JPH05146192A - Driving circuit for dc brushless motor - Google Patents

Driving circuit for dc brushless motor

Info

Publication number
JPH05146192A
JPH05146192A JP3351709A JP35170991A JPH05146192A JP H05146192 A JPH05146192 A JP H05146192A JP 3351709 A JP3351709 A JP 3351709A JP 35170991 A JP35170991 A JP 35170991A JP H05146192 A JPH05146192 A JP H05146192A
Authority
JP
Japan
Prior art keywords
drive
circuit
wave
rotation speed
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3351709A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ueki
泰弘 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP3351709A priority Critical patent/JPH05146192A/en
Publication of JPH05146192A publication Critical patent/JPH05146192A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/01Motors with neutral point connected to the power supply

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To make it possible to drive a motor having high rotational speed with relatively low power consumption by driving the motor through a first driving circuit after stoppage thereof before reaching a predetermined rotational speed thereafter driving the motor through a second driving circuit. CONSTITUTION:An L signal is inputted from a rotational speed comparing means 2 to a FETQ7 after stoppage of a motor section 6 before reaching a predetermined rotational speed. Consequently, current flows through a driving coil L1 at the turn ON timing of transistors Q1, FETQ5. The current flows through a driving coil L2 and the FETQ5 into a FETQ8 where the magnitude of current is controlled. In other words, a first driving circuit 4 operates as a three-phase full-wave driving circuit. When the predetermined rotational speed is reached, an H signal is inputted to a FETQ7 and FETs Q4-Q6 are turned OFF. Consequently, current flows through a driving coil L1 at the turn ON timing of the transistor Q1. The current flows through the FETQ7 into a FETQ8 and a second driving circuit 5 operates as a three-phase half-wave driving circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に低消費電力が要求
され電源電圧が低く大きな駆動トルクと高い回転数が必
要な、例えばバッテリ駆動の所謂ノートブック型パーソ
ナルコンピュータ等に内蔵される2.5インチ以下の小
型磁気ディスク装置のディスクを回転駆動するのに用い
られるDCブラシレスモータの駆動回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is incorporated in, for example, a so-called notebook personal computer driven by a battery, which requires a particularly low power consumption, a low power supply voltage, a large driving torque and a high rotation speed. The present invention relates to a drive circuit of a DC brushless motor used for rotationally driving a disk of a small magnetic disk device of 5 inches or less.

【0002】[0002]

【従来の技術】例えば、同一出願人が出願した「センサ
ーレス方式ブラシレスモータ」(特願平1−13956
0号)及び「位置検出器を有しないブラシレスDCモー
タの駆動方法」(特願平2−146590号)の明細書
には、次の通り記載されている。
2. Description of the Related Art For example, a "sensorless brushless motor" filed by the same applicant (Japanese Patent Application No. Hei 1-13956).
No. 0) and "Driving method of brushless DC motor having no position detector" (Japanese Patent Application No. 2-146590) describes as follows.

【0003】まず「センサーレス方式ブラシレスモー
タ」は、モータの巻線から発生する逆起電圧を検出して
モータを駆動する場合において、3相の各巻線の一端を
共通に接地し各巻線の他端から一方向に通電する3相半
波駆動方式を用いた。一方、「位置検出器を有しないブ
ラシレスDCモータの駆動方法」は、3相の各巻線を両
方向から通電する3相全波駆動方式を用いた。
First of all, a "sensorless brushless motor" is used to drive a motor by detecting a back electromotive force generated from a winding of the motor. A three-phase half-wave drive system in which electricity is applied in one direction from the end was used. On the other hand, the “driving method of a brushless DC motor having no position detector” uses a three-phase full-wave driving method in which each winding of three phases is energized from both directions.

【0004】ところで、3相半波駆動方式は3相全波駆
動方式に比べ構成が簡単なためトランジスタ等の素子の
数が少なくて済み、回路のロスを減らし費用も安くする
ことができ、又、逆起電圧が小さいので最大回転数を大
きくし易いという長所を備えている。
By the way, the three-phase half-wave drive method has a simpler structure than the three-phase full-wave drive method, and thus the number of elements such as transistors is small, circuit loss can be reduced, and cost can be reduced. Since the back electromotive force is small, it has an advantage that it is easy to increase the maximum rotation speed.

