JPH05146092A - Charge control circuit for multiple charger standby redundant operation system uninterruptible power supply - Google Patents

Charge control circuit for multiple charger standby redundant operation system uninterruptible power supply

Info

Publication number
JPH05146092A
JPH05146092A JP4035457A JP3545792A JPH05146092A JP H05146092 A JPH05146092 A JP H05146092A JP 4035457 A JP4035457 A JP 4035457A JP 3545792 A JP3545792 A JP 3545792A JP H05146092 A JPH05146092 A JP H05146092A
Authority
JP
Japan
Prior art keywords
current
charging
charging means
power supply
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4035457A
Other languages
Japanese (ja)
Inventor
Makoto Nakatani
誠 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4035457A priority Critical patent/JPH05146092A/en
Publication of JPH05146092A publication Critical patent/JPH05146092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Safety Devices In Control Systems (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To prevent an AC power supply from bearing an excessive current by employing a value, obtained by dividing the rated current of charger by the number of chargers, as a droop current set value for each charger. CONSTITUTION:A rated current setter 17, having rated value equal to the output current from charger No.1 10, is additionally provided with a droop current setter 31. A switch 32 functions to select the droop current setter 31 upon recovery of an AC power supply 2 from power interruption. At that time, a value obtained by dividing the rated current of charger No.1 10 by the number of chargers is set in the droop current setter 31. Consequently, total output current from chargers can be limited to a value of single charger. According to the invention, AC power supply 2 can be protected against its entering into overcurrent state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、複数台待機冗長運転
方式無停電電源装置の交流電源が停電から回復した際
に、この交流電源から過大な電流がこの装置へ流入する
のを防止出来る複数台待機冗長運転方式無停電電源装置
の充電制御回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plurality of standby redundant operation type uninterruptible power supply units capable of preventing an excessive current from flowing into this unit when the AC power supply recovers from a power failure. The present invention relates to a charging control circuit of a stand-by redundant operation system uninterruptible power supply.

【0002】[0002]

【従来の技術】図4は複数台待機冗長運転方式無停電電
源装置の充電制御回路の従来例を示した回路図であっ
て、2組の無停電電源装置で待機冗長運転を行う場合を
表している。この図4において、交流電源2からの交流
電力を1号充電器10と1号インバータ12で一定電圧
・一定周波数の交流電力に変換する第1無停電電源装置
と、交流電源2からの交流電力を2号充電器20と2号
インバータ22で一定電圧・一定周波数の交流電力に変
換する第2無停電電源装置とがあり、サイリスタ等の半
導体スイッチ素子で構成した交流スイッチ4を切り換え
ることで、1号インバータ12又は2号インバータ22
のいずれかが負荷5へ交流電力を供給する。又、1号充
電器10の直流出力と2号充電器20の直流出力とを共
通に接続した回路にバッテリー3を接続しているので、
交流電源2が停電すれば、このバッテリー3が1号イン
バータ12又は2号インバータ22のいずれかを経て負
荷5へ電力を供給するので、この負荷5の停電を回避す
ることが出来る。
2. Description of the Related Art FIG. 4 is a circuit diagram showing a conventional example of a charge control circuit of a multiple standby redundant operation type uninterruptible power supply system, showing a case where two sets of uninterruptible power supply systems perform standby redundant operation. ing. In FIG. 4, a first uninterruptible power supply device for converting AC power from the AC power supply 2 into AC power having a constant voltage and a constant frequency by the No. 1 charger 10 and the No. 1 inverter 12, and the AC power from the AC power supply 2. There is a second uninterruptible power supply device for converting the AC power of No. 2 charger 20 and No. 2 inverter 22 into AC power of constant voltage / constant frequency, and by switching the AC switch 4 composed of a semiconductor switch element such as a thyristor, No. 1 inverter 12 or No. 2 inverter 22
Supplies AC power to the load 5. Further, since the battery 3 is connected to the circuit in which the DC output of the No. 1 charger 10 and the DC output of the No. 2 charger 20 are commonly connected,
If the AC power supply 2 fails, the battery 3 supplies power to the load 5 through either the No. 1 inverter 12 or the No. 2 inverter 22, so that the load 5 can be prevented from failing.

【0003】1号充電器10はバッテリー3へ充電電力
を供給すると共に、1号インバータ12を介して負荷5
へ電力を供給するために、電圧調節器14で充電器出力
電圧を電圧設定器13からの電圧指令値に一致させるよ
うに調節動作を行い、移相器15はこの電圧調節器14
からの信号を受けて1号充電器10を制御する。ここで
電流検出器11が1号充電器10の出力電流を検出し
て、その値が定格電流設定器17で設定した値(一般に
定格の 100%電流)に達すれば垂下指令回路16からの
信号が移相器15へ与えられて1号充電器10の出力電
流を垂下させるので、この1号充電器10は過電流状態
になることは無い。2号充電器20にも同様に電流検出
器21、電圧設定器23、電圧調節器24、移相器2
5、垂下指令回路26、及び定格電流設定器27を備え
ており、その動作は1号充電器10の場合と同じであ
る。
The No. 1 charger 10 supplies charging power to the battery 3 and the load 5 via the No. 1 inverter 12
In order to supply electric power to the voltage regulator 14, the voltage regulator 14 performs an adjustment operation so that the charger output voltage matches the voltage command value from the voltage setter 13, and the phase shifter 15 operates the voltage regulator 14
The No. 1 charger 10 is controlled in response to the signal from. Here, the current detector 11 detects the output current of the No. 1 charger 10, and if the value reaches the value set by the rated current setting device 17 (generally 100% of the rated current), the signal from the droop command circuit 16 Is supplied to the phase shifter 15 to droop the output current of the No. 1 charger 10, so that the No. 1 charger 10 does not become an overcurrent state. Similarly, the No. 2 charger 20 also has a current detector 21, a voltage setter 23, a voltage regulator 24, and a phase shifter 2.
5, the drooping command circuit 26 and the rated current setting device 27 are provided, and the operation thereof is the same as that of the No. 1 charger 10.

