JPH0514555B2 - - Google Patents

Info

Publication number
JPH0514555B2
JPH0514555B2 JP61246764A JP24676486A JPH0514555B2 JP H0514555 B2 JPH0514555 B2 JP H0514555B2 JP 61246764 A JP61246764 A JP 61246764A JP 24676486 A JP24676486 A JP 24676486A JP H0514555 B2 JPH0514555 B2 JP H0514555B2
Authority
JP
Japan
Prior art keywords
restriction endonuclease
mroi
enzyme
producing
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61246764A
Other languages
Japanese (ja)
Other versions
JPS6398383A (en
Inventor
Tomio Kato
Tsukasa Suetake
Akira Murata
Tsunehiro Mukai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP61246764A priority Critical patent/JPS6398383A/en
Publication of JPS6398383A publication Critical patent/JPS6398383A/en
Publication of JPH0514555B2 publication Critical patent/JPH0514555B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、制限エンドヌクレアーゼMroI及び
その生産方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to restriction endonuclease MroI and a method for producing the same.

[従来の技術] 第型制限酵素は、デオキシリボ核酸(DNA)
鎖中のある特定の塩基配列を認識して切断する極
めて特異性の高い制限エンドヌクレアーゼであ
る。
[Prior art] Type 1 restriction enzymes are deoxyribonucleic acid (DNA)
It is a highly specific restriction endonuclease that recognizes and cleaves a specific base sequence in a chain.

この様な第型制限酵素は、その優れた特異性
に注目され遺伝子工学の分野で幅広く利用されて
いる。即ちDNAを特定の位置で切断して希望す
る遺伝子を取り出し、それを大腸菌、枯草菌又は
酵母等の微生物に組込み、目的生産物を大量に生
産する遺伝子操作や遺伝子構造の解析研究等にお
いて、前記第制限酵素は極めて重要な役割を担
つているのである。
Such type-1 restriction enzymes have attracted attention for their excellent specificity and are widely used in the field of genetic engineering. That is, in genetic manipulation and genetic structure analysis research, etc., in which DNA is cut at a specific position to extract a desired gene and then incorporated into microorganisms such as Escherichia coli, Bacillus subtilis, or yeast, to produce a desired product in large quantities. The first restriction enzyme plays an extremely important role.

一方上記制限酵素の基質となるDNAは、その
塩基配列等における多様性に起因して様々な種類
があるので、特異性の異なる各種の第型制限酵
素が必要となり、多様で且つ高品質の制限酵素が
安価に供給されることが望まれている。そして現
在までのところ、細菌等の原生生物から各種の第
型制限酵素が単離されており、既に約100種類
のものが知られており、その酵素化学的性質が明
らかにされている。
On the other hand, since there are various types of DNA that serve as substrates for the above restriction enzymes due to diversity in their base sequences, etc., various types of restriction enzymes with different specificities are required, and a variety of high-quality restriction enzymes are required. It is desired that enzymes be supplied at low cost. To date, various types of restriction enzymes have been isolated from protists such as bacteria, and about 100 types are already known, and their enzymatic chemical properties have been clarified.

[発明が解決しようとする問題点] 本発明の目的は、DNA鎖のある特定の塩基配
列を認識してこれを切断する様な極めて特異性の
高い新規な制限エンドヌクレアーゼ及びその生産
方法を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a novel restriction endonuclease with extremely high specificity that recognizes and cleaves a specific base sequence in a DNA strand, and a method for producing the same. It's about doing.

[問題点を解決する為の手段] 本発明の第制限酵素は、次の理化学的性質を
有する制限エンドヌクレアーゼである。
[Means for Solving the Problems] The first restriction enzyme of the present invention is a restriction endonuclease having the following physical and chemical properties.

(a) 作用及び基質特異性 二重鎖デオキシリボ核酸中の塩基配列: 5′−T↓ CCGGA−3′ 3′−AGGCC ↑T−5′ (式中Aはアデノシン、Gはグアノシン、Tは
チミジン、Cはシチジンを夫々示す) を認識し、上記の矢印の位置で切断する。
(a) Action and substrate specificity Base sequence in double-stranded deoxyribonucleic acid: 5'-T↓ CCGGA-3'3'-AGGCC↑T-5' (where A is adenosine, G is guanosine, and T is thymidine) , C represent cytidine) and cut at the position of the above arrow.