【0005】一方、3相全波駆動方式は3相半波駆動方
式より起動トルクが大きく、トルクリップルが小さく、
効率が良くパワーロスが小さいという長所を備えてい
る。
On the other hand, the three-phase full-wave drive system has a larger starting torque and smaller torque ripple than the three-phase half-wave drive system.
It has the advantages of high efficiency and low power loss.

【0006】[0006]

【発明が解決しようとする課題】このように、どちらの
方式も長所と短所を兼ね備え一概にどちらが良いとは言
えなかった。例えば、3相半波駆動方式は5V以下の低
電圧では逆起電圧定数が小さく最大回転数が大きいとい
う長所があったが、起動トルクが小さくトルクリップル
は大きいという短所もあった。一方、3相全波駆動方式
は、起動トルク及び逆起電圧定数が大きく、トルクリッ
プルは小さいが、最大回転数が小さいため3.5V以下
の低電圧で3000rpm程度の高速回転が要求される
場合に用いることは難しかった。そこで、モータのトル
ク定数を下げて入力電流を上げる方法が考えられるが、
起動時の最大電力が大きくなり、特にバッテリを用いた
所謂ノートブック型パーソナルコンピュータ等に用いら
れるハードディスク駆動装置等においてはバッテリの容
量不足が課題となっていた。
As described above, both methods have advantages and disadvantages, and it cannot be generally said that either method is better. For example, the three-phase half-wave driving method has an advantage that the back electromotive force constant is small and the maximum rotation speed is large at a low voltage of 5 V or less, but has a disadvantage that the starting torque is small and the torque ripple is large. On the other hand, in the three-phase full-wave drive method, the starting torque and the counter electromotive force constant are large, and the torque ripple is small, but the maximum rotation speed is small, so a high speed rotation of about 3000 rpm is required at a low voltage of 3.5 V or less. It was difficult to use for. Therefore, a method of lowering the torque constant of the motor and increasing the input current can be considered.
The maximum electric power at the time of start-up becomes large, and in particular, in a hard disk drive device used for a so-called notebook personal computer or the like using a battery, there is a problem of insufficient battery capacity.

【0007】そこで本発明の目的は、3相半波駆動方式
と3相全波駆動方式との長所を兼ね備えたDCブラシレ
スモータの駆動回路を提供することにある。
Therefore, an object of the present invention is to provide a drive circuit for a DC brushless motor which has the advantages of the three-phase half-wave drive system and the three-phase full-wave drive system.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
に本発明は、各巻線の他端となる第2端子kに電流を選
択的に供給するスイッチング素子を接続し、各巻線を共
通に接続した第1端子jを介して2つの巻線に両方向に
電流を供給する第1駆動回路と、前記各巻線の第2端子
kに電流を選択的に供給するスイッチング素子を接続し
この第2端子kと前記第1端子j間の一方向に電流を供
給する第2駆動回路と、前記第1又は第2駆動回路の何
れか一方に駆動回路を切換える駆動切換回路とを設け
た。
In order to solve the above-mentioned problems, according to the present invention, a switching element for selectively supplying a current is connected to a second terminal k which is the other end of each winding, and each winding is commonly used. A first drive circuit for supplying a current to both windings in both directions via the connected first terminal j and a switching element for selectively supplying a current to the second terminal k of each winding are connected to the second drive circuit. A second drive circuit that supplies a current in one direction between the terminal k and the first terminal j and a drive switching circuit that switches the drive circuit to either one of the first and second drive circuits are provided.

【0009】DCブラシレスモータの停止時から所定の
回転数までは前記第1駆動回路を駆動し、前記所定の回
転数を超える回転数では前記第2駆動回路を駆動するよ
う前記駆動切換回路を構成することもできる。
The drive switching circuit is configured to drive the first drive circuit from the time when the DC brushless motor is stopped to a predetermined rotation speed, and to drive the second drive circuit at a rotation speed exceeding the predetermined rotation speed. You can also do it.

【0010】[0010]

【作用】所定の条件を満足すると駆動切換回路は、モー
タの駆動を第1又は第2駆動回路の何れか一方に切換え
て行う。
When the predetermined condition is satisfied, the drive switching circuit switches the driving of the motor to either the first or second driving circuit.

【0011】前記所定の条件を所定の回転数とすると、
停止時から所定の回転数までは第1駆動回路でモータを
駆動し、前記所定の回転数を超える回転数では第2駆動
回路でモータを駆動するよう駆動切換回路はモータの駆
動方式を切換える。
If the predetermined condition is a predetermined rotation speed,
The drive switching circuit switches the drive system of the motor so that the motor is driven by the first drive circuit from the time of stop to a predetermined rotation speed, and the motor is driven by the second drive circuit at the rotation speed exceeding the predetermined rotation speed.