【0004】1号充電器10と1号インバータ12とで
なる1号無停電電源装置が負荷5へ電力を供給している
ときは、2号充電器20と2号インバータ22とでなる
2号無停電電源装置は待機状態であるから負荷5への電
力は供給しないが、1号インバータ12が故障すれば直
ちに交流スイッチ4が切り替わって、2号インバータ2
2が負荷5へ交流電力を供給する。又、1号無停電電源
装置が電力供給中に交流電源2が停電すると、バッテリ
ー3からの直流電力を1号インバータ12が交流電力に
変換して負荷5への電力供給を継続する。
When the No. 1 uninterruptible power supply system including the No. 1 charger 10 and the No. 1 inverter 12 is supplying power to the load 5, the No. 2 charger 20 and the No. 2 inverter 22 are provided. Since the uninterruptible power supply is in the standby state, it does not supply power to the load 5, but if the inverter 1 of 12 fails, the AC switch 4 immediately switches to the inverter 2 of 2
2 supplies AC power to the load 5. If the AC power supply 2 fails during power supply by the No. 1 uninterruptible power supply, the No. 1 inverter 12 converts the DC power from the battery 3 into AC power and continues to supply power to the load 5.

【0005】[0005]

【発明が解決しようとする課題】交流電源2の停電が復
旧すれば1号無停電電源装置での給電を再開するのであ
るが、交流電源2の停電期間中のバッテリー3の放電に
より、このバッテリー電圧は低下している。ここで交流
電源2の停電が解消すれば1号充電器10は1号インバ
ータ12への電流と共にバッテリー3へも充電電流を流
すが、同時に2号充電器20もバッテリー3へ充電電流
を流す。このとき1号充電器10の出力電流は垂下指令
回路16の作用により定格電流設定器17で設定した値
を越えることはなく、又2号充電器20の出力電流も定
格電流設定器27で設定した値を越えることはないの
で、いずれも過電流になる恐れは無い。しかしながら交
流電源2は1号充電器10の定格電流と2号充電器20
の定格電流との合計値を出力することになるので、交流
電源2が過電流で再びトリップしてしまうか、トリップ
しなくても過大な電流による電圧降下がこの交流電源2
に接続している他の負荷へ悪影響を与えることになる。
無停電電源装置の待機台数が多ければ交流電源2からの
過電流は更に増大する。
When the power failure of the AC power supply 2 is restored, the power supply by the No. 1 uninterruptible power supply is restarted, but this battery is discharged by the discharge of the battery 3 during the power failure of the AC power supply 2. The voltage is dropping. If the power failure of the AC power supply 2 is eliminated, the No. 1 charger 10 supplies the charging current to the battery 3 together with the current to the No. 1 inverter 12, but at the same time, the No. 2 charger 20 also supplies the charging current to the battery 3. At this time, the output current of the No. 1 charger 10 does not exceed the value set by the rated current setting unit 17 due to the action of the drooping command circuit 16, and the output current of the No. 2 charger 20 is also set by the rated current setting unit 27. Since it does not exceed the specified value, there is no risk of overcurrent. However, the AC power source 2 is the rated current of the first charger 10 and the second charger 20.
Since the total value of the rated current is output, the AC power supply 2 will trip again due to overcurrent, or a voltage drop due to an excessive current will cause this AC power supply 2 to trip even if it does not trip.
It will adversely affect other loads connected to.
If the number of uninterruptible power supply units on standby is large, the overcurrent from the AC power supply 2 is further increased.

【0006】そこでこの発明の目的は、複数台待機冗長
運転方式無停電電源装置へ電力を供給している交流電源
が停電から回復する際に、この交流電源からバッテリー
へ過大な充電電流が流れるのを防止することにある。
Therefore, an object of the present invention is to cause an excessive charging current to flow from the AC power supply to the battery when the AC power supply supplying the power to the plural standby redundant operation type uninterruptible power supply recovers from the power failure. Is to prevent.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めにこの発明の充電制御回路は、交流電源に接続して交
流を直流に変換する複数の充電手段と、これら各充電手
段の直流出力電流を別個に定格値に設定する定格電流設
定手段と、これら各充電手段の直流出力を共通にして接
続しているバッテリーと、これら各充電手段に別個に接
続してそれぞれが直流を交流に変換するインバータと、
これら各インバータの交流出力を負荷へ供給するべく切
り換える交流スイッチとを備えている複数台待機冗長運
転方式無停電電源装置において、前記充電手段の定格電
流をこれら充電手段の設置台数で割り算した値に設定す
る垂下電流設定手段と、この垂下電流設定手段と前記定
格電流設定手段のいずれかを選択する選択手段とを各充
電手段に別個に備え、前記交流電源が停電から回復した
際に前記選択手段は前記垂下電流設定手段を選択するも
のとするが、全充電手段が運転し且つ自己以外の充電手
段が正常の時に論理信号を出力する第1の論理回路を各
充電手段に別個に備え、この第1論理回路が前記選択手
段へ動作信号をあたえるものとする。或いは前記充電手
段の出力を断にする出力遮断手段と、自己以外の前記充
電手段が運転し且つ正常の時に論理信号を出力する第2
の論理回路とを各充電手段に別個に備え、前記交流電源
が停電から回復した際に前記第2論理回路の出力信号に
対応して前記出力遮断手段を動作させるものとする。又
は、前記各充電手段の合計出力電流を検出する合計充電
電流検出手段と、第1の電流上限値を設定する第1電流
上限値設定手段と、この第1電流上限値よりも少ない値
の第2電流上限値を設定する第2電流上限値設定手段
と、前記合計充電電流検出値が前記第1電流上限値を越
えれば前記各充電手段の中の特定充電手段を除いた残余
の充電手段の作動を停止させ、且つ前記合計充電電流検
出値が前記第2電流上限値以下になれば前記残余の充電
手段へ作動再開信号を出力する第3の論理回路とを備え
るものとする。
In order to achieve the above-mentioned object, a charging control circuit of the present invention comprises a plurality of charging means which are connected to an alternating current power source and convert alternating current into direct current, and direct current outputs of these charging means. Rated current setting means for separately setting the current to a rated value, a battery to which the DC output of each of these charging means is connected in common, and a battery connected to each of these charging means separately to convert DC to AC An inverter to
In a plurality of standby redundant operation type uninterruptible power supply devices equipped with an AC switch for switching the AC output of each of these inverters to supply it to the load, the rated current of the charging means is divided by the number of installed charging means. Each charging means is separately provided with a drooping current setting means to be set and a selecting means for selecting one of the drooping current setting means and the rated current setting means, and the selecting means when the AC power supply recovers from a power failure. Is to select the drooping current setting means, each charging means is provided with a first logic circuit which outputs a logic signal when all the charging means are operating and the charging means other than itself are normal. It is assumed that the first logic circuit gives an operation signal to the selecting means. Alternatively, an output cut-off means for cutting off the output of the charging means, and a second output means for outputting a logical signal when the charging means other than itself are in operation and normal.
And the above logic circuit are separately provided for each charging means, and the output cutoff means is operated in response to the output signal of the second logic circuit when the AC power supply recovers from a power failure. Alternatively, a total charging current detecting means for detecting a total output current of each of the charging means, a first current upper limit value setting means for setting a first current upper limit value, and a first current upper limit value smaller than the first current upper limit value. The second current upper limit value setting means for setting the second current upper limit value, and the remaining charging means excluding the specific charging means in each of the charging means if the total charging current detection value exceeds the first current upper limit value. And a third logic circuit that stops the operation and outputs an operation restart signal to the remaining charging means when the total charging current detection value becomes equal to or less than the second current upper limit value.

