸化物からなる触
媒前駆体を作り、その固体の触媒前駆体を、水中
の一次解難定数で判断してH3PO7よりも強い、
好ましくは酸化性でない酸と、その酸の濃度少く
とも3N(規定)、好ましくは少くとも5Nで、好ま
しくは水溶液中で接触させ、前駆体を回収して、
それを水または相Eの溶媒例えばジメチルスルホ
キシドで、水または該溶媒に不溶性の物質だけが
実質上残留するに至るまで抽出し、前駆体を分離
し、そして前駆体を加熱することによつて相転移
を生じさせて触媒活性を示す形に変えることから
なり、かつタングステン,ニツケル,カドミウ
ム,亜鉛,ビスマス,リチウム,銅,ウラン,ジ
ルコニウム,ハフニウム,クロム,鉄,マンガ
ン,モリブデン,コバルトおよび/または希土類
金属から選ばれた促進剤を含む酸無水物、殊に無
水マレイン酸製造用触媒の製造方法に関する。 前駆体を強酸中に溶解しそれから強酸を蒸留す
ることにより回収することもできる。 相転移は、通常の酸無水物製造の際の通常の温
度で生ずるので、必ずしも触媒としての使用前に
そのような相転移を行う必要がない。しかし、所
望ならば、相転移は、使用前に例えば340〜500℃
の温度に加熱することにより行なうことができ
る。 触媒製造のための反応は、バナジウム化合物と
燐酸とを酸性溶液(適切には酸性水溶液)中で反
応させ、溶媒を好ましくは少なくとも90%、さら
に好ましくは少なくとも95%除去することによ
り、好ましくは乾燥固体またはほとんど乾燥した
固体を残してバナジウム/燐混合酸化物からなる
触媒前駆体を沈澱させるようにするのが好適であ
る。 触媒活性を示す型の触媒は、通常、ベータ型
(相B)からなつている。ベータ型の特性は米国
特許第3864280号明細書に記載されている。ベー
タ型はB′型から容易に製造される。このB′型も
存在することがあり、このものはベータ型の酸化
された均等物であると考えられる。 このようにして製造される触媒は「相X」と称
されるタイプのバナジウム/燐混合酸化物を含む
ものであることが判明した。文献「カナデイア
ン・ジヤーナル・オブ・ケミストリイ」51・2621
−5(1973年)におけるジヨルダンおよびカルボ
の報文において、実質上無定形集合体(mass)
からの相Xの個々の結晶の単離および相XのX線
回折特性の同定についての記載がある。 本発明では、前述のジヨルダンおよびカルボの
報文におけるとは異なり、大きい表面積を有す
る。本発明者は、表面積の大きい触媒においては
相Xの存在により、炭化水素の無水マイレン酸へ
の酸化反応における接触誘引性および選択性が付
与され、これにより触媒効率が増大することを見
出した。 触媒活性型である相Xの割合は、高温、好まし
くは少なくとも50℃、さらに好ましくは少なくと
も80℃で、例えば250℃まで、好ましくは150℃ま
での温度において触媒前駆体を高酸性媒体と接触
させることにより増加する。従つて、もし、例え
ばバナジウム/燐混合酸化物触媒前駆体が、前述
のように揮発性の酸、例えば大気圧において上記
の温度範囲で沸騰する酸、例えばHBr水溶液、
好ましくはEC水溶液によつて蒸発乾固状態に
なるよう沈澱させられる場合には、それから最終
的に得られる型の触媒中に相Xの含量が高い触媒
が生成される傾向がある。 さらに、相E又は触媒前駆体から同時に除去さ
れるその他の相の完全分離除去により、触媒活性
を示す相Xの含量を増大することができる。ま
た、水または前述の溶媒中で望ましくない相を除
去することにより前駆体を抽出すると、触媒活性
を示す型の表面積が増す。 本発明は、少なくとも5wt%、好ましくは少な
くとも15wt%の相Xを含み、少なくとも7m2
g好ましくは少なくとも10m2/gの表面積を有す
る、酸無水物への炭火水素酸化用触媒を提供す
る。触媒は、さらに一層多量、例えば少なくとも
40wt%、好ましくは少なくとも50wt%の相Xを
含むのがさらに好適である。相Xの含量はX線回
折パターンにおけるその特性線の積分強度から推
定しうる。所望ならば、そのような推定において
内部標準を用いることができる。 触媒は15%以下さらに好ましくは10%以下の無
定形バナジウム/燐混合酸化物を含むのが好まし
い。触媒が相X以外のバナジウム/燐混合酸化物
を含む場合には、それらの混合酸化物は少なくと
も一部が相Bまた相B′として存在することが好
ましい。 本発明で配合する促進剤は、タングステン、ニ
ツケル、カドミウム、亜鉛、ビスマス、リチウ
ム、銅、ウラン、ジルコニウム、ハフニウム、ク
ロム、鉄、マンガン、モリブデン、および/また
は好ましくはコバルトおよび/または希土類金属
から成る群から選択される。希土類促進剤として
は、例えば、セリウム又はさらに好ましくはラン
タンがよい。促進剤とバナジウムの原子比は、
0.0015:1ないし1:1の範囲が好ましい。促進
剤は、バナジウム/燐混合酸化物を沈澱させる溶
液中に適当な化合物を含ませることにより触媒中
に導入することができ;あるいは前駆体の沈澱直
後、沸騰後または触媒の活性化後に、物理的な混
合や適当な促進剤化合物の溶液で固体触媒を含浸
しその含浸固体を乾燥することにより導入するこ
ともできる。希土類金属促進剤、特にランタンお
よび/またはセリウムで促進した10m2/g以上、
さらに好ましくは15m2/g以上の表面積を有する
バナジウム/燐混合酸化物触媒は新規である。 バナジウムと燐との原子比は0.5ないし2:1、
好ましくは1:0.8ないし1:1.7の範囲とする。 触媒の表面積は相転移後に少なくとも10m2/g
であること、さらに好ましくは少なくとも15m2
g例えば10または15〜50m2/gであることが好ま
しい。その表面積は好ましくは150m2/gを越え
ず、さらに好ましくは70m2/gを越えない。 バナジウム化合物は、溶媒中に例えば五酸化バ
ナジウム、三二酸化バナジウム、塩化バナジル例
えばVOC2、バナジウムオキシトリハライド、
バナジウムオキシジハライド、硫酸バナジルまた
は燐酸バナジウム()を溶解することにより、
溶液中へ導入できる。この際燐酸よりも強い酸、
例えば塩酸、臭化水素酸硫酸または硝酸を存在さ
せる。かかる酸は、バナジウム化合物中にあるア
ニオンから反応の際にその場で形成されてよく、
あるいは例えば燐オキシトリハライドの加水分解
によつてその場で形成されてもよい。燐酸は、オ
ルト燐酸;オルト燐酸の金属塩、例えば燐酸二水
素ナトリウム;モノフルオロ燐酸;五酸化燐;オ
キシ三ハロゲン化燐または縮合燐(例:ピロ燐
酸、トリポリ燐酸)の形で供給されてよい。この
ような燐酸類は、例えば水が存在するならば燐酸
に変る。所望ならば、例えば修酸、ギ酸、クエン
酸またはその他の還元性カルボン酸の如き還元剤
を添加してバナジウム()をバナジウム()
へ還元する。 適切には、例えばアルミナ、炭化ケイ素、ケイ
藻土、軽石、または好ましくはシリカのような不
活性担体の懸濁液で触媒を処理することができ
る。適当なコロイド状シリカゾルは、例えばEI
デユ・ポン社から販売されている「LUDOX」
(商標)である。このような担体は触媒中へ、ま
たは前駆体中へ配合することができ、あるいは担
体を配合した溶液から前駆体を形成させてもよ
い。補強剤すなわち担体を除外した触媒の表面積
を測定するには、触媒をまず調整してから直接測
定を行い、しかる後に、補強剤すなわち担体を添
加する。触媒を補強剤すなわち担体上に形成させ
る場合には、本発明による触媒の表面積は、同一
の方法でしかし補強剤すなわち担体の不存在下で
調製された触媒が有する表面積であると定義す
る。 前駆体を得るための溶液は、好ましくは水溶液
であるが、所望ならば有機溶媒例えばイソブタノ
ールまたはテトラヒドロフランをも含んでいてよ
い。好ましくはバナジウム1グラム原子当り少な
くとも1グラム分子の水を存在させる。溶媒が水
だけであることが好ましい。 必要なら本発明の触媒はバナジウム化合物と燐
酸とを好ましくは適切な溶媒例えば水および/ま
たは低級アルコール(例:メタノール)の存在下
で反応させて、アルフア型VOPO4を形成し、次
いでこれを前述のように強酸例えば塩酸の存在下
で高温度において調質することにより製造する。
この調質沈澱物を次いで水またはその他の相Eを
抽出するための溶媒で抽出し、前述のように相転
移が生ずるまで加熱することにより触媒活性型へ
変える。 本発明の触媒を炭化水素原料と酸素の存在下で
接触させることにより炭化水素を酸化して、無水
マレイン酸を製造する。この酸化法は炭化水素と
してn−ブタンを空気中濃度0.5〜1.5vo1%で触
媒固定床または流動床へ供給するのが好適であ
る。この酸化反応は好ましくは250〜600℃、さら
に好ましくは300〜450℃の温度で実施する。反応
圧力は0.5〜20絶対気圧の範囲とすることができ、
好ましくは1〜3絶対気圧である。 本発明の触媒はオルトキシレンまたはナフタレ
ンを酸素で酸化する反応にも使用できる。 以下の実施例は相Xを含む触媒の性能が微量の
促進剤の存在により非常に改善されうることを示
すものである。 実施例 1 五酸化バナジウム(60.6g)および濃塩酸水溶
液(790ml)を撹拌しながら約2時間加熱して暗
青色溶液を得た。この溶液にオルト燐酸(88%、
89.1g)を加え、得られた溶液をさらに約2時間
還流した。次いでこの溶液を蒸留により約200ml
にまで蒸発し、200mlの濃塩酸水溶液を加え、得
られた溶液をさらに1時間還流し、次いで蒸発乾
固した。得られた固体を110℃の空気炉中で乾燥
した。この触媒前駆動のP:V比は1.2:1であ
つた。得られた固体を水(200ml/固体g)と共
に約1時間煮沸し、得られた青色懸濁物を熱間炉
過し、小量の温水で洗浄し、150℃で乾燥した。
この乾燥固体の一部分を市販ペレタイジング剤
「Sterotex」(2wt%)と混合し、17トンの圧力下
にペレツト化した。このペレツトを破砕し、篩別
して寸法500〜710ミクロンの粒子とした。粒子を
150℃で16時間乾燥し、次いで100ml当り8gの塩
化コバルト(CoCl2・6H2Oとして)を含む水溶
液で含浸して、0.04:1のCo:V原子比をもつ触
媒を得た。乾燥後、5mlの部分を管状固定床反応
器に装入し、その触媒を3℃/分の加熱速度で
385℃まで加熱してその場で焼成した。焼成後、
430℃の反応器温度、大気圧および空気中1.5vo1
%のn−ブタンガスの1000/時のGHSVにおい
て、この触媒は88%のブタン転化率で60モル%の
一回通過収率を与えた。最終触媒の表面積は13
m2/gであり、X線粉末回折法による分折によつ
て44%の相Xを含むことが判明した。 実施例 2 実施例1のようにして触媒前駆体を作つたが、
本例ではイソブタノール(25ml)中の塩化コバル
ト(4〜5g、CoCl2・6H2O)の溶液を用いて触
媒粒子を含浸した。触媒のCo:V比は0.034:1
であつた。乾燥後、5mlの部分を管状固定床反応
器に装入し、実施例1のようにしてその場で触媒
を焼成した。焼成後、420℃の反応器温度、大気
圧、空気中1.5%n−ブタンの1000/時のGHSV
において、この触媒は87%のブタン転化率で56モ
ル%の一回通過収率を与えた。最終触媒の表面積
は10m2/gであり、X線粉末回折法による分折に
よりこの触媒は46%の相Xを含むことが判明し
た。 実施例 3 実施例1のようにして触媒前駆動体を作り、水
で抽出し、乾燥し、ペレツト化し、篩別して寸法
500〜710ミクロンの粒子とした。次いで実施例1
の方法を用い、かつ種々の濃度の塩化コバルト水
溶液を用いてCo:V比を変えて、一連のコバル
ト促進剤含有触媒を作つた。各触媒の5mlの部分
を反応器に装入し、実施例1の方法によりその場
で焼成した。次いで各触媒を用いて、空気中に含
めた1.5%−ブタンを無水マレインを無水マレイ
ン酸へ酸化した。この結果を第1表に示す。
[Detailed Description of the Invention] The present invention relates to a catalyst for producing an acid anhydride, particularly maleic anhydride, by oxidizing a hydrocarbon, and a method for producing the same. For example, benzene; general formula R'- CH2 - CH2-
Hydrocarbons of CH2 - CH2R '' (wherein R' and R'' are hydrogen or alkyl groups, and the total number of carbon atoms in R' and R'' is not more than 6, preferably not more than 4); It is known to produce maleic anhydride by oxidizing a hydrocarbon such as a cycloalkane (e.g. cyclohexane) having a -CH- CH2 - CH2 -CH- group (preferably cyclic). Although mixtures such as naphtha can be used, n-butane is the preferred feedstock. n-butenes can also be used. Generally, the hydrocarbon feedstock is contacted with a solid catalyst in the gas phase with oxygen. The maleic anhydride is recovered from the reaction product by oxidation.Oxygen can be supplied in the form of air and is generally kept at a concentration below the lower explosive limit (except in the case of fluidized beds). of hydrocarbons and this mixture is contacted with a catalyst under conditions of appropriate temperature and pressure (fuel lean system).
system). In this case, the reaction product gas is usually discharged or combusted after recovering maleic anhydride. Alternatively, as disclosed in German Patent Application No. 2412913, hydrocarbons are mixed with air at a concentration higher than its upper explosive concentration and the mixture is contacted with a catalyst under conditions of appropriate temperature and pressure. let me,