【0012】[0012]

【実施例】以下、本発明の実施例について添付図面を参
照しながら説明する。図1は本発明に係るDCブラシレ
スモータの駆動回路の一例の構成図、図2は同回転数比
較手段の一例の構成図、図3は同第1実施例の回路図、
図4は同第2実施例の回路図、図5は同逆起電圧波形と
駆動コイルに流す電流のタイミングチャート、図6は同
発生トルク特性図、図7は同電源電圧対最大回転数及び
消費電流特性図、図8は同駆動切換動作特性図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a block diagram of an example of a drive circuit for a DC brushless motor according to the present invention, FIG. 2 is a block diagram of an example of the same rotation speed comparing means, and FIG. 3 is a circuit diagram of the first embodiment.
FIG. 4 is a circuit diagram of the second embodiment, FIG. 5 is a timing chart of the counter electromotive voltage waveform and a current flowing through the drive coil, FIG. 6 is a generated torque characteristic diagram, and FIG. 7 is the same power supply voltage vs. maximum rotation speed and FIG. 8 is a characteristic diagram of current consumption, and FIG. 8 is a characteristic diagram of the drive switching operation.

【0013】図1においてDCブラシレスモータの駆動
回路1は、モータの回転数を予め設定した回転数と比較
する回転数比較手段2と、この比較手段2の出力信号に
基づいた駆動切換信号を発生する駆動切換回路3と、こ
の駆動切換信号により何れか一方が動作する第1駆動回
路4及び第2駆動回路5と、前記駆動回路4又は5によ
り回転力を与えられるモータ部6とにより構成される。
In FIG. 1, a drive circuit 1 for a DC brushless motor generates a rotation speed comparison means 2 for comparing the rotation speed of the motor with a preset rotation speed, and a drive switching signal based on the output signal of the comparison means 2. Drive switching circuit 3, a first drive circuit 4 and a second drive circuit 5, one of which operates according to the drive switching signal, and a motor section 6 to which a rotational force is given by the drive circuit 4 or 5. It

【0014】この構成により、まず回転数比較手段2で
回転数が比較され、比較結果に応じて駆動切換回路3は
第1駆動回路4又は第2駆動回路5の何れか一方を動作
させモータ部6を回転させる。
With this structure, the rotation speed comparison means 2 first compares the rotation speeds, and the drive switching circuit 3 operates either the first drive circuit 4 or the second drive circuit 5 according to the comparison result. Rotate 6.

【0015】回転数比較手段2は、一般にA/D変換器
とタイマ等により構成されるマイクロコンピュータ等で
構成されるが、その一例を図2に示す。図2によれば、
マイクロコンピュータ等で構成された回転数比較手段2
は例えば図示しないモータのコイルからモータ回転中に
発生する逆起電圧を検出して得られた信号を検出する回
転数検出部2aと、この検出部2aから出力されるパル
ス等の信号をカウント(計数)するカウンタ2bと、カ
ウントを一定時間で停止させるためのタイマ2cと、前
記カウンタ2bのカウント数と基準値記憶メモリ2dか
ら読出した基準カウント数とを比較する比較回路2eと
により構成され、この比較回路2eの出力信号が前記駆
動切換回路3に入力される。
The rotation speed comparison means 2 is generally composed of a microcomputer including an A / D converter and a timer, and an example thereof is shown in FIG. According to FIG.
Rotational speed comparison means 2 composed of a microcomputer or the like
Is, for example, a rotation speed detection unit 2a that detects a signal obtained by detecting a counter electromotive voltage generated during motor rotation from a coil of a motor (not shown), and counts signals such as pulses output from this detection unit 2a ( A counter 2b for counting), a timer 2c for stopping counting at a fixed time, and a comparator circuit 2e for comparing the count number of the counter 2b with the reference count number read from the reference value storage memory 2d. The output signal of the comparison circuit 2e is input to the drive switching circuit 3.