【0008】[0008]

【作用】待機冗長運転方式の無停電電源装置が複数台の
場合、従来は交流電源の停電が復旧したときに各無停電
電源装置がそれぞれの定格電流でバッテリーを一斉に充
電するので、交流電源はこれらの合計電流を負担しなけ
ればならなかったのが、この発明では、待機冗長運転方
式の無停電電源装置が複数台であっても、バッテリー充
電電流の合計値を充電手段1台分に抑制することで、交
流電源が過大な電流を負担しないようにするものであっ
て、充電手段の定格電流をこの充電手段の設置台数で割
り算した値をそれぞれの充電手段の垂下電流設定値にす
ることで、充電電流の合計値を1台分に制限する。又は
交流電源が停電から復旧したときのバッテリー充電を1
台の充電手段に限定するか、或いは全充電手段を作動さ
せてその合計充電電流が第1上限電流設定値を越えれ
ば、特定充電手段のみが運転を継続して残余の充電手段
は運転を中断するようにして、交流電源が過大な電流を
負担しないようにするものである。
[Function] When there are multiple standby redundant operation type uninterruptible power supply units, conventionally, each uninterruptible power supply unit charges the batteries simultaneously with their rated current when the AC power supply is restored from the power failure. In the present invention, the total value of the battery charging current is equal to that of one charging means even if there are a plurality of standby redundant operation type uninterruptible power supply devices. By suppressing it, the AC power supply does not bear an excessive current, and the value obtained by dividing the rated current of the charging means by the number of installed charging means is set as the drooping current set value of each charging means. Therefore, the total value of the charging current is limited to one. Or 1 battery charge when AC power supply is restored from power failure
If the total charging current exceeds the first upper limit current setting value by limiting all the charging means or operating all the charging means, only the specific charging means continues the operation and the remaining charging means interrupts the operation. By doing so, the AC power supply does not bear an excessive current.

【0009】[0009]

【実施例】図1は本発明の第1実施例を表した回路図で
あるが、この図1に図示している第1実施例回路は、図
4で既述の従来例回路に垂下電流設定器31と選択手段
としての切替えスイッチ32、及び垂下電流設定器41
と選択手段としての切替えスイッチ42とを追加してい
るのが異なるところであって、それ以外はすべて同じで
あるから、同じ部分の説明は省略する。
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. The first embodiment circuit shown in FIG. 1 is the same as the conventional circuit described in FIG. Setting device 31, changeover switch 32 as selecting means, and drooping current setting device 41
Except that a changeover switch 42 as a selection means is added, and the other parts are all the same, so the description of the same parts will be omitted.

【0010】この第1実施例回路では、1号充電器10
の出力電流を定格値に設定している定格電流設定器17
に更に垂下電流設定器31を追加し、交流電源2が停電
から復旧したときは垂下電流設定器31を選択するよう
に切替えスイッチ32を切り換える。このとき垂下電流
設定器31の設定値は1号充電器10の定格電流を充電
器の設置台数(この図1の場合は2)で割り算した値と
する。垂下電流設定器41の設定値も垂下電流設定器3
1と同じ値とし、交流電源2が停電から復旧したときは
切替えスイッチ42が垂下電流設定器41を選択する。
これにより1号充電器10と2号充電器20の出力電流
の合計値を充電器1台分の値に制限することが出来る。
In this first embodiment circuit, No. 1 charger 10
Rated current setter 17 that sets the output current of the
Further, a drooping current setting device 31 is further added, and when the AC power supply 2 recovers from a power failure, the changeover switch 32 is switched so as to select the drooping current setting device 31. At this time, the set value of the drooping current setting device 31 is a value obtained by dividing the rated current of the No. 1 charger 10 by the number of installed chargers (2 in the case of FIG. 1). The set value of the drooping current setting device 41 is also the drooping current setting device 3.
The same value as 1, and when the AC power supply 2 recovers from a power failure, the changeover switch 42 selects the drooping current setting device 41.
Thereby, the total value of the output currents of the No. 1 charger 10 and the No. 2 charger 20 can be limited to the value for one charger.

【0011】図2は本発明の第2実施例を表した回路図
であるが、この図2に図示している第2実施例回路は、
図1で既述の第1実施例回路に第1論理回路としての論
理積素子33と、同じく第1論理回路としての論理積素
子43とを追加しているのが異なるところであって、そ
れ以外はすべて同じであるから、同じ部分の説明は省略
する。
FIG. 2 is a circuit diagram showing a second embodiment of the present invention. The second embodiment circuit shown in FIG.
The difference is that a logical product element 33 as a first logic circuit and a logical product element 43 as a first logic circuit are added to the circuit of the first embodiment described above with reference to FIG. Are all the same, the description of the same parts will be omitted.