It is also possible to recover maleic anhydride from the reaction product gas (ie, a fuel rich system). It is also possible to carry out the oxidation reaction within explosive limits using a fluidized bed reactor. It is important that the catalyst has a high selectivity, ie that the yield of maleic anhydride is as high as possible based on the hydrocarbons consumed in the reaction. When recycling unreacted hydrocarbons, it is desirable to achieve high yields per pass to avoid recycling an unreasonably high proportion of hydrocarbons; The selectivity with respect to the yield of maleic anhydride based on the hydrocarbons consumed is relatively more important. One object of the present invention is a catalyst for the oxidation of hydrocarbons to maleic anhydride, which in the case of fuel-poor systems is evaluated by the one-pass yield obtained under suitable reaction conditions. Catalysts with good selectivity and, in the case of fuel-poor systems, with acceptable selectivity as measured by selectivity based on the hydrocarbons consumed at acceptable conversions under appropriate reaction conditions. An object of the present invention is to provide a method for manufacturing the same. A catalyst for oxidizing hydrocarbons to maleic anhydride is produced by reacting a vanadium compound and phosphoric acid in an acidic solution, evaporating to dryness to obtain a catalyst precursor consisting of a vanadium/phosphorus mixed oxide, and heating this catalyst. It has been produced by activation through processing.
The reaction solution may be an aqueous solution, for example as disclosed in GB 1409094, or a solution in an organic solvent as disclosed in GB 1416099. . Alternatively, the catalyst precursor may be precipitated by adding water under controlled conditions to a vanadium/phosphoric acid solution, as described in South African Patent Application No. 41/1976. You can also do it. However, the process of this South African patent application is difficult to control and requires an extra step compared to a process consisting simply of evaporating the precursor solution. However, the method of evaporating the precursor solution tends to result in a mixture of compound and phase, and the surface area of the catalyst obtained upon activation tends to be low.
We believe that one harmful substance present at this time is Z.
General formula VO
It was found that it was identified as a hydrogen phosphate having (H 2 PO 4 ) 2 (does not have strong hydrogen bonds). Such hydrogen phosphates are referred to herein as "Phase E." In the present invention, a vanadium compound and phosphoric acid are reacted to produce a catalyst precursor consisting of a solid vanadium/phosphorus mixed oxide, and the solid catalyst precursor is converted into H 3 PO 7 by determining the first-order resolving power constant in water. stronger than
contacting a preferably non-oxidizing acid at a concentration of at least 3N (normal), preferably at least 5N, preferably in an aqueous solution, and recovering the precursor;
It is extracted with water or a phase E solvent such as dimethyl sulfoxide until substantially only water or the material insoluble in said solvent remains, the precursor is separated, and the precursor is phased by heating. tungsten, nickel, cadmium, zinc, bismuth, lithium, copper, uranium, zirconium, hafnium, chromium, iron, manganese, molybdenum, cobalt and/or rare earths. The present invention relates to a method for producing an acid anhydride, in particular a catalyst for producing maleic anhydride, containing a promoter selected from metals. It can also be recovered by dissolving the precursor in a strong acid and then distilling the strong acid. It is not necessary to carry out such a phase transition prior to use as a catalyst, since the phase transition occurs at temperatures conventional in the production of acid anhydrides. However, if desired, the phase transition can be carried out at e.g. 340-500 °C before use.
This can be done by heating to a temperature of . The reaction for the preparation of the catalyst is preferably carried out by reacting the vanadium compound and phosphoric acid in an acidic solution (suitably an acidic aqueous solution) and removing the solvent by preferably at least 90%, more preferably at least 95%, preferably by drying. Preferably, a solid or nearly dry solid is left behind to precipitate the vanadium/phosphorus mixed oxide catalyst precursor. The type of catalyst that exhibits catalytic activity usually consists of the beta type (phase B). Properties of the beta type are described in US Pat. No. 3,864,280. The beta form is easily produced from the B′ form. This B′ form may also exist and is considered to be the oxidized equivalent of the beta form. The catalyst thus produced was found to contain a vanadium/phosphorous mixed oxide of the type designated "Phase X". Literature “Canadian Journal of Chemistry” 51・2621
-5 (1973), in the report of Gijordan and Calbo, virtually amorphous aggregates (mass)
There is a description of the isolation of individual crystals of phase X from and the identification of the X-ray diffraction properties of phase X. The present invention has a large surface area, unlike in the Dijordan and Calbo paper mentioned above. The inventors have discovered that the presence of phase X in high surface area catalysts provides catalytic attraction and selectivity in the oxidation reaction of hydrocarbons to maleic anhydride, thereby increasing catalyst efficiency. The proportion of Phase It increases due to Therefore, if, for example, the vanadium/phosphorous mixed oxide catalyst precursor is a volatile acid as mentioned above, for example an acid boiling in the above temperature range at atmospheric pressure, for example an aqueous HBr solution,
If it is precipitated to dryness, preferably by an aqueous EC solution, it tends to produce a catalyst with a high content of phase X in the final type of catalyst. Furthermore, the content of catalytically active phase X can be increased by complete separation and removal of phase E or other phases simultaneously removed from the catalyst precursor. Extraction of the precursor by removing undesired phases in water or the aforementioned solvents also increases the surface area of the catalytically active form. The present invention comprises at least 5 wt%, preferably at least 15 wt% of phase X, and at least 7 m 2 /
g Provide a catalyst for the oxidation of hydrocarbons to acid anhydrides, preferably having a surface area of at least 10 m 2 /g. The catalyst may be present in even larger amounts, such as at least
It is further preferred to contain 40wt% of phase X, preferably at least 50wt%. The content of phase X can be estimated from the integrated intensity of its characteristic line in the X-ray diffraction pattern. Internal standards can be used in such estimations if desired. Preferably, the catalyst contains less than 15%, more preferably less than 10%, of amorphous vanadium/phosphorus mixed oxide. If the catalyst contains vanadium/phosphorus mixed oxides other than phase X, these mixed oxides are preferably present at least partially as phase B or phase B'. The accelerators formulated according to the invention consist of tungsten, nickel, cadmium, zinc, bismuth, lithium, copper, uranium, zirconium, hafnium, chromium, iron, manganese, molybdenum, and/or preferably cobalt and/or rare earth metals. selected from the group. Examples of rare earth promoters include cerium or more preferably lanthanum. The atomic ratio of accelerator and vanadium is
A range of 0.0015:1 to 1:1 is preferred. The promoter can be introduced into the catalyst by including the appropriate compound in the solution in which the vanadium/phosphorus mixed oxide is precipitated; It can also be introduced by mixing or by impregnating the solid catalyst with a solution of the appropriate promoter compound and drying the impregnated solid. 10 m 2 /g or more promoted with rare earth metal promoters, especially lanthanum and/or cerium,