【0016】即ち、カウンタ2bの出力とメモリ2dを
比較することによりモータ部6の回転数が相対的に比較
される。従って、予め必要な回転数、本実施例では20
00rpmに相当するカウント数を前記メモリ2dに書
込んでおけば前記比較回路2eの出力信号として回転数
が2000rpmを超えたか否かの判定信号が得られ
る。
That is, the rotation speed of the motor section 6 is relatively compared by comparing the output of the counter 2b and the memory 2d. Therefore, the number of rotations required in advance, that is, 20 in this embodiment.
If a count number corresponding to 00 rpm is written in the memory 2d, a determination signal as to whether or not the rotation number exceeds 2000 rpm can be obtained as an output signal of the comparison circuit 2e.

【0017】図3は駆動切換回路3と第1及び第2駆動
回路4,5とにより構成される駆動回路の第1実施例の
回路図である。本実施例では3相モータを用いたが3相
に限定するものではなくDCブラシレスモータであれば
任意の相数でよい。又、一般に用いられる回路と同様の
部分については部品の記号を記し、その説明は省略す
る。
FIG. 3 is a circuit diagram of a first embodiment of a drive circuit composed of the drive switching circuit 3 and the first and second drive circuits 4 and 5. Although a three-phase motor is used in this embodiment, the number of phases is not limited to three and any number of phases may be used as long as it is a DC brushless motor. In addition, parts similar to those of commonly used circuits are marked with symbols of parts, and description thereof is omitted.

【0018】モータ部6のU相駆動コイルL1、V相駆
動コイルL2及びW相駆動コイルL3はスイッチング素
子に相当するPNP形トランジスタQ1,Q2,Q3及
びFETQ4,Q5,Q6とにより夫々選択的に電流が
供給され、前記モータ部6を回転させる。駆動切換回路
3はFETQ7で構成されるスイッチング回路で、この
FETQ7のソース側は全電流制御用FETQ8のドレ
イン側と接続される。
The U-phase drive coil L1, the V-phase drive coil L2, and the W-phase drive coil L3 of the motor section 6 are selectively selected by PNP type transistors Q1, Q2, Q3 and FETs Q4, Q5, Q6 corresponding to switching elements. An electric current is supplied to rotate the motor unit 6. The drive switching circuit 3 is a switching circuit composed of the FET Q7, and the source side of the FET Q7 is connected to the drain side of the total current control FET Q8.

【0019】次に、この駆動回路の動作について説明す
る。まずモータ部6が停止時から回転数2000rpm
に達するまでは、前記FETQ7には前記回転数比較手
段2よりL(低)レベルの信号が入力され、このQ7は
オフである。従って、例えば前記トランジスタQ1及び
FETQ5がオンになるタイミングに前記駆動コイルL
1には電流が流れ、この電流は更にコイルL2及び前記
FETQ5を経由して前記FETQ8に流れ込む。そし
て、このQ8で電流の大きさが制御される。即ち、この
駆動回路は3相全波駆動回路(以下、全波という。)と
して動作し、前記第1駆動回路4がこの回路に相当す
る。
Next, the operation of this drive circuit will be described. First, the rotation speed of the motor unit 6 is 2000 rpm from the stop
Until the signal reaches Q.sub.2, the FET Q7 is supplied with an L (low) level signal from the rotation speed comparison means 2, and Q7 is off. Therefore, for example, at the timing when the transistor Q1 and the FET Q5 are turned on, the drive coil L
1, a current flows, and this current further flows into the FET Q8 via the coil L2 and the FET Q5. The magnitude of the current is controlled by this Q8. That is, this drive circuit operates as a three-phase full-wave drive circuit (hereinafter referred to as full-wave), and the first drive circuit 4 corresponds to this circuit.

【0020】一方、前記モータ部6の回転数が2000
rpmを超えると、前記FETQ7には前記回転数比較
手段2よりH(高)レベルの信号が入力され、このQ7
はオンになる。このQ7がオンになると図示しない駆動
コイル制御回路により前記FETQ4乃至Q6はオフに
される。従って、例えば前記トランジスタQ1がオンに
なるタイミングに前記コイルL1には電流が流れ、この
電流は前記FETQ7を経由して前記FETQ8に流れ
込む。即ち、この駆動回路は3相半波駆動回路(以下、
半波という。)として動作し、前記第2駆動回路5がこ
の回路に相当する。
On the other hand, the rotation speed of the motor unit 6 is 2000
When rpm is exceeded, an H (high) level signal is input to the FET Q7 from the rotational speed comparing means 2, and this Q7
Turns on. When Q7 is turned on, the FETs Q4 to Q6 are turned off by a drive coil control circuit (not shown). Therefore, for example, a current flows through the coil L1 at the timing when the transistor Q1 is turned on, and this current flows into the FET Q8 via the FET Q7. That is, this drive circuit is a three-phase half-wave drive circuit (hereinafter,
Half wave. ), And the second drive circuit 5 corresponds to this circuit.