【0012】この第2実施例回路では、交流電源2が停
電から復旧したときに複数の充電器の運転状態と故障の
有無とを論理積素子33又は論理積素子43に入力し
て、その論理演算結果で切替えスイッチ32又は切替え
スイッチ42の切替え位置を選択する。即ち1号充電器
10にあっては総ての充電器(図2では1号充電器10
と2号充電器20)が運転し、且つ他の充電器(図2で
は2号充電器20)が正常であるとき、論理積素子33
は垂下電流設定器31を選択するように切替えスイッチ
32へ切り換え指令を発する。これと同様に論理積素子
43は垂下電流設定器41を選択するように切替えスイ
ッチ42へ切り換え指令を発する。
In the second embodiment circuit, when the AC power supply 2 is restored from a power failure, the operating states of a plurality of chargers and the presence / absence of a failure are input to the logical product element 33 or the logical product element 43, and the logical product thereof is input. The switching position of the changeover switch 32 or the changeover switch 42 is selected based on the calculation result. That is, all the chargers in the No. 1 charger 10 (No. 1 charger 10 in FIG. 2).
And No. 2 charger 20) are operating, and the other charger (No. 2 charger 20 in FIG. 2) is normal, the logical product element 33
Issues a changeover command to the changeover switch 32 so as to select the drooping current setting device 31. Similarly, the AND element 43 issues a changeover command to the changeover switch 42 so as to select the drooping current setting device 41.

【0013】図3は本発明の第3実施例を表した回路図
であるが、この図3に図示している第3実施例回路は、
図4で既述の従来例回路に出力遮断手段としての接点3
5と第2論理回路としての論理積素子36、及び出力遮
断手段としての接点45と第2論理回路としての論理積
素子46とを追加しているのが異なるところであって、
それ以外はすべて同じであるから、同じ部分の説明は省
略する。
FIG. 3 is a circuit diagram showing a third embodiment of the present invention. The circuit of the third embodiment shown in FIG.
In the conventional example circuit described above with reference to FIG.
5, and a logical product element 36 as a second logic circuit, a contact 45 as an output cutoff means, and a logical product element 46 as a second logic circuit are added.
Since the other parts are the same, the description of the same parts will be omitted.

【0014】この第3実施例回路では移相器15の出力
側に常時閉なる接点35を、移相器25の出力側にも常
時閉なる接点45を設け、接点35は論理積素子36で
駆動され、接点45は論理積素子46で駆動されるよう
にしている。ここで論理積素子36は他の充電器(図3
では2号充電器20)が正常で且つ運転しているときに
接点35を開路するので1号充電器の出力は遮断され、
2号充電器20のみがバッテリー3へ充電電流を供給す
る。又論理積素子46も他の充電器(図3では1号充電
器10)が正常で且つ運転しているときに接点45を開
路するので、この時は2号充電器の出力が遮断されて1
号充電器10のみがバッテリー3へ充電電流を供給す
る。即ち複数台の充電器のうちのいずれか1台のみが定
格電流でバッテリー3を充電する。
In the circuit of the third embodiment, a normally-closed contact 35 is provided on the output side of the phase shifter 15 and a normally-closed contact 45 is provided on the output side of the phase shifter 25. The contact 35 is an AND element 36. When driven, the contact 45 is driven by the logical product element 46. Here, the logical product element 36 is the other charger (see FIG. 3).
Then, when the No. 2 charger 20) is operating normally and the contact 35 is opened, the output of the No. 1 charger is cut off,
Only the No. 2 charger 20 supplies the charging current to the battery 3. Further, the logical product element 46 also opens the contact 45 when the other charger (No. 1 charger 10 in FIG. 3) is operating normally, so that the output of the No. 2 charger is cut off at this time. 1
Only the No. charger 10 supplies the charging current to the battery 3. That is, only one of the plurality of chargers charges the battery 3 with the rated current.

【0015】図5は本発明の第4実施例を表した回路図
であるが、この図5に図示している第4実施例回路は、
図4で既述の従来例回路に合計充電電流検出手段として
の加算器51、第3論理回路としてのヒステリシス付コ
ンパレータ52、第1電流上限値設定手段としての上限
電流設定器53、第2電流上限値設定手段としてのヒス
テリシス設定器54、及び作動中断接点55とを追加し
ているのが異なるところであって、それ以外の回路構成
はすべて図4の従来例回路と同じであるから、同じ部分
の説明は省略する。
FIG. 5 is a circuit diagram showing a fourth embodiment of the present invention. The fourth embodiment circuit shown in FIG. 5 is as follows.
In the conventional circuit described above with reference to FIG. 4, an adder 51 as a total charging current detecting means, a comparator 52 with hysteresis as a third logic circuit, an upper limit current setting device 53 as a first current upper limit value setting means, and a second current. The difference is that a hysteresis setter 54 as an upper limit value setting means and an operation interruption contact 55 are added, and the other circuit configuration is the same as the conventional example circuit of FIG. Is omitted.