(b) 至適PH 6.5〜8.5 (c) 安定PH 6.0〜9.0 (d) 至適温度 25〜35℃ 又本発明は、ミクロコツカス属に属する制限エ
ンドヌクレアーゼMroI生産菌を栄養培地で培養
し、培養物から次の理化学的性質を有する制限エ
ンドヌクレアーゼMroIを採取する点に要旨を有
する制限エンドヌクレアーゼの生産方法である。
(b) Optimum PH 6.5-8.5 (c) Stable PH 6.0-9.0 (d) Optimum temperature 25-35°C In addition, the present invention cultivates restriction endonuclease MroI-producing bacteria belonging to the genus Micrococcus in a nutrient medium; This is a method for producing a restriction endonuclease, the gist of which is to collect restriction endonuclease MroI having the following physical and chemical properties from a substance.

(a) 作用及び基質特異性 二重鎖デオキシリボ核酸中の塩基配列: 5′−T↓ CCGGA−3′ 3′−AGGCC ↑T−5′ (式中Aはアデリシン、Gはグアノシン、Tは
チミジン、Cはシチジンを夫々示す) を認識し、上記の矢印の位置で切断する。
(a) Action and substrate specificity Base sequence in double-stranded deoxyribonucleic acid: 5'-T↓ CCGGA-3'3'-AGGCC↑T-5' (where A is adelisine, G is guanosine, and T is thymidine) , C represent cytidine) and cut at the position of the above arrow.

(b) 至適PH 6.5〜8.5 (c) 安定PH 6.0〜9.0 (d) 至適温度 25〜35℃ [作用] 本発明者らはミクロコツカス(Micrococcus)
属細菌における生化学的研究の一環として第制
限酵素(制限エンドヌクレアーゼ)の検索を行な
つていたところ、ミクロコツカス・ロゼウスS
(Micrococcus roseus S)菌が新規な制限エン
ドヌクレアーゼMroIを生産することを見出し、
本発明を完成するに至つた。そして上記の菌株は
工業技術院微生物工業研究所に寄託されている
(受託番号:微工研菌寄第8996号)。
(b) Optimum PH 6.5 to 8.5 (c) Stable PH 6.0 to 9.0 (d) Optimal temperature 25 to 35°C [Function] The present inventors used Micrococcus
While searching for restriction enzymes (restriction endonucleases) as part of biochemical research on bacteria of the genus Micrococcus roseus S.
(Micrococcus roseus S) was found to produce a novel restriction endonuclease MroI.
The present invention has now been completed. The above-mentioned bacterial strain has been deposited with the Institute of Microbiology, Agency of Industrial Science and Technology (accession number: Microbiological Research Institute No. 8996).

従来、同一の微生物から特異性の異なる2種以
上の制限エンドクルレアーゼが生産されることが
あるのは良く知られているところであつた。そし
て2種以上の酵素を相互に分離することは困難で
ある為、上述の様な状況は工業化における大きな
障害となつていることも良く知られているところ
であつた。従つて制限エンドヌクレアーゼ生産菌
の工業的生産においては、生産性が高く且つ単一
の酵素を生産する微生物の開発が望まれているの
が実情である。
It has been well known that two or more types of restriction endocleases with different specificities may be produced from the same microorganism. It is also well known that the above-mentioned situation is a major hindrance to industrialization because it is difficult to separate two or more types of enzymes from each other. Therefore, in the industrial production of restriction endonuclease-producing microorganisms, the current situation is that it is desired to develop microorganisms that are highly productive and produce a single enzyme.