【0021】図4は駆動回路の第2実施例の回路図で、
スイッチング素子として第1実施例と同様にトランジス
タQ1乃至Q3、FETQ4乃至Q7を用いるが、3相
に流れる電流をアナログ的に制御するようアナログスイ
ッチS1乃至S3をFETQ4乃至Q6の入力側に、更
に、FETQ7の入力側にもアナログスイッチS4を設
けた点が第1実施例と異なる。
FIG. 4 is a circuit diagram of the second embodiment of the drive circuit.
Transistors Q1 to Q3 and FETs Q4 to Q7 are used as switching elements as in the first embodiment, but analog switches S1 to S3 are provided on the input side of FETs Q4 to Q6 to control the currents flowing in the three phases in an analog manner. It is different from the first embodiment in that an analog switch S4 is also provided on the input side of the FET Q7.

【0022】図5は同図(B)乃至(G)に示す前記第
1及び第2駆動回路4,5の制御タイミングを同図
(A)に示す逆起電圧に対して示したものである。同図
(B)乃至(D)は全波(第1駆動回路4)、同図
(E)乃至(G)は半波(第2駆動回路5)の駆動タイ
ミングを示す。ここで全波の前記トランジスタ及びFE
TQ1乃至Q6の切換タイミングは、無通電のコイルか
ら発生する逆起電圧を図示しないマイクロコンピュータ
に内蔵したA/D変換器を利用して検出するため2相に
通電して1相を無通電とする所謂120度通電を用いて
いる。
FIG. 5 shows the control timings of the first and second drive circuits 4 and 5 shown in FIGS. 5B to 5G with respect to the counter electromotive voltage shown in FIG. .. (B) to (D) of the figure show the drive timing of the full wave (first drive circuit 4), and (E) to (G) of the figure show the drive timing of the half wave (second drive circuit 5). Here, the full-wave transistor and FE
The switching timing of TQ1 to Q6 is such that the counter electromotive voltage generated from the non-energized coil is detected by using the A / D converter incorporated in the microcomputer (not shown), so that two phases are energized and one phase is deenergized. The so-called 120-degree energization is used.

【0023】図6(A)は全波の発生トルク波形を、同
図(B)は半波の発生トルク波形を示す。図3,4の回
路図と図5のタイミングチャートから1相分の抵抗値を
Rとし回路の損失分を無視すると、全波では2相に通電
するため電流はV/2Rとなり発生トルクはこの2相分
を合成した波形になる。同様に1相分の抵抗値をRとし
回路の損失分を無視すると、半波では1相に通電するた
め電流はV/Rとなり前記全波に比べ1つのコイルにつ
いての電流は2倍になる。従って、発生トルクは合成さ
れず波形のリップルは前記全波に比べ増えるものの電流
が2倍になるため平均トルクの大きさは前記全波と殆ど
変らない。即ち、前記全波では前記半波と同じトルクを
発生させるのに電力は前記半波の半分で済むことにな
る。
FIG. 6A shows a full-wave generated torque waveform, and FIG. 6B shows a half-wave generated torque waveform. From the circuit diagrams of FIGS. 3 and 4 and the timing chart of FIG. 5, if the resistance value for one phase is set to R and the loss of the circuit is ignored, in the full wave, the current is V / 2R because the two phases are energized. The waveform is a composite of two phases. Similarly, if the resistance value for one phase is set to R and the loss amount of the circuit is ignored, the current is V / R because current is applied to one phase in a half wave, and the current in one coil is doubled compared to the full wave. .. Therefore, the generated torque is not synthesized and the ripple of the waveform is increased as compared with the full wave, but the current is doubled, and the magnitude of the average torque is almost the same as the full wave. That is, the full wave requires only half the electric power to generate the same torque as the half wave.

【0024】図7は3相全波と3相半波の電源電圧に対
する最大回転数(同図(A))と消費電流(同図
(B))の関係を示す。これは一例として2.5インチ
の小型ハードディスク装置(HDD)の2枚のディスク
を回転駆動するスピンドルモータの駆動回路について示
したもので、起動時の最大電流は全波の場合で略600
mA、半波の場合で略1.2Aである。
FIG. 7 shows the relationship between the maximum number of revolutions ((A) in the figure) and the consumption current ((B) in the figure) with respect to the power supply voltages of the three-phase full wave and the three-phase half wave. As an example, this shows a drive circuit of a spindle motor that rotationally drives two disks of a 2.5-inch small hard disk drive (HDD), and the maximum current at startup is approximately 600 in the case of full wave.
It is approximately 1.2 A in the case of mA and half wave.