【0016】この第4実施例回路では、電流検出器11
が検出する1号充電器10の出力電流と、電流検出器2
1が検出する2号充電器20の出力電流とを加算器51
で加算することで充電電流の合計値を検出し、上限電流
設定器53が設定した電流値とこの合計充電電流検出値
とをヒステリシス付コンパレータ52で比較する。ここ
で上限電流設定値を充電器1台分の定格電流値或いは定
格電流値よりもやや大きい値(例えば定格電流の 120
%)に設定しておく。交流電源2が停電している期間は
バッテリー3が電源になって各インバータを介して負荷
5へ交流電力を供給し続けているので、この停電が復旧
したときにバッテリー3は消耗してその電圧は低下して
いることが多い。それ故、停電の復旧に伴って全充電器
が一斉に充電動作を開始すれば、合計充電電流検出値は
大きな値になって上限電流設定値を上回ることになる。
ヒステリシス付コンパレータ52は合計充電電流検出値
が上限電流設定値を越えたことを検出して作動中断接点
55へ開路信号を送り、2号充電器20の動作を中断さ
せる。(他にも充電器があれば、その充電器の動作も中
断させるのは勿論である。)その結果、1号充電器10
のみが運転を継続(残余の充電器は全て作動中断接点に
よりその動作を中断させられるので、運転するのは1号
充電器1台のみ)するが、バッテリー3の充電が完了し
て合計充電電流検出値が第1上限電流値よりも下側に設
定している第2電流上限値よりも減少すれば、ヒステリ
シス付コンパレータ52からは作動中断接点55へ閉路
信号が送られて、全充電器が運転を再開することにな
る。ここでヒステリシス設定器54は第1上限電流値と
第2上限電流値との差分であるヒステリシス値を設定す
る。
In the fourth embodiment circuit, the current detector 11
Output current of No. 1 charger 10 detected by and current detector 2
The output current of the No. 2 charger 20 detected by 1 is added to the adder 51.
Then, the total value of the charging current is detected, and the current value set by the upper limit current setting unit 53 and this total charging current detection value are compared by the comparator with hysteresis 52. Here, the upper limit current setting value is the rated current value for one charger or a value slightly larger than the rated current value (for example, 120% of the rated current).
%). While the AC power supply 2 is out of power, the battery 3 serves as a power source and continues to supply AC power to the load 5 via each inverter. Is often decreasing. Therefore, if all the chargers start the charging operation all at once with the restoration of the power failure, the total charging current detection value becomes a large value and exceeds the upper limit current setting value.
The comparator with hysteresis 52 detects that the total charging current detection value exceeds the upper limit current setting value and sends an open signal to the operation interruption contact 55 to interrupt the operation of the No. 2 charger 20. (Of course, if there is another charger, the operation of the charger is also interrupted.) As a result, the No. 1 charger 10
Only continues to operate (all remaining chargers can be interrupted by the operation interruption contact, so only one No. 1 charger operates), but the charging of battery 3 is completed and the total charging current When the detected value is lower than the second current upper limit value set below the first upper limit current value, the hysteresis-equipped comparator 52 sends a closing signal to the operation interruption contact 55, and all chargers are turned on. The operation will be restarted. Here, the hysteresis setter 54 sets a hysteresis value that is a difference between the first upper limit current value and the second upper limit current value.

【0017】図6は図5に既述した第4実施例回路の各
部の動作を示したタイムチャートであって、図6は交
流電源2の電圧変化、図6は1号充電器10の出力電
圧変化、図6は2号充電器20の出力電圧変化、図6
はバッテリー3の電圧変化、図6は1号充電器10
の出力電流変化、図6は2号充電器20の出力電流変
化、図6は合計充電電流変化、図6は作動中断接点
55の動作をそれぞれが表している。
FIG. 6 is a time chart showing the operation of each part of the circuit of the fourth embodiment already described in FIG. 5. FIG. 6 shows the voltage change of the AC power supply 2, and FIG. 6 shows the output of the No. 1 charger 10. Voltage change, FIG. 6 shows output voltage change of No. 2 charger 20, FIG.
Is the voltage change of the battery 3, and FIG.
6 shows the output current change of the No. 2 charger 20, FIG. 6 shows the total charge current change, and FIG. 6 shows the operation of the operation interruption contact 55.

【0018】この図6において、t1 は電源が停電を開
始した時点、t2 はこの停電が復旧した時点、t3 は作
動中断接点55の動作開始(即ち開路)時点、t4 はバ
ッテリー3の充電が完了した時点である。即ち、停電開
始と共にバッテリーは放電してその電圧を低下させてい
るので、停電が復旧すると全充電器が充電電流を供給す
るので、合計充電電流が過大になって電源を過電流にし
てしまう。そこでこの合計充電電流の課題を検出したt
3 時点で作動中断接点55が開路して2号充電き20の
出力を中断させるので、1号充電器のみがバッテリー3
を充電し、その充電が完了するt4 時点で作動中断接点
55が再び閉路し、元の状態に戻っていることを示して
いる。
In FIG. 6, t 1 is a time point when the power supply starts a power failure, t 2 is a time point when the power failure is restored, t 3 is a time point when the operation interruption contact 55 starts to operate (that is, is opened), and t 4 is a battery 3 It is the time when the charging of is completed. That is, since the battery is discharged and its voltage is lowered with the start of the power failure, all the chargers supply the charging current when the power failure is restored, and the total charging current becomes excessive and the power source becomes an overcurrent. Therefore, when the problem of this total charging current is detected, t
At time 3 , the operation interruption contact 55 opens and interrupts the output of the No. 2 charger 20, so that only the No. 1 charger has the battery 3
Is charged, and at the time point t 4 when the charging is completed, the operation interrupting contact 55 is closed again to return to the original state.

【0019】図7は図5に既述した第4実施例回路の応
用回路である。この図7に示す回路は、複数の充電器の
出力側を母線で共通に接続し、複数のインバータはこの
母線から直流電力の供給を受けるように主回路が構成さ
れている。それ故、図7に図示の応用回路では母線に合
計充電電流検出器60を設置して、この検出電流をヒス
テリシス付コンパレータ52へ送ればよいので、加算器
51を省略出来る。尚この合計充電電流検出器60以外
は全て図5で既述しているから、動作説明は省略する。
FIG. 7 shows an application circuit of the fourth embodiment circuit described above with reference to FIG. In the circuit shown in FIG. 7, output sides of a plurality of chargers are commonly connected by a bus bar, and a plurality of inverters are configured as a main circuit so as to receive DC power from the bus bar. Therefore, in the application circuit shown in FIG. 7, since the total charging current detector 60 may be installed on the bus and the detected current may be sent to the comparator with hysteresis 52, the adder 51 can be omitted. Note that, except for the total charging current detector 60, all the operations have already been described with reference to FIG.