More preferably, vanadium/phosphorus mixed oxide catalysts having a surface area of 15 m 2 /g or more are novel. The atomic ratio of vanadium and phosphorus is 0.5 to 2:1,
Preferably it is in the range of 1:0.8 to 1:1.7. The surface area of the catalyst is at least 10 m 2 /g after phase transition
more preferably at least 15 m 2 /
For example, it is preferably 10 or 15 to 50 m 2 /g. Its surface area preferably does not exceed 150 m 2 /g, more preferably does not exceed 70 m 2 /g. The vanadium compound can be used in a solvent such as vanadium pentoxide, vanadium sesquioxide, vanadyl chloride such as VOC 2 , vanadium oxytrihalide,
By dissolving vanadium oxydihalide, vanadyl sulfate or vanadium phosphate (),
Can be introduced into solution. In this case, an acid stronger than phosphoric acid,
For example, hydrochloric acid, hydrobromic acid, sulfuric acid or nitric acid are present. Such acids may be formed in situ during the reaction from the anions present in the vanadium compound;
Alternatively, it may be formed in situ, for example by hydrolysis of phosphorus oxytrihalide. The phosphoric acid may be supplied in the form of orthophosphoric acid; metal salts of orthophosphoric acid such as sodium dihydrogen phosphate; monofluorophosphoric acid; phosphorus pentoxide; oxytrihalogenated phosphorus or condensed phosphorus (e.g. pyrophosphoric acid, tripolyphosphoric acid). . Such phosphoric acids, for example, convert to phosphoric acid if water is present. If desired, vanadium() can be converted to vanadium() by adding a reducing agent such as oxalic acid, formic acid, citric acid or other reducing carboxylic acids.
Return to. Suitably, the catalyst can be treated with a suspension of an inert support, such as, for example, alumina, silicon carbide, diatomaceous earth, pumice or, preferably, silica. Suitable colloidal silica sols are, for example, EI
"LUDOX" sold by DuPont
(trademark). Such supports can be incorporated into the catalyst or into the precursor, or the precursor may be formed from a solution incorporating the support. To measure the surface area of a catalyst excluding the reinforcing agent or carrier, the catalyst is first prepared and then measured directly, after which the reinforcing agent or carrier is added. If the catalyst is formed on a reinforcing agent or support, the surface area of the catalyst according to the invention is defined as the surface area that the catalyst prepared in the same way but in the absence of the reinforcing agent or support would have. The solution for obtaining the precursor is preferably an aqueous solution, but may also contain organic solvents, such as isobutanol or tetrahydrofuran, if desired. Preferably at least 1 gram molecule of water is present per gram atom of vanadium. Preferably, the solvent is water only. If necessary, the catalyst of the invention can be prepared by reacting a vanadium compound with phosphoric acid, preferably in the presence of a suitable solvent such as water and/or a lower alcohol (e.g. methanol) to form the alpha form VOPO 4 , which is then reacted with the aforementioned It is produced by tempering at high temperature in the presence of a strong acid such as hydrochloric acid.
This tempered precipitate is then extracted with water or other solvent for extracting phase E and converted to the catalytically active form by heating until a phase transition occurs as described above. Maleic anhydride is produced by contacting the catalyst of the present invention with a hydrocarbon raw material in the presence of oxygen to oxidize the hydrocarbon. In this oxidation method, it is preferable to supply n-butane as the hydrocarbon to a fixed catalyst bed or a fluidized bed at an air concentration of 0.5 to 1.5 vol%. This oxidation reaction is preferably carried out at a temperature of 250-600°C, more preferably 300-450°C. The reaction pressure can range from 0.5 to 20 atm absolute;
Preferably it is 1 to 3 absolute atmospheres. The catalyst of the present invention can also be used in the reaction of oxidizing ortho-xylene or naphthalene with oxygen. The following examples show that the performance of catalysts containing phase X can be greatly improved by the presence of trace amounts of promoters. Example 1 Vanadium pentoxide (60.6 g) and concentrated aqueous hydrochloric acid (790 ml) were heated with stirring for about 2 hours to obtain a dark blue solution. Orthophosphoric acid (88%,
89.1 g) was added, and the resulting solution was further refluxed for about 2 hours. This solution was then distilled to about 200ml.
200 ml of concentrated aqueous hydrochloric acid were added and the resulting solution was refluxed for a further 1 hour and then evaporated to dryness. The resulting solid was dried in an air oven at 110°C. The P:V ratio of this catalyst pre-drive was 1.2:1. The resulting solid was boiled with water (200 ml/g solid) for about 1 hour and the resulting blue suspension was filtered in a hot oven, washed with a small amount of warm water and dried at 150°C.
A portion of this dry solid was mixed with a commercially available pelletizing agent "Sterotex" (2 wt%) and pelletized under a pressure of 17 tons. The pellets were crushed and sieved into particles of size 500-710 microns. particles
Drying at 150° C. for 16 hours and then impregnating with an aqueous solution containing 8 g of cobalt chloride (as CoCl 2 .6H 2 O) per 100 ml gave a catalyst with a Co:V atomic ratio of 0.04:1. After drying, a 5 ml portion was charged into a tubular fixed bed reactor and the catalyst was heated at a heating rate of 3°C/min.
It was heated to 385°C and fired on the spot. After firing,
Reactor temperature of 430℃, atmospheric pressure and 1.5vo1 in air
At a GHSV of 1000/hr of % n-butane gas, this catalyst gave a one-pass yield of 60 mole % with a butane conversion of 88%. The surface area of the final catalyst is 13
m 2 /g, and was found to contain 44% phase X by X-ray powder diffraction analysis. Example 2 A catalyst precursor was made as in Example 1, but
In this example, a solution of cobalt chloride (4-5 g, CoCl2.6H2O ) in isobutanol ( 25 ml) was used to impregnate the catalyst particles. The Co:V ratio of the catalyst is 0.034:1
It was hot. After drying, a 5 ml portion was loaded into a tubular fixed bed reactor and the catalyst was calcined in situ as in Example 1. After calcination, reactor temperature of 420℃, atmospheric pressure, 1000/hour GHSV of 1.5% n-butane in air
In , this catalyst gave a one-pass yield of 56 mol% with a butane conversion of 87%. The surface area of the final catalyst was 10 m 2 /g, and X-ray powder diffraction analysis showed that the catalyst contained 46% of phase X. Example 3 A catalyst pre-driver was prepared as in Example 1, extracted with water, dried, pelletized, sieved and sized.
The particles were 500-710 microns. Next, Example 1
A series of cobalt promoter-containing catalysts were prepared using the method of 2007 and varying the Co:V ratio using various concentrations of cobalt chloride aqueous solutions. A 5 ml portion of each catalyst was charged to the reactor and calcined in situ according to the method of Example 1. Each catalyst was then used to oxidize maleic anhydride to maleic anhydride in 1.5%-butane contained in air. The results are shown in Table 1.