【0025】既に説明したように全波と半波では起動時
のトルクは略同じになるが、同図(A)より電源電圧に
対する最大回転数は全波より半波の方が大きく、最も比
の大きいところで1.5倍程度である。又、同図(B)
よりその時の電流は全波より半波の方が大幅に増大する
ことがわかる。半波の方が最大回転数が高くなるのは、
最大回転数を得るためコイルに印加される電圧は電源電
圧からコイルに発生する逆起電圧を減算したものであ
り、半波の方がこの逆起電圧が小さいためである。
As described above, the torque at start-up is almost the same for the full wave and the half wave, but the maximum rotation speed with respect to the power supply voltage is larger in the half wave than in the full wave as shown in FIG. Is about 1.5 times in the large area. Moreover, the same figure (B)
It can be seen that the current at that time is significantly larger in the half-wave than in the full-wave. The maximum rotation speed of the half wave is higher,
This is because the voltage applied to the coil to obtain the maximum rotation speed is the power supply voltage minus the counter electromotive voltage generated in the coil, and the half wave has a smaller counter electromotive voltage.

【0026】図8は全波と半波の駆動切換時の動作を示
す特性図で電源電圧が3.5V未満の場合にこの切換動
作を行う。即ち、一般に3乃至5Vで動作するHDDは
基準電圧発生回路とA/D変換器とを内蔵した図示しな
いマイクロコンピュータを備え、基準電圧に対して電源
電圧をA/D変換してこの電源電圧を測定し、スピンド
ルモータの回転数を定格回転数3200rpmにするた
めに全波又は半波の駆動回路を選択している。ところ
で、図7(A)からも分るように電源電圧が略3.5V
以上であれば全波でも3200rpmの回転数が得られ
ることから、この場合は起動時から定格回転時まで全波
駆動回路のみを用い、電源電圧が3.5V未満の場合に
ついて本発明に係る駆動回路を用いるようにした。
FIG. 8 is a characteristic diagram showing the operation when switching between full-wave and half-wave driving, and this switching operation is performed when the power supply voltage is less than 3.5V. That is, generally, an HDD operating at 3 to 5V includes a microcomputer (not shown) having a reference voltage generation circuit and an A / D converter built therein, and the power supply voltage is A / D converted with respect to the reference voltage. A full-wave or half-wave drive circuit is selected to measure and set the rotation speed of the spindle motor to the rated rotation speed of 3200 rpm. By the way, as can be seen from FIG. 7A, the power supply voltage is approximately 3.5V.
Since a rotation speed of 3200 rpm can be obtained even with a full wave in the above case, in this case, only the full wave drive circuit is used from startup to rated rotation, and the drive according to the present invention is applied when the power supply voltage is less than 3.5V. I used a circuit.

【0027】図8によれば、起動時から回転数が略20
00rpmまでは全波駆動回路を動作させ、2000r
pmを超えると半波駆動回路に切換えて動作させ定格回
転数の3200rpmを得ていることが分る。
According to FIG. 8, the rotational speed is about 20 from the start.
2000r by operating the full-wave drive circuit up to 00rpm
When it exceeds pm, it can be seen that the circuit is switched to the half-wave drive circuit and operated to obtain the rated rotation speed of 3200 rpm.