【0020】[0020]

【発明の効果】この発明によれば、複数台の無停電電源
装置で待機冗長運転システムを構成している場合に、交
流電源が停電から復旧して消耗しているバッテリーを充
電する際は、充電器の出力電流を当該充電器の定格電流
を設置台数で割り算した値に設定することで各充電器の
出力電流の合計値を1台分に制限しているので、交流電
源が過電流状態になるのを回避出来る。あるいは又、停
電が回復した際に、全充電器が一斉に充電動作を開始す
るのではなく、複数台の充電器のうちのどれか1台のみ
を運転してバッテリーを充電するように回路を構成して
いる。その結果、いずれの場合も交流電源は充電器1台
分の電流を負担すれば良いので、複数充電器の充電電流
を同時に負担することで電源が過電流になってトリップ
したり、この過電流が原因で生じる電圧降下のために、
この電源に接続している他の負荷が悪影響を受けるよう
な不都合の発生を回避出来る効果が得られる。
According to the present invention, when a standby redundant operation system is composed of a plurality of uninterruptible power supply units, when the AC power supply recovers from a power outage and charges a consumed battery, By setting the output current of the charger to the value obtained by dividing the rated current of the charger by the number of installed units, the total output current of each charger is limited to one unit, so the AC power supply is in an overcurrent state. Can be avoided. Alternatively, when the power failure is restored, the circuit is configured so that all the chargers do not start the charging operation all at once, but operate only one of the chargers to charge the battery. I am configuring. As a result, in either case, the AC power supply only needs to carry the current for one charger, so by simultaneously carrying the charging currents of multiple chargers, the power supply becomes overcurrent and trips, or this overcurrent occurs. Due to the voltage drop caused by
It is possible to avoid the inconvenience that other loads connected to the power source are adversely affected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を表した回路図FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施例を表した回路図FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

【図3】本発明の第3実施例を表した回路図FIG. 3 is a circuit diagram showing a third embodiment of the present invention.

【図4】複数台待機冗長運転方式無停電電源装置の充電
制御回路の従来例を示した回路図
FIG. 4 is a circuit diagram showing a conventional example of a charging control circuit of a multiple stand-by redundant operation type uninterruptible power supply system.

【図5】本発明の第4実施例を表した回路図FIG. 5 is a circuit diagram showing a fourth embodiment of the present invention.

【図6】図5に既述した第4実施例回路の各部の動作を
示したタイムチャート
FIG. 6 is a time chart showing the operation of each part of the circuit of the fourth embodiment described above in FIG.

【図7】図5に既述した第4実施例回路の応用回路図FIG. 7 is an application circuit diagram of the fourth embodiment circuit described above with reference to FIG.

【符号の説明】[Explanation of symbols]