【表】 実施例 4 本例は、促進剤としてのランタンの使用を示
す。 実施例1のようにして触媒前駆体を作り、沸騰
水で抽出し、ペレツト化し、篩別して寸法500〜
710ミクロンの粒子とした。次いで粒子を空気中
150℃で16時間乾燥し、イソブタノール(25ml)
中の硝酸ランタンLa(NO33・6H2O(2.7g)の溶
液で含浸し、1:0.009のV:La原子比をもつ触
媒を得た。別の濃度の硝酸ランタンのイソブタノ
ール溶液(4.6g/25ml)を用いて、1:0.027の
V:La原子比の触媒も作つた。これら両触媒そ
れぞれの5mlの部分を別々の管状反応器固定床に
装入し、実施例1のように焼成した。これらの触
媒を、空気中に1.5%含めたn−ブタンを無水マ
レイン酸へ酸化するのに用いた。結果を第2表に
示す。
Table: Example 4 This example demonstrates the use of lanthanum as an accelerator. A catalyst precursor was prepared as in Example 1, extracted with boiling water, pelletized, and sieved to a size of 500~
The particles were 710 microns. The particles are then airborne.
Dry at 150°C for 16 hours and add isobutanol (25ml)
A catalyst with a V:La atomic ratio of 1:0.009 was obtained by impregnating the catalyst with a solution of lanthanum nitrate La(NO 3 ) 3.6H 2 O (2.7 g) in water. A catalyst with a V:La atomic ratio of 1:0.027 was also prepared using a different concentration of lanthanum nitrate in isobutanol (4.6 g/25 ml). 5 ml portions of each of these catalysts were charged to separate tubular reactor fixed beds and calcined as in Example 1. These catalysts were used to oxidize 1.5% n-butane in air to maleic anhydride. The results are shown in Table 2.