これに対し、本発明の制限エンドヌクレアーゼ
MroI(以下、本酵素と呼ぶこともある)は上記菌
から単一で生産されるものであるので、本酵素の
生産菌は工業的生産に最適の菌種と言うことがで
きる。又本酵素は後述する様な新規な特異性を有
しているので、遺伝子DNAの構造と機能を研究
する為の生化学試薬として、或は遺伝子免疫の解
析や遺伝子組換え研究等に極めて有効な指針を与
えるものである。
In contrast, the restriction endonuclease of the present invention
Since MroI (hereinafter sometimes referred to as the present enzyme) is produced singly by the above-mentioned bacteria, the strain producing the present enzyme can be said to be the optimal strain for industrial production. In addition, this enzyme has novel specificities as described below, so it is extremely effective as a biochemical reagent for studying the structure and function of genetic DNA, as well as for analysis of genetic immunity and genetic recombination research. It provides important guidelines.

本発明で用いられる微生物(本酵素生産菌)と
しては、ミクロコツカス属に属する本酵素生産菌
であれば全て使用することができるが、前述した
ミクロコツカス・ロゼウスSが最適である。
As the microorganism (the enzyme-producing bacteria) used in the present invention, any enzyme-producing bacteria belonging to the genus Micrococcus can be used, but the aforementioned Micrococcus roseus S is most suitable.

一方、上記生産菌を培養する方法としては、現
在行なわれている最も一般的な方法を採用すれば
良い。例えば窒素源としてポリペプトン、肉エキ
ス、アミノ酸、カゼイン分解物、酵母エキス、麦
芽エキス等;炭素源としてブドウ糖やグリセロー
ル等;無機塩類として燐酸塩、硫酸塩、マグネシ
ウム塩等を任意に含有する培地に、前記生産菌を
接種し、25〜35℃程度の温度においてジヤーフア
メンタ等で通気培養する方法が挙げられる。尚培
養中にはPHが低下することもあるが、この場合に
はアルカリで中和しながら培養する様にしてもよ
いのは勿論である。
On the other hand, as a method for culturing the above-mentioned producing bacteria, the most common method currently in use may be adopted. For example, in a medium optionally containing polypeptone, meat extract, amino acids, casein decomposition products, yeast extract, malt extract, etc. as a nitrogen source; glucose, glycerol, etc. as a carbon source; phosphate, sulfate, magnesium salt, etc. as an inorganic salt, A method of inoculating the above-mentioned production bacteria and culturing with aeration at a temperature of about 25 to 35° C. using a jar fermenta or the like can be mentioned. Note that the pH may drop during culturing, but in this case, it is of course possible to culture while neutralizing with alkali.

そして対数期から定常期初期において集菌し、
菌体を適当な緩衝液で洗浄した後、調音波砕枠
し、更に遠心分離することによつて無細胞抽出液
が得られる。
Then, bacteria are collected from the logarithmic phase to the early stationary phase,
After washing the bacterial cells with an appropriate buffer, a cell-free extract is obtained by sonicating the cells and centrifuging them.

得られた無細胞抽出液に、ストレプトマイシン
硫酸塩処理又はポリエチレンイミン処理或はアン
モニウム分画を行ない、透析後、ホスホセルロー
スやDEAEセルロースによるイオン交換クロマト
グラフイー法、又はヘパリンセフアロースによる
アフイニテイクロマトグラフイー或はセフアクリ
ルs−200ゲル濾過法等によつて本酵素が精製で
きる。
The obtained cell-free extract was subjected to streptomycin sulfate treatment, polyethyleneimine treatment, or ammonium fractionation, and after dialysis, ion exchange chromatography using phosphocellulose or DEAE cellulose, or affinity chromatography using heparin-cepharose was performed. This enzyme can be purified by E or Cephacryl S-200 gel filtration method.

この様にして得られる本酵素は、下記の理化学
的性質を有する。
The enzyme thus obtained has the following physicochemical properties.

(1) 作用及び基質特異性 下記の手順に従い、本酵素の作用及び基質特
異性を調査した。
(1) Action and substrate specificity The action and substrate specificity of this enzyme were investigated according to the following procedure.

まず酵素反応の基質として、プラスミド
pBR322、アデノウイルス−2DNA及びλ−
DNAを用いて酵素反応を進行させ、酵素反応
後の生成部位をアガロースゲル電気泳動で処理
した。
First, plasmids are used as substrates for enzymatic reactions.
pBR322, adenovirus-2DNA and λ-
An enzymatic reaction was carried out using DNA, and the generated site after the enzymatic reaction was subjected to agarose gel electrophoresis.