2 交流電源 3 バッテリー 4 交流スイッチ 5 負荷 10 1号充電器 11 電流検出器 12 1号インバータ 16 垂下指令回路 17 定格電流設定器 20 2号充電器 21 電流検出器 22 2号インバータ 26 垂下指令回路 27 定格電流設定器 31 垂下電流設定器 32 選択手段としての切替えスイッチ 33 第1論理回路としての論理積素子 35 出力遮断手段としての接点 36 第2論理回路としての論理積素子 41 垂下電流設定器 42 選択手段としての切替えスイッチ 43 第1論理回路としての論理積素子 45 出力遮断手段としての接点 46 第2論理回路としての論理積素子 51 合計充電電流検出手段としての加算器 52 第3論理回路としてのヒステリシス付コンパレ
ータ 53 第1電流上限値設定手段としての上限電流設定
器 54 第2電流上限値設定手段としてのヒステリシス
設定器 55 作動中断接点 60 合計充電電流検出器
2 AC power supply 3 Battery 4 AC switch 5 Load 10 No. 1 charger 11 Current detector 12 No. 1 inverter 16 Drooping command circuit 17 Rated current setting device 20 No. 2 charger 21 Current detector 22 No. 2 inverter 26 Drooping command circuit 27 Rated current setting device 31 Drooping current setting device 32 Changeover switch as selection means 33 ANDing device as first logic circuit 35 Contact as output cutting means 36 ANDing device as second logic circuit 41 Drooping current setting device 42 Selection Changeover switch as means 43 AND element as first logic circuit 45 Contact as output shutoff means 46 AND element as second logic circuit 51 Adder as total charging current detection means 52 Hysteresis as third logic circuit With comparator 53 Upper limit current setting as first current upper limit value setting means Vessel 54 second current upper limit value setting hysteresis setter 55 operates interruption contacts 60 total charging current detector as a means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】交流電源に接続して交流を直流に変換する
複数の充電手段と、これら各充電手段の直流出力電流を
別個に定格値に設定する定格電流設定手段と、これら各
充電手段の直流出力を共通にして接続しているバッテリ
ーと、これら各充電手段に別個に接続してそれぞれが直
流を交流に変換するインバータと、これら各インバータ
の交流出力を負荷へ供給するべく切り換える交流スイッ
チとを備えている複数台待機冗長運転方式無停電電源装
置において、 前記充電手段の定格電流をこれら充電手段の設置台数で
割り算した値に設定する垂下電流設定手段と、この垂下
電流設定手段と前記定格電流設定手段のいずれかを選択
する選択手段とを各充電手段に別個に備え、前記交流電
源が停電から回復した際に前記選択手段は前記垂下電流
設定手段を選択することを特徴とする複数台待機冗長運
転方式無停電電源装置の充電制御回路。
1. A plurality of charging means connected to an AC power source to convert alternating current into direct current, rated current setting means for separately setting the direct current output current of each of these charging means to a rated value, and each of these charging means. A battery connected in common to the DC output, an inverter that is separately connected to each of these charging means to convert DC into AC, and an AC switch that switches the AC output of each inverter to supply to the load. In a multiple standby redundant operation type uninterruptible power supply device having a drooping current setting means for setting the rated current of the charging means to a value divided by the number of installed charging means, the drooping current setting means and the rating. Each charging means is separately provided with a selection means for selecting one of the current setting means, and the selection means sets the drooping current when the AC power supply recovers from a power failure. A charging control circuit for a plurality of standby redundant operation type uninterruptible power supply devices characterized by selecting means.
【請求項2】交流電源に接続して交流を直流に変換する
複数の充電手段と、これら各充電手段の直流出力電流を
別個に定格値に設定する定格電流設定手段と、これら各
充電手段の直流出力を共通にして接続しているバッテリ
ーと、これら各充電手段に別個に接続してそれぞれが直
流を交流に変換するインバータと、これら各インバータ
の交流出力を負荷へ供給するべく切り換える交流スイッ
チとを備えている複数台待機冗長運転方式無停電電源装
置において、 前記充電手段の定格電流をこれら充電手段の設置台数で
割り算した値に設定する垂下電流設定手段と、この垂下
電流設定手段と前記定格電流設定手段のいずれかを選択
する選択手段と、全充電手段が運転し且つ自己以外の充
電手段が正常の時に論理信号を出力する第1の論理回路
とを各充電手段に別個に備え、前記交流電源が停電から
回復した際に前記第1論理回路の出力信号に対応して前
記選択手段は前記垂下電流設定手段を選択することを特
徴とする複数台待機冗長運転方式無停電電源装置の充電
制御回路。
2. A plurality of charging means connected to an AC power source to convert AC into DC, rated current setting means for setting the DC output current of each of these charging means to a rated value separately, and each of these charging means. A battery connected in common to the DC output, an inverter that is separately connected to each of these charging means to convert DC into AC, and an AC switch that switches the AC output of each inverter to supply to the load. In a multiple standby redundant operation type uninterruptible power supply device having a drooping current setting means for setting the rated current of the charging means to a value divided by the number of installed charging means, the drooping current setting means and the rating. A selection means for selecting any one of the current setting means and a first logic circuit for outputting a logic signal when all the charging means are in operation and the charging means other than itself are normal. A plurality of standby units, characterized in that each charging unit is provided separately, and the selecting unit selects the drooping current setting unit in response to the output signal of the first logic circuit when the AC power supply recovers from a power failure. Charge control circuit for redundant operation type UPS.
【請求項3】交流電源に接続して交流を直流に変換する
複数の充電手段と、これら各充電手段の直流出力電流を
別個に定格値に設定する定格電流設定手段と、これら各
充電手段の直流出力を共通にして接続しているバッテリ
ーと、これら各充電手段に別個に接続してそれぞれが直
流を交流に変換するインバータと、これら各インバータ
の交流出力を負荷へ供給するべく切り換える交流スイッ
チとを備えている複数台待機冗長運転方式無停電電源装
置において、 前記充電手段の出力を断にする出力遮断手段と、自己以
外の前記充電手段が運転し且つ正常の時に論理信号を出
力する第2の論理回路とを各充電手段に別個に備え、前
記交流電源が停電から回復した際に前記第2論理回路の
出力信号に対応して前記出力遮断手段を動作させること
を特徴とする複数台待機冗長運転方式無停電電源装置の
充電制御回路。
3. A plurality of charging means for connecting to an alternating current power source to convert alternating current into direct current, a rated current setting means for separately setting a direct current output current of each of these charging means to a rated value, and a charging means for these charging means. A battery connected in common to the DC output, an inverter that is separately connected to each of these charging means to convert DC into AC, and an AC switch that switches the AC output of each inverter to supply to the load. In a multiple standby redundant operation type uninterruptible power supply device comprising: a second output means for cutting off the output of the charging means, and a logic signal when the charging means other than itself is in operation and is normal. And a logic circuit of the second logic circuit are separately provided for each charging means, and the output cutoff means is operated in response to the output signal of the second logic circuit when the AC power supply recovers from a power failure. Charging control circuit for multiple uninterruptible power supply system with redundant operation.
【請求項4】交流電源に接続して交流を直流に変換する
複数の充電手段と、これら各充電手段の直流出力電流を
別個に定格値に設定する定格電流設定手段と、これら各
充電手段の直流出力を共通にして接続しているバッテリ
ーと、これら各充電手段に別個に接続してそれぞれが直
流を交流に変換するインバータと、これら各インバータ
の交流出力を負荷へ供給するべく切り換える交流スイッ
チとを備えている複数台待機冗長運転方式無停電電源装
置において、 前記各充電手段の合計出力電流を検出する合計充電電流
検出手段と、第1の電流上限値を設定する第1電流上限
値設定手段と、この第1電流上限値よりも少ない値の第
2電流上限値を設定する第2電流上限値設定手段と、前
記合計充電電流検出値が前記第1電流上限値を越えれば
前記各充電手段の中の特定充電手段を除いた残余の充電
手段の作動を停止させ、且つ前記合計充電電流検出値が
前記第2電流上限値以下になれば前記残余の充電手段へ
作動再開信号を出力する第3の論理回路とを備えている
ことを特徴とする複数台待機冗長運転方式無停電電源装
置の充電制御回路。
4. A plurality of charging means for connecting to an AC power source to convert AC into DC, rated current setting means for separately setting the DC output current of each of these charging means to a rated value, and each of these charging means. A battery connected in common to the DC output, an inverter that is separately connected to each of these charging means to convert DC into AC, and an AC switch that switches the AC output of each inverter to supply to the load. In a multiple standby redundant operation type uninterruptible power supply device including: a total charging current detection unit that detects a total output current of each charging unit; and a first current upper limit value setting unit that sets a first current upper limit value. A second current upper limit value setting means for setting a second current upper limit value that is less than the first current upper limit value; and if the total charging current detection value exceeds the first current upper limit value, The operation of the remaining charging means excluding the specific charging means in each charging means is stopped, and when the total charging current detection value becomes equal to or less than the second current upper limit value, an operation restart signal is sent to the remaining charging means. A charging control circuit for a plurality of standby redundant operation type uninterruptible power supply units, comprising a third logic circuit for outputting.
【請求項5】請求項4に記載の複数台待機冗長運転方式
無停電電源装置において、前記第3論理回路は前記第1
電流上限値と第2電流上限値との差を動作のヒステリシ
スとするヒステリシス付コンパレータで構成することを
特徴とする複数台待機冗長運転方式無停電電源装置の充
電制御回路。
5. The plural standby redundant operation system uninterruptible power supply device according to claim 4, wherein the third logic circuit is the first
A charge control circuit for a multiple stand-by redundant operation type uninterruptible power supply device, comprising a comparator with hysteresis having a difference between a current upper limit value and a second current upper limit value as an operation hysteresis.
JP4035457A 1991-09-24 1992-02-24 Charge control circuit for multiple charger standby redundant operation system uninterruptible power supply Pending JPH05146092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4035457A JPH05146092A (en) 1991-09-24 1992-02-24 Charge control circuit for multiple charger standby redundant operation system uninterruptible power supply