【表】 実施例 5 実施例1のようにして触媒前駆体を作り、沸騰
水で抽出し、乾燥し、ペレツト化し、篩別して寸
法500〜710ミクロンの粒子とした。粒子を空気中
150℃で16時間乾燥した。次いでイソブタノール
中の適当な促進剤化合物の溶液で触媒粒子を含浸
することにより、ある範囲の促進剤を用いて一連
の促進剤含有触媒を作つた。各触媒の5mlの部分
を固定床管状反応器に装入し、実施例1の方法に
よりその場で焼成した。各促進剤含有触媒を用い
て、空気中に1.5%含めたn−ブタンを無水マレ
イン酸へ酸化した。結果を第3表に示す。
EXAMPLE 5 A catalyst precursor was prepared as in Example 1, extracted with boiling water, dried, pelletized and sieved to particles of size 500-710 microns. particles in the air
It was dried at 150°C for 16 hours. A series of promoter-containing catalysts were made using a range of promoters by then impregnating the catalyst particles with a solution of the appropriate promoter compound in isobutanol. A 5 ml portion of each catalyst was charged to a fixed bed tubular reactor and calcined in situ according to the method of Example 1. Each promoter-containing catalyst was used to oxidize 1.5% n-butane in air to maleic anhydride. The results are shown in Table 3.