【0028】以上説明したように本発明は、3相全波駆
動回路と3相半波駆動回路の利点を組合わせて用いるよ
うDCブラシレスモータの駆動回路を構成したところに
特徴がある。即ち、3相全波駆動回路は起動トルクが大
きくトルクリップルも小さいことから、起動時から所定
の回転数、例えば2000rpm程度まではこの全波駆
動回路を用いることにより、起動時は最大電流が小さい
ため最大消費電力を少なくすることができる。一方、3
相半波駆動回路は逆起電圧定数が小さく最大回転数が大
きいことから、2000rpmを超えた後はこの半波駆
動回路を用いることにより電源電圧が3V程度でも大き
い回転数で比較的安定に回転駆動することができる。
尚、スイッチング素子としてPNP形トランジスタで構
成したが、NPN形トランジスタで構成してもよく、又
FET等の他の増幅素子で構成してもよい。
As described above, the present invention is characterized in that the drive circuit of the DC brushless motor is configured so as to use the advantages of the three-phase full-wave drive circuit and the three-phase half-wave drive circuit in combination. That is, since the three-phase full-wave driving circuit has a large starting torque and a small torque ripple, the maximum current is small at the time of starting by using this full-wave driving circuit from the time of starting to a predetermined rotation speed, for example, up to about 2000 rpm. Therefore, the maximum power consumption can be reduced. On the other hand, 3
The half-wave drive circuit has a small back electromotive force constant and a large maximum rotation speed. Therefore, after the rotation speed exceeds 2000 rpm, the half-wave drive circuit rotates relatively stably at a high rotation speed even when the power supply voltage is about 3V. Can be driven.
Although the switching element is composed of the PNP type transistor, it may be composed of the NPN type transistor, or may be composed of another amplification element such as FET.

【0029】又、従来の駆動回路に駆動切換用の素子と
してFETを1個追加するだけであり、又、駆動制御は
殆どソフトウエアで行われ、共通に使用できる部分が多
いため、追加するソフトウエアに対するメモリの増加も
少なくて済む。従って、本発明を小型モータに用いるこ
ともでき、併せて費用の節減も図ることができる。
Further, only one FET is added to the conventional drive circuit as a drive switching element, and drive control is performed by almost software, and since many parts can be commonly used, additional software is added. The increase in memory for the wear is also small. Therefore, the present invention can be applied to a small motor, and the cost can be reduced.

【0030】[0030]

【発明の効果】2つの駆動回路を選択して用いるようモ
ータの駆動回路を構成したので、各駆動回路の特性の良
い部分を組合わせることができる。従って、回転数の大
きいモータを比較的少ない消費電力で、且つ、比較的簡
単な回路の追加で得ることが可能となり、モータの小型
化に適し、併せて費用の節減も図ることができる。
Since the drive circuit of the motor is configured to select and use two drive circuits, it is possible to combine portions having good characteristics of each drive circuit. Therefore, it becomes possible to obtain a motor having a large number of rotations with relatively low power consumption and by adding a relatively simple circuit, which is suitable for downsizing of the motor and at the same time cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るDCブラシレスモータの駆動回路
の一例の構成図である。
FIG. 1 is a configuration diagram of an example of a drive circuit of a DC brushless motor according to the present invention.

【図2】同回転数比較手段の一例の構成図である。FIG. 2 is a configuration diagram of an example of the rotation speed comparison unit.

【図3】同第1実施例の回路図である。FIG. 3 is a circuit diagram of the first embodiment.

【図4】同第2実施例の回路図である。FIG. 4 is a circuit diagram of the second embodiment.

【図5】同逆起電圧波形と駆動コイルに流す電流のタイ
ミングチャートである。
FIG. 5 is a timing chart of the counter electromotive voltage waveform and a current passed through a drive coil.

【図6】同発生トルク特性図である。FIG. 6 is a generated torque characteristic diagram of the same.

【図7】同電源電圧対最大回転数及び消費電流特性図で
ある。
FIG. 7 is a characteristic diagram of the same power supply voltage vs. maximum rotation speed and consumed current.

【図8】同駆動切換動作特性図である。FIG. 8 is a drive switching operation characteristic diagram of the same.

【符号の説明】[Explanation of symbols]