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24219091 1991-09-24
JP3-242190 1991-09-24
JP4035457A JPH05146092A (en) 1991-09-24 1992-02-24 Charge control circuit for multiple charger standby redundant operation system uninterruptible power supply

Publications (1)

Publication Number Publication Date
JPH05146092A true JPH05146092A (en) 1993-06-11

Family

ID=26374456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4035457A Pending JPH05146092A (en) 1991-09-24 1992-02-24 Charge control circuit for multiple charger standby redundant operation system uninterruptible power supply

Country Status (1)

Country Link
JP (1) JPH05146092A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341708A (en) * 2004-05-27 2005-12-08 Nec Fielding Ltd Uninterruptible power supply
JP2006158069A (en) * 2004-11-29 2006-06-15 Nishishiba Electric Co Ltd Control unit for non-utility generating equipment
JP2006203998A (en) * 2005-01-19 2006-08-03 Nec Fielding Ltd Uninterruptible power supply unit
JP2009232537A (en) * 2008-03-21 2009-10-08 Fanuc Ltd Motor controller
JP2011176959A (en) * 2010-02-25 2011-09-08 Asti Corp Charging device and charging method
KR101307328B1 (en) * 2013-03-08 2013-09-10 주식회사 씨엔에이치시스템 Apparatus and method for controlling power charge in instant power failure compensation device
CN104380566A (en) * 2012-06-27 2015-02-25 惠普发展公司,有限责任合伙企业 Battery to provide voltage to power modules
JP2016140120A (en) * 2015-01-26 2016-08-04 Asti株式会社 Charging device
JP2016214032A (en) * 2015-05-13 2016-12-15 株式会社Nttドコモ Rectifier
CN107533111A (en) * 2015-04-28 2018-01-02 高通股份有限公司 The battery meter of current information is shared between multiple battery chargers
JP2022182951A (en) * 2021-05-26 2022-12-08 北京小米移動軟件有限公司 Charging circuit, charging control method and electronic apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341708A (en) * 2004-05-27 2005-12-08 Nec Fielding Ltd Uninterruptible power supply
JP2006158069A (en) * 2004-11-29 2006-06-15 Nishishiba Electric Co Ltd Control unit for non-utility generating equipment
JP2006203998A (en) * 2005-01-19 2006-08-03 Nec Fielding Ltd Uninterruptible power supply unit
US8143836B2 (en) 2008-03-21 2012-03-27 Fanuc Ltd Motor controller
JP4512145B2 (en) * 2008-03-21 2010-07-28 ファナック株式会社 Motor control device
JP2009232537A (en) * 2008-03-21 2009-10-08 Fanuc Ltd Motor controller
JP2011176959A (en) * 2010-02-25 2011-09-08 Asti Corp Charging device and charging method
CN104380566A (en) * 2012-06-27 2015-02-25 惠普发展公司,有限责任合伙企业 Battery to provide voltage to power modules
JP2015523045A (en) * 2012-06-27 2015-08-06 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Battery for supplying voltage to the power module
KR101307328B1 (en) * 2013-03-08 2013-09-10 주식회사 씨엔에이치시스템 Apparatus and method for controlling power charge in instant power failure compensation device
JP2016140120A (en) * 2015-01-26 2016-08-04 Asti株式会社 Charging device
CN107533111A (en) * 2015-04-28 2018-01-02 高通股份有限公司 The battery meter of current information is shared between multiple battery chargers
JP2018515056A (en) * 2015-04-28 2018-06-07 クゥアルコム・インコーポレイテッドQualcomm Incorporated Battery fuel gauge that shares current information among multiple battery chargers
JP2016214032A (en) * 2015-05-13 2016-12-15 株式会社Nttドコモ Rectifier
JP2022182951A (en) * 2021-05-26 2022-12-08 北京小米移動軟件有限公司 Charging circuit, charging control method and electronic apparatus

Similar Documents

Publication Publication Date Title
JP4125601B2 (en) A system that supplies reliable power to important loads
US6288456B1 (en) Power system
EP0419015B1 (en) Power supply system
JP6668991B2 (en) Power supply device and power supply system
JPH05146092A (en) Charge control circuit for multiple charger standby redundant operation system uninterruptible power supply
KR101021598B1 (en) Device of voltage compensation for a momentary power failure
JP3428242B2 (en) Uninterruptible power system
JP2022143967A (en) Uninterruptible power supply
JPH1070853A (en) Uninterruptive power supply system
US11955833B2 (en) Intelligent load control to support peak load demands in electrical circuits
EP4030585A1 (en) Intelligent load control to support peak load demands in electrical circuits
JPH05276671A (en) Parallel redundant uninterruptible power supply
JP6372452B2 (en) Uninterruptible power supply and control method thereof
JP7278800B2 (en) power supply system
JPH0429532A (en) Battery switching circuit
JP4882896B2 (en) Instantaneous voltage drop compensation device
JP3713429B2 (en) Offline UPS system
JPH0783560B2 (en) Uninterruptible power supply controller
US20240223003A1 (en) Backfeed protection circuit
JPH07203639A (en) Uninterruptible power supply
JP2674117B2 (en) AC uninterruptible power supply system
JP2937525B2 (en) Uninterruptible power system
US20240195214A1 (en) Arrangement of converters and fast switches to provide bess & ups combined function
JPH06165411A (en) Uninterruptible power supply
JP2000166125A (en) Uninterruptible ac power unit