【表】 実施例 6 本例は、促進剤としてのモリブデンの使用を示
す。 五酸化バナジウム(60.6g)および三酸化モリ
ブデン(8g)および濃塩酸水溶液(760ml)を撹
拌しつつ還流条件下で約2時間加熱して、暗青色
溶液を得た。この溶液に対して、オルト燐酸(88
%、89.3g)を加え、得られた溶液をさらに約2
時間還流した。次いでこれを蒸発乾固し、得られ
た固体を110℃の空気炉中で乾燥した。得られた
固体を次いで水(20ml/固体g)と共に約2時間
煮沸し、得られた懸濁液を熱間炉過し、小量の温
水で洗浄し、110℃で乾燥した。この乾燥固体の
V:Mo原子比は1:0.043であつた。この乾燥固
体の一部分を市販ペレタイジング剤「Sterotex」
(3wt%)と混合し、17トンの圧力下にペレツト
化した。ペレツトを破砕し、篩別して寸法500〜
710ミクロンの粒子とした。この5mlの部分を固
定床管状反応器に装入し、実施例1のようにして
その場で触媒を焼成した。焼成後、420℃の反応
器温度、大気圧、空気中の1.5%n−ブタンガス
の1000/時のGHSVにおいてこの触媒は75%の
ブタン転化率で55モル%の無水マレイン酸一回通
過収率を与えた。最終触媒の表面積は9m2/gで
あり、X線粉末回折法による分折で43%の相Xを
含むことが判明した。
Table: Example 6 This example demonstrates the use of molybdenum as an accelerator. Vanadium pentoxide (60.6 g), molybdenum trioxide (8 g) and concentrated aqueous hydrochloric acid (760 ml) were heated under reflux conditions with stirring for about 2 hours to give a dark blue solution. To this solution, add orthophosphoric acid (88
%, 89.3g), and the resulting solution was further diluted with approx.
Refluxed for an hour. This was then evaporated to dryness and the resulting solid was dried in an air oven at 110°C. The resulting solid was then boiled with water (20 ml/g solid) for about 2 hours, and the resulting suspension was hot filtered, washed with a little hot water and dried at 110°C. The V:Mo atomic ratio of this dry solid was 1:0.043. A portion of this dry solid is processed using the commercially available pelletizing agent “Sterotex”.
(3wt%) and pelletized under 17 tons of pressure. Crush the pellets and sieve them to a size of 500~
The particles were 710 microns. A 5 ml portion of this was charged to a fixed bed tubular reactor and the catalyst was calcined in situ as in Example 1. After calcination, at a reactor temperature of 420°C, atmospheric pressure, and 1000/hr GHSV of 1.5% n-butane gas in air, this catalyst has a butane conversion of 75% and a maleic anhydride one-pass yield of 55 mol%. gave. The final catalyst had a surface area of 9 m 2 /g and was found to contain 43% phase X by X-ray powder diffraction analysis.