1…DCブラシレスモータの駆動回路、2…回転数比較
手段、3…駆動切換回路、4…第1駆動回路、5…第2
駆動回路、6…モータ部、j…第1端子、k…第2端
子、L1〜L3…U相〜W相駆動コイル、Q1〜Q3…
PNP形トランジスタ、Q4〜Q8…FET、S1〜S
4…アナログスイッチ。
DESCRIPTION OF SYMBOLS 1 ... Drive circuit of DC brushless motor, 2 ... Rotation speed comparison means, 3 ... Drive switching circuit, 4 ... First drive circuit, 5 ... Second
Drive circuit, 6 ... Motor part, j ... 1st terminal, k ... 2nd terminal, L1-L3 ... U-phase-W-phase drive coil, Q1-Q3 ...
PNP type transistor, Q4 to Q8 ... FET, S1 to S
4 ... Analog switch.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の巻線で構成され各巻線の一端が共
通に接続された第1端子jを備えた駆動コイルと、この
駆動コイルに電流を供給して発生する磁界と多極に着磁
された駆動マグネットから発生する磁界との相互作用に
より回転力を発生するDCブラシレスモータの駆動回路
において、前記各巻線の他端となる第2端子kに電流を
選択的に供給するスイッチング素子を接続し前記第1端
子jを介して2つの巻線に両方向に電流を供給する第1
駆動回路と、前記各巻線の第2端子kに電流を選択的に
供給するスイッチング素子を接続しこの第2端子kと前
記第1端子j間の一方向に電流を供給する第2駆動回路
と、前記第1又は第2駆動回路の何れか一方に駆動回路
を切換える駆動切換回路とを設けたことを特徴とするD
Cブラシレスモータの駆動回路。
1. A drive coil comprising a plurality of windings and having a first terminal j, one end of which is commonly connected, and a magnetic field generated by supplying a current to the drive coil In a drive circuit of a DC brushless motor that generates a rotational force by interaction with a magnetic field generated from a magnetized drive magnet, a switching element that selectively supplies a current to a second terminal k that is the other end of each winding is provided. First connected to supply current in both directions to the two windings through the first terminal j
A driving circuit and a second driving circuit for connecting a switching element for selectively supplying a current to the second terminal k of each winding and supplying a current in one direction between the second terminal k and the first terminal j; And a drive switching circuit for switching the driving circuit to one of the first and second driving circuits.
C brushless motor drive circuit.
【請求項2】 DCブラシレスモータの停止時から所定
の回転数までは前記第1駆動回路を駆動し、前記所定の
回転数を超える回転数では前記第2駆動回路を駆動する
よう前記駆動切換回路を構成したことを特徴とする請求
項1記載のDCブラシレスモータの駆動回路。
2. The drive switching circuit is configured to drive the first drive circuit from the time when the DC brushless motor is stopped to a predetermined rotation speed, and to drive the second drive circuit at a rotation speed exceeding the predetermined rotation speed. The drive circuit for the DC brushless motor according to claim 1, wherein
JP3351709A 1991-11-19 1991-11-19 Driving circuit for dc brushless motor Pending JPH05146192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3351709A JPH05146192A (en) 1991-11-19 1991-11-19 Driving circuit for dc brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3351709A JPH05146192A (en) 1991-11-19 1991-11-19 Driving circuit for dc brushless motor

Publications (1)

Publication Number Publication Date
JPH05146192A true JPH05146192A (en) 1993-06-11

Family

ID=18419089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3351709A Pending JPH05146192A (en) 1991-11-19 1991-11-19 Driving circuit for dc brushless motor

Country Status (1)

Country Link
JP (1) JPH05146192A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136587A (en) * 1987-11-19 1989-05-29 Matsushita Electric Ind Co Ltd Motor driving device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136587A (en) * 1987-11-19 1989-05-29 Matsushita Electric Ind Co Ltd Motor driving device

Similar Documents

Publication Publication Date Title
JP2530676B2 (en) DC motor drive
KR100796116B1 (en) Control device of electric motor
US6340873B2 (en) Semiconductor integrated circuit for brushless motor drive control and brushless motor drive control apparatus
US5847521A (en) Method and apparatus for driving an electric motor
KR100406875B1 (en) A Controlling Circuit Of Motor and A Method Thereof
Jang et al. A bipolar-starting and unipolar-running method to drive a hard disk drive spindle motor at high speed with large starting torque
JP2000236684A (en) Drive circuit for motor
US20020167290A1 (en) Apparatus for driving three-phase brushless motor
JPH05146192A (en) Driving circuit for dc brushless motor
JP3244799B2 (en) Starting method of sensorless multi-phase DC motor
JP3285318B2 (en) Drive device for brushless DC motor
JP2001186788A (en) Drive circuit of brushless motor
JP2005176457A (en) Position detecting circuit of brushless motor
KR0176834B1 (en) Bldc motor braking method
JPS59176679A (en) Motor-driven fan
JP4240832B2 (en) Three-phase motor phase detection circuit
JPH01136587A (en) Motor driving device
JPH06178588A (en) Controller of position sensorless brushless dc motor
JPH0767379A (en) Starting controller of motor
JP3244808B2 (en) Driver circuit for sensorless multiphase DC motor
JPS59136091A (en) Brushless motor
JP2547063Y2 (en) Fan motor control device
JP3305606B2 (en) Brushless motor drive circuit
KR940007446Y1 (en) Arrangement for starting electric motor
JPH0697537B2 (en) Magnetic disk device