その結果を第1図に示すが、本酵素の作用に
よつて断片化したDNAのアガロースゲル電気
泳動図が得られた。その結果、本酵素はλ−
DNAを24カ所、アデノウイルス−2DNAを8
カ所、pBR322DNAを1カ所で切断すること
が分かつた。
The results are shown in FIG. 1, and an agarose gel electropherogram of DNA fragmented by the action of this enzyme was obtained. As a result, this enzyme has λ-
24 DNA locations, 8 adenovirus-2 DNA locations
It was found that pBR322DNA was cut at one location.

次に、本酵素の認識する塩基配列及び切断様
式を明らかにした。
Next, we clarified the base sequence recognized by this enzyme and the cleavage mode.

まずプラスミドpBR322 50μgを本酵素で切
断し、切断DNAフラグメントをアルカリフオ
スフアターゼで処理してDNAフラグメント末
端の燐酸を取り除いた。その後、(γ−32P)−
ATPをポリヌクレオチドキナーゼで作用させ
て5′末端を放射性燐酸で標識した。その後、放
射性燐酸で標識したDNA断片を使用し、本酵
素によつて切断された部位付近の塩基配列をヌ
キサム・ギルバート法によつて決定した。
First, 50 μg of plasmid pBR322 was cut with this enzyme, and the cut DNA fragment was treated with alkaline phosphatase to remove the phosphoric acid at the end of the DNA fragment. Then (γ− 32 P)−
ATP was treated with polynucleotide kinase and the 5' end was labeled with radioactive phosphate. Thereafter, using a DNA fragment labeled with radioactive phosphoric acid, the base sequence near the site cleaved by this enzyme was determined by the Nuxam-Gilbert method.

この結果を第2図に模式的に示すが、第2図
の結果から明らかである様に、本酵素は5′−
TCCGGA−3′の塩基配列を認識し、矢印X、
Yの位置(第2図参照)で切断することが分か
つた。
This result is schematically shown in Figure 2. As is clear from the results in Figure 2, this enzyme is 5'-
Recognize the nucleotide sequence of TCCGGA-3' and mark the arrow
It was found that it was necessary to cut at the Y position (see Figure 2).

次に下記の手順に従つて第2図に示した切断
状況を確認した。
Next, the cutting situation shown in FIG. 2 was confirmed according to the following procedure.

まず本酵素によつて、λ−DNAを完全に消
化した。これをアルカリフオスフアターゼで処
理してDNAフラグメントの末端の燐酸を取り
除いた後、ポリヌクレオチドキナーゼとγ−
32P−ATPとを用いてDNAフラグメントの末
端に放射性燐酸を標識した。その後P1ヌクレ
アーゼでモノヌクレオチダまで分解し、PEI−
セルロース薄層クロマトプレートを用いて分析
した。その結果、標識された5′−モノヌクレオ
チドはシトシンであることが分かり、これは第
2図に示した矢印X、Yの位置で切断されるこ
とを示すものである。
First, λ-DNA was completely digested with this enzyme. After treating this with alkaline phosphatase to remove the terminal phosphate of the DNA fragment, polynucleotide kinase and γ-
The ends of the DNA fragments were labeled with radioactive phosphate using 32 P-ATP. After that, it is digested to mononucleotides with P1 nuclease, and PEI-
Analysis was performed using a cellulose thin layer chromatography plate. As a result, the labeled 5'-mononucleotide was found to be cytosine, indicating that it was cleaved at the positions indicated by arrows X and Y in FIG.

本発明は上述した様な作用及び基質特異性を
有するものであるが、その他下記に示す理化学
的性質を有することが認識された。
Although the present invention has the above-mentioned action and substrate specificity, it was recognized that it also has the following physical and chemical properties.