Claims (1)

【特許請求の範囲】 1 バナジウム化合物と燐酸とを反応させ、固体
のバナジウム/燐混合酸化物触媒前駆体を形成
し、それを加熱することにより相転移を生じさせ
て触媒活性を示す型とすることからなる酸無水物
製造用触媒の製法において: 該固体の触媒前駆体を、水中の一次解難定数で
判定して燐酸よりも強い酸であつて、少なくとも
3規定の濃度にある酸と接触させ; 前駆体を回収し; 前駆体を水によりまたは相Eのためのその他の
溶媒により、水または該溶媒に不溶性の物質だけ
が実質上残存するに至るまで抽出し; そして前駆体を分離する;ことから成り、かつ
タングステン,ニツケル,カドミウム,亜鉛,ビ
スマス,リチウム,銅,ウラン,ジルコニウム,
ハフニウム,クロム,鉄,マンガン,モリブデ
ン,コバルト及び/又は希土類金属から成る群か
ら選ばれた促進剤を同触媒中に導入することを特
徴とする酸無水物製造用触媒の製造方法。 2 バナジウム/燐混合酸化物が10m2/gより大
きい表面積を有するものであり、かつ促進剤が希
土類金属である特許請求の範囲第1項記載の触媒
の製造方法。 3 10m2/gより大きい表面積を有するバナジウ
ム/燐混合酸化物からなり、ランタンにより促進
されていることを特徴とする酸無水物への炭化水
素酸化用触媒。
[Claims] 1. A vanadium compound and phosphoric acid are reacted to form a solid vanadium/phosphorus mixed oxide catalyst precursor, which is then heated to cause a phase transition and to form a type that exhibits catalytic activity. In a method for producing a catalyst for producing an acid anhydride, the solid catalyst precursor is brought into contact with an acid that is stronger than phosphoric acid and has a concentration of at least 3 normal as determined by the first order resolving power constant in water. recovering the precursor; extracting the precursor with water or other solvent for phase E until substantially only water or material insoluble in said solvent remains; and separating the precursor; and tungsten, nickel, cadmium, zinc, bismuth, lithium, copper, uranium, zirconium,
1. A method for producing a catalyst for acid anhydride production, characterized in that a promoter selected from the group consisting of hafnium, chromium, iron, manganese, molybdenum, cobalt and/or rare earth metals is introduced into the catalyst. 2. The method for producing a catalyst according to claim 1, wherein the vanadium/phosphorus mixed oxide has a surface area greater than 10 m 2 /g, and the promoter is a rare earth metal. 3. A catalyst for the oxidation of hydrocarbons to acid anhydrides, characterized in that it consists of a vanadium/phosphorus mixed oxide having a surface area greater than 10 m 2 /g and is promoted by lanthanum.
JP62023412A 1977-05-23 1987-02-03 Catalyst for producing acid anhydride and its production Granted JPS62258746A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB21610/77 1977-05-23
GB21610/77A GB1601121A (en) 1977-05-23 1977-05-23 Production of acid anhydrides by oxidation and catalysts therefor
GB3686/78 1978-01-30