(2) 至適PH PH6.5〜8.5 (3) 安定PH PH6.0〜9.0 (4) 至適温度 25〜35℃ (40℃では活性が低下する) (5) 塩濃度NaCl、KCl濃度が300mMまでは本酵
素の活性が維持されるが、それ以上では阻害さ
れる。
(2) Optimal PH PH6.5-8.5 (3) Stable PH PH6.0-9.0 (4) Optimal temperature 25-35℃ (activity decreases at 40℃) (5) Salt concentration NaCl, KCl concentration The activity of this enzyme is maintained up to 300mM, but is inhibited above that level.

(6) 金属塩MgClは必須であり、10mMの濃度が
最適であるが、20mM以上では阻害される。又
MnCl2によつても賦活されるが、Mg2+より劣
る。
(6) The metal salt MgCl is essential, and a concentration of 10mM is optimal, but it is inhibited at concentrations above 20mM. or
It is also activated by MnCl 2 , but to a lesser extent than Mg 2+ .

[実施例] ミクロコツカス・ロゼウスSを本酵素生産菌と
して用い、ポリペプトン(大五栄養化学社製)1
%、肉エキス(極東社製)1%、NaCl0.5%及び
酵素エキス(大五栄養化学社製)0.3%を含むブ
イヨン培地(PH6.8)1で30℃×40時間培養し
(5容量の3角フラスコ)、菌体重量(湿菌体)
7.23gの本酵素生産菌が得られた。得られた菌体
を40mlの燐酸緩衝液(PH7.0)に懸濁し、200μ
g/mlリゾチーム−1mM NaN3を(25μg/
me)RMSFになる様に加え、0℃で30分間反
応させた後、更に食塩を0.4M NaClとなる様に
加え、超音波処理(200W、20分間)した後
27000rpm×60分の超遠心分離で上澄液を得た。
得られた上澄液に10mMの燐酸緩衝液を加え、約
0.2M NaClとなる様に希釈した。希釈した酵素
溶液をホスホセルロース(ワツトマンP11)のカ
ラム(1.5×18cm)に吸着させ、7倍量の緩衝液
で洗浄後、0.2〜1.0M NaClグラジエント溶出を
行なつた。
[Example] Using Micrococcus roseus S as the enzyme-producing bacterium, polypeptone (manufactured by Daigo Nutritional Chemical Co., Ltd.) 1
%, meat extract (manufactured by Kyokuto Co., Ltd.) 1%, NaCl 0.5%, and enzyme extract (manufactured by Daigo Nutrient Chemical Co., Ltd.) 0.3%. Erlenmeyer flask), bacterial weight (wet bacterial cells)
7.23g of this enzyme-producing bacteria was obtained. The obtained bacterial cells were suspended in 40 ml of phosphate buffer (PH7.0), and 200μ
g/ml lysozyme - 1mM NaN3 (25μg/ml
me) Add to RMSF, react at 0℃ for 30 minutes, then add salt to make 0.4M NaCl, and perform ultrasonication (200W, 20 minutes).
A supernatant was obtained by ultracentrifugation at 27,000 rpm for 60 minutes.
Add 10mM phosphate buffer to the obtained supernatant and make approximately
It was diluted to 0.2M NaCl. The diluted enzyme solution was adsorbed onto a phosphocellulose (Watmann P11) column (1.5 x 18 cm), washed with 7 volumes of buffer, and then eluted with a 0.2 to 1.0 M NaCl gradient.

その結果を第3図に示すが、第3図から明らか
な様に、NaCl濃度が0.34〜0.44M付近における溶
出画分に酵素活性が検出された。
The results are shown in FIG. 3, and as is clear from FIG. 3, enzyme activity was detected in the elution fraction at a NaCl concentration of around 0.34 to 0.44M.

次に、溶出した酵素液を透析チユーブに入れて
ポリエチレングリコール6000の粉末に対して濃縮
し、更に10mMの燐酸緩衝液(50%グリセロース
を含む)に透析して0.6meの酵素液を得た。得
られた酵素液の酵素活性を測定したところ、約
3000単位であつた。尚酵素活性の測定は、下記の
方法に準じた。即ち、10mMトリス−塩酸緩衝液
(PH7.5)、10mM MgCl2、100mM NaCl、7
mMメルカプトエタノール及び0.01%BSAの反応
液中で、λ−DNA1.0μgを35℃×60分間反応さ
せ、DNAを完全分解する酵素量を1酵素単位
(ユニツト)とした。
Next, the eluted enzyme solution was placed in a dialysis tube and concentrated against polyethylene glycol 6000 powder, and further dialyzed against 10mM phosphate buffer (containing 50% glycerose) to obtain a 0.6me enzyme solution. When the enzyme activity of the obtained enzyme solution was measured, it was found that approximately
It was 3000 units. The enzyme activity was measured according to the method described below. That is, 10mM Tris-HCl buffer (PH7.5), 10mM MgCl2 , 100mM NaCl, 7
In a reaction solution containing mM mercaptoethanol and 0.01% BSA, 1.0 μg of λ-DNA was reacted at 35° C. for 60 minutes, and the amount of enzyme that completely degraded DNA was defined as 1 enzyme unit.

この様にして菌体7.23gから約3000ユニツトの
酵素液が得られたのであるが、得られた酵素液に
は非特異的なDNA分解酵素であるホスフアター
ゼ等は全く混入していなかつた。
Approximately 3,000 units of enzyme solution was obtained from 7.23 g of bacterial cells in this manner, and the obtained enzyme solution was completely free of any non-specific DNA degrading enzymes such as phosphatase.

[発明の効果] 以上述べた如く本発明によれば、DNA鎖のあ
る特定の塩基配列を認識してこれを切断する様
な、極めて特異性の高い新規な制限エンドヌクレ
アーゼが得られると共に、その生産方法において
も工業的価値の高いものである。
[Effects of the Invention] As described above, according to the present invention, a novel restriction endonuclease with extremely high specificity that recognizes and cleaves a specific base sequence in a DNA strand can be obtained, and The production method also has high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種基質に対して本酵素を作用させた
場合のアガロースゲル電気泳動図、第2図はプラ
スミドpBR322に本酵素を作用させた場合の切断
前後の塩基配列に示す模式図、第3図は本酵素溶
液をホスホセルロースカラムクロマトグラフイで
溶出させた場合の結果を示すグラフである。
Figure 1 is an agarose gel electrophoresis diagram when this enzyme is applied to various substrates, Figure 2 is a schematic diagram showing the base sequence before and after cleavage when this enzyme is applied to plasmid pBR322, and Figure 3 The figure is a graph showing the results when this enzyme solution was eluted by phosphocellulose column chromatography.

Claims (1)