Publications (2)

Publication Number Publication Date
JPS62258746A JPS62258746A (en) 1987-11-11
JPH0242537B2 true JPH0242537B2 (en) 1990-09-25

Family

ID=10165822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62023412A Granted JPS62258746A (en) 1977-05-23 1987-02-03 Catalyst for producing acid anhydride and its production

Country Status (4)

Country Link
JP (1) JPS62258746A (en)
BE (1) BE867189A (en)
GB (1) GB1601121A (en)
ZA (1) ZA782940B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885919A (en) * 1997-07-30 1999-03-23 Scientific Design Company, Inc. Phosphorus/vanadium catalyst preparation
US8658557B2 (en) * 2011-10-25 2014-02-25 Ineos Usa Llc Catalyst for n-butane oxidation to maleic anhydride
JP6189083B2 (en) * 2013-04-30 2017-08-30 国立大学法人広島大学 Method for producing α-dawson type polyacid, α-dawson type polyacid, α-dawson type polyacid compound produced by the method

Also Published As

Publication number Publication date
ZA782940B (en) 1980-01-30
JPS62258746A (en) 1987-11-11
GB1601121A (en) 1981-10-28
BE867189A (en) 1978-11-17

Similar Documents

Publication Publication Date Title
US4147661A (en) Production of maleic anhydride and catalysts therefor
US4288372A (en) Production of maleic anhydride
US3087964A (en) Vapor phase oxidation of acrolein to acrylic acid
US3065264A (en) Vapor phase oxidation of propylene acrylic acid
JPH085820B2 (en) Method for producing methacrylic acid and / or methacrolein
CS229939B2 (en) Production method of catalyst on a base of mixed oxide vanadium and phosphorus
CA1164439A (en) Preparation of vanadium phosphorus catalysts using olefinic halogenated organic reaction media
US6858561B2 (en) Phosphorus/vanadium catalyst preparation
US4317777A (en) Production of maleic acid and anhydride
JP2004512167A (en) Catalyst and method for producing maleic anhydride
JPS5827255B2 (en) Method for producing unsaturated fatty acids
JPH0326101B2 (en)
JPS5826329B2 (en) Seizouhou
US2649477A (en) Process for the manufacture of maleic acid
US5155235A (en) Catalyst for producing maleic anhydride from butane and process for preparing same
US4824819A (en) Vanadium coated phosphorus-vandium oxide and phosphorus-vanadium oxide co-metal catalyst and process for the manufacture of maleic anhydride
JPH0242537B2 (en)
US4085122A (en) Production of maleic anhydride using a mixed-oxide oxidation catalyst containing vanadium and pentavalent phosphorus
JP2558036B2 (en) Method for producing methacrolein and / or methacrylic acid
US3306905A (en) Production of pyridine
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JPH0517392A (en) Production of acrylic acid
JP2623008B2 (en) Method for producing methacrolein and methacrylic acid
JP2671040B2 (en) Method for preparing catalyst for producing unsaturated carboxylic acid
JPS6154013B2 (en)