【特許請求の範囲】 1 次の理化学的性質を有することを特徴とする
制限エンドヌクレアーゼMroI。 (a) 作用及び基質特異性 二重鎖デオキシリボ核酸中の塩基配列: 5′−T↓ CCGGA−3′ 3′−AGGCC ↑T−5′ (式中Aはアデノシン、Gはグアノシン、Tは
チミジン、Cはシチジンを夫々示す)を認識
し、上記の矢印の位置で切断する。 (b) 至適PH 6.5〜8.5 (c) 安定PH 6.0〜9.0 (d) 至適温度 25〜35℃ 2 ミクロコツカス属に属する制限エンドヌクレ
アーゼMroI生産菌を栄養培地で培養し、培養物
から次の理化学的性質を有する制限エンドヌクレ
アーゼMroIを採取することを特徴とする制限エ
ンドヌクレアーゼMroIの生産方法。 (a) 作用及び基質特異性 二重鎖デオキシリボ核酸中の塩基配列: 5′−T↓ CCGGA−3′ 3′−AGGCC ↑T−5′ (式中Aはアデリシン、Gはグアノシン、Tは
チミジン、Cはシチジンを夫々示す) を認識し、上記の矢印の位置で切断する。 (b) 至適PH 6.5〜8.5 (c) 安定PH 6.0〜9.0 (d) 至適温度 25〜35℃ 3 ミクロコツカス属に属する制限エンドヌクレ
アーゼMroI生産菌がミクロコツカス・ロゼウス
Sである特許請求の範囲第2項に記載の制限エン
ドヌクレアーゼMroIの生産方法。
[Scope of Claims] Restriction endonuclease MroI characterized by having the following physical and chemical properties. (a) Action and substrate specificity Base sequence in double-stranded deoxyribonucleic acid: 5'-T↓ CCGGA-3'3'-AGGCC↑T-5' (where A is adenosine, G is guanosine, and T is thymidine) , C represent cytidine) and cut at the position of the above arrow. (b) Optimum PH 6.5-8.5 (c) Stable PH 6.0-9.0 (d) Optimum temperature 25-35℃ 2. Cultivate restriction endonuclease MroI-producing bacteria belonging to the genus Micrococcus in a nutrient medium, and extract the following from the culture. A method for producing restriction endonuclease MroI, which comprises collecting restriction endonuclease MroI having physicochemical properties. (a) Action and substrate specificity Base sequence in double-stranded deoxyribonucleic acid: 5'-T↓ CCGGA-3'3'-AGGCC↑T-5' (where A is adelisine, G is guanosine, and T is thymidine) , C represent cytidine) and cut at the position of the above arrow. (b) Optimum PH 6.5-8.5 (c) Stable PH 6.0-9.0 (d) Optimum temperature 25-35°C 3. Claim No. 1 in which the restriction endonuclease MroI-producing bacterium belonging to the genus Micrococcus is Micrococcus roseus S. A method for producing the restriction endonuclease MroI according to item 2.
JP61246764A 1986-10-16 1986-10-16 Restriction endonuclease mroi and production thereof Granted JPS6398383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61246764A JPS6398383A (en) 1986-10-16 1986-10-16 Restriction endonuclease mroi and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61246764A JPS6398383A (en) 1986-10-16 1986-10-16 Restriction endonuclease mroi and production thereof

Publications (2)

Publication Number Publication Date
JPS6398383A JPS6398383A (en) 1988-04-28
JPH0514555B2 true JPH0514555B2 (en) 1993-02-25

Family

ID=17153315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61246764A Granted JPS6398383A (en) 1986-10-16 1986-10-16 Restriction endonuclease mroi and production thereof

Country Status (1)

Country Link
JP (1) JPS6398383A (en)

Also Published As

Publication number Publication date
JPS6398383A (en) 1988-04-28

Similar Documents

Publication Publication Date Title
JP2729628B2 (en) Method for preparing glucose dehydrogenase from macrobacteria
Jorgensen et al. Separation and Characterization of Deoxyribonucleases of Escherichia coli B: I. CHROMATOGRAPHIC SEPARATION AND PROPERTIES OF TWO DEOXYRIBO-OLIGONUCLEOTIDASES
US4161424A (en) Novel endonuclease and process for production thereof
US4430432A (en) Endo-deoxyribonuclease and process for the production thereof
Nelson et al. Fse l, a new type II restriction endonuclease that recognizes the octanucleotide sequence 5′ GGCCGGCC 3′
JPH0514555B2 (en)
US4259446A (en) Process for preparation of deoxyribonucleases
US5120651A (en) Restriction enzyme agei and process for producing same
US4668631A (en) Process for producing a restriction enzyme
JP4143070B2 (en) NOVEL ENZYME, METHOD FOR PRODUCING THE SAME AND METHOD FOR PRODUCING MOLECULAR WEIGHT ADJUSTED DOUBLE-STRAIN DNA USING THE SAME
US4808531A (en) New restriction enzyme and process for producing the same
JP3092817B2 (en) Method for producing restriction enzyme
JPH03112484A (en) Novel restriction enzyme and its production
JPH0116156B2 (en)
JPS6140789A (en) Novel restriction enzyme and preparation thereof
US4724209A (en) Process for producing restriction enzyme
JPS6262152B2 (en)
JPS60102195A (en) Preparation of adenosine-5'-triphosphate
JPH044875A (en) Production of restriction enzyme
JPH03244381A (en) New restriction enzyme and its production
JPS649000B2 (en)
JPH0532024B2 (en)
JPS59175880A (en) Preparation of nuclease
JPH02283281A (en) New restriction enzyme and production thereof
JPH0514554B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees