JPH0514554B2 - - Google Patents

Info

Publication number
JPH0514554B2
JPH0514554B2 JP61210726A JP21072686A JPH0514554B2 JP H0514554 B2 JPH0514554 B2 JP H0514554B2 JP 61210726 A JP61210726 A JP 61210726A JP 21072686 A JP21072686 A JP 21072686A JP H0514554 B2 JPH0514554 B2 JP H0514554B2
Authority
JP
Japan
Prior art keywords
restriction enzyme
gcein
type
dna
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61210726A
Other languages
Japanese (ja)
Other versions
JPS6368082A (en
Inventor
Juzo Yamada
Makoto Murakami
Noryasu Murofushi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP61210726A priority Critical patent/JPS6368082A/en
Publication of JPS6368082A publication Critical patent/JPS6368082A/en
Publication of JPH0514554B2 publication Critical patent/JPH0514554B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は、型制限酵素及びその製造法に係
り、特に二本鎖デオキシリボ核酸(二本鎖DNA)
の分子内の塩基配列。 5′……G−↓G−A−T−C−C……3′ 3′……C−C−T−A−G−↑G……5′ (但し、式中Aはアデノシンを、Gはグアノシン
を、Tはチミジンを、Cはシチジンをそれぞれ示
す。以下、同様である。)を認識し矢印の位置で
これを切断する型制限酵素Gcein及びこれを
製造する方法に関する。 [従来の技術] 制限酵素は、ウイルスのDNAや裸のDNAとし
て細胞に侵入する外来のDNAを切断し排除する
ためのものであつて菌株特異性のあるエンドヌク
レアーゼであり、特定の塩基配列を認識するが
DNAを非特異的に切断する型、二本鎖DNAの
特定の塩基配列を認識しその特定位置で切断する
型、及び、認識する塩基配列とは異なる位置で
あるがその切断位置が特定の位置であつて上記
型と型の中間の特性を示す型とが知られてい
る。このうち型制限酵素については、特異性の
異なる幾つかの制限酵素を組合わせて使用するこ
とにより、長いDNA分子を計画的に切断し、目
的の遺伝子を含む均一なDNA断片を得ることが
できる。 このため、このような型制限酵素は、組換え
DNA技術において必要な遺伝情報を持つDNA断
片を取出したり、取出したDNA断片をその遺伝
情報発現の場へ活性のある形で導入するのに使用
されるほか、遺伝子の解析にも使用されてる酵素
であり、遺伝子操作関連技術において極めて重要
な酵素である。 ところで、型制限酵素の研究分野において
は、現在までに認識する塩基配列及び切断位置に
特異性を有する数多くのものが単離され、その酸
素化学的性質も明らかにされており、二本鎖
DNAの分子内の塩基配列 5′……G−↓G−A−T−C−C……3′ 3′……C−C−T−A−G−↑G……5′ を認識し矢印の位置でこれを切断する型制限酵
素についても、例えば、バチルス アミロリクエ
フアシエンスH(Bacillus
amyloliquefaciensH)から得られるBamH
{Roberts,R.J.,Wilson,G.A.and Young,F.
E.,Nature,256,82−84(1977)、及び、
Geoge,J.and Cnirikjian,J.G.,Proc.Natl.
AcadSci.USA,79,2432−2436(1982)}や、こ
のBamHのアイソシゾマー(isoschizomer)
であつてアセトバクターリクエスフアシエンス
(Acetobacter liquefaciens)IAM 1834から得ら
れるAli(特開昭59−175881号公報)等が報告
されている。 しかしながら、組換えDNA技術においてその
研究の対象になるDNAやそのDNAの塩基配列は
極めて多種多様にわたつており、種々の特異性を
有する型制限酵素の開発とその製造が要求され
るほか、希釈に対する安定性が高いこと、塩濃度
に対する安定域が広いこと、熱安定性が高いこと
等の優れた酵素化学的性質を有し、製造の簡便性
等の点でより安価で、かつ、使い易い型制限酵
素の開発が要請されている。 [発明が解決しようとする問題点] そこで、本発明者等は、酢酸菌の生理化学的研
究の一環としてある種の酢酸菌が制限酵素を生産
することに着目し、酵素化学的性質や構造の簡便
性等の点で優れた特性を有する型制限酵素につ
いて鋭意研究を重ねた結果、グルコノバクター属
に属するある種の菌が二本鎖DNAの分子内の塩
基配列 5′……G−↓G−A−T−C−C……3′ 3′……C−C−T−A−G−↑G……5′ を認識し矢印の位置でこれを切断する型制限酵
素(Gceinと命名)を生産することを見出すと
共にその精製法を確立し、本発明に到達したもの
である。 従つて、本発明の目的は、希釈に対する安定
性、塩濃度に対する安定域、熱安定性等の酸素化
学的性質及び製造の簡便性等の点で優れた特性を
有する型制限酵素Gceinを提供することにあ
り、また、この型制限酵素Gceinを製造する
方法を提供することにある。 [問題点を解決するための手段] すなわち、本発明は、グルコノバクター属に属
する型制限酵素Gcein生産菌を培養し、得ら
れた培養物から採取された制限酵素であり、二本
鎖デオキシリボ核酸の分子内の塩基配列 5′……G−G−↓G−T−C−C……3′ 3′……C−C−T−A−G−↑G……5′ を認識し矢印の位置でこれを切断する型制限酵
素Gceinであり、また、グルコノバクター属に
属する型制限酵素Gcein生産菌を培養し、得
られた菌体から上記型制限酵素Gceinを採取
する型制限酵素の製造法である。 本発明で使用する微生物としては、酢酸菌であ
るグルコノバクター属に属する型制限酵素
Gcein生産菌のすべてを使用できるが、例え
ば、財団法人発酵研究所の保存菌であつて第三者
が自由にその分譲を受けることができるグルコノ
バクター セリナス(Gluconobacter cerinus)
FO 3260を挙げることができる。なお、この菌
株は、本発明者等がグルコノバクター インダス
トリアス(Gluconobacter industrius)FO
3260として財団法人発酵研究所に菌の寄託を行つ
たものであるが、その後他のグルコノバクター属
細菌のある菌株と共に、グルコノバクター セリ
ナス(Gluconobacter cerinus)と分類したので
ある。{Y.Yamada ana M.Akita,J.Gen.Appl.
Microbiol.,30,115−126(1984)}。 本発明において、上記型制限酵素Gcein生
産菌の培養は、酢酸菌の培養法として知られてい
る公知の方法でも培養することができる。すなわ
ち、グルコース、グリセロール、エタノール等の
炭素源、硝酸アンモニウム、塩化アンモニウム等
の窒素源、各種リン酸塩、硫酸マグネシウム、塩
化カルシウム等の無機塩及び酵母エキス、麦芽エ
キス、ペプトン等の天然有機栄養物等からなる培
地を使用し、通常、振盪培養等の好気的条件下
に、培地のPH5〜7、培養温度25〜30℃及び培養
時間24〜48時間の条件で、歯の増殖が定常期初期
に達するまで行う。 また、培養後得られた培養物から目的の型制
限酵素Gceinを分離し精製する方法としては、
従来公知の方法を採用することができ、例えば以
下のような方法で行うことができる。先ず、培養
液を遠心分離して集めた菌体を、例えばトリス
(ヒドロキシメチル)アミノメタンハイドロクロ
ライド(Tris−HCl)等の適当な緩衝液で洗浄し
た後、音波処理して細胞を破砕し、遠心分離して
沈澱物を取除き、無細胞抽出液を得る。次に、こ
の無細胞抽出液をスロレプトマイシン硫酸塩で処
理し、さらに硫酸アンモニウムを使用して分画し
た後、ヘパリンセフアロースCL−6B、ジエチル
アミノエチル(DEAE)セフアロースCL−6B、
セフアデツクスG−200等のアフイニテイークロ
マト法、イオン交換クロマト法、ゲル濾過法等の
方法を組合わせて本発明の型制限酵素Gceil
の精製を行う。 このようにして製造される本発明の型制限酵
素Gceilは、二本鎖DNAの分子内の塩基配列 5′……G−↓G−A−T−C−C……3′ 3′……C−C−T−A−G−↑G……5′ を認識し矢印の位置でこれを切断する型制限酵
素であつて、バチルス アミロリクエフアシエン
スH(Bacinlus amyloliquefaciensH)から得ら
れるBamHやアセトバクター リクエフアシ
エンス(Acetobacter liquefaciens)AM
1834から得られるAliのアイソシゾマー
(isoschizomer)であり、希釈に対する安定性、
塩濃度に対するる安定域、熱安定性等の酸素化学
的性質や製造の簡便性等の点で上記BamHや
Aliよりも優れた特性を発揮る。 [実施例] 以下、本発明を実施例及び試験例に基いて、詳
細に説明する。 (1) 実施例(型制限酵素Gceinの製造) グルコノバクター セリナス(Gluconobacter
cerinus)FO 3260をポテトエキス20重量%、
酵母エキス1.55量%、グリセロール1.5重量%、
グルコース0.5重量%、ペプトン1.5重量%、寒天
2.0重量%及び炭酸カルシウム0.7重量%からなる
傾斜培地5mlに接種して30℃で48時間培養した。
次に、得られた培養物をグリセロール1.5重量%、
グルコース0.5重量%、ペプトン0.5重量%、酵母
エキス0.5重量%及び麦芽エキス0.1重量%からな
るPH6.8の栄養培地10に添加し、ロータリーシ
エーカーで振盪しながら30℃でさらに48時間培養
し、定常期初期の菌体を遠心分離器で集めた。 得られた菌体32gを10mMのTris−HCl(PH
7.5)及び10mMの2−メルカプトエタノールの
存在に180W及び6分間音波処理して菌体を破砕
し、遠心分離した後その上燈液にNaClを添加し
て100mMとし、最終的に1重量%となようにス
トレプトマイシンを添加して除核酸し、30分間静
置した後、遠心分離して沈澱物を取除きその上澄
液を得た(精製段階1)。 このようにして得られた上澄液に35重量%溶液
になるまて撹拌しながら硫酸アンモニウムを添加
し、さらに析出した沈澱物を遠心分離して除き、
その上澄液に60重量%溶液になるように硫酸アン
モニウムを添加し、一夜静置した。この一夜静置
後、遠心分離した沈澱物に緩衝液A(50mMの
Tris−HCl(PH7.5)、7mMの塩化マゲネシウム
及び7mMの2−メルカプトエタノール}を加え
て溶解し一夜透析した(精製段階2)。 得られた透析液40mlを、夜め100mMのNaClを
含む緩衝液Aで平衡化したヘパリンセフアロース
CL−6Bが充填されたクロマトカラム(直径1.3
cm、高さ8cm)に吸着させ、予め100mMのNaCl
を含む緩衝液Aの10カラム分で洗浄した後、100
〜600mMのNaClを含有する緩衝Aのリニアグラ
ジエンで型制限酵素Gceinlを溶出させた。目的
の型制限酵素Gceinは約250〜350mMNaCl
濃度の溶液中に溶出された(精製段階3)。 さらに、得られた型制限酵素Gceinを含有
する溶液を緩衝液Aで一夜透析し、得られた透析
液30.5mlを、予め緩衝液Aで平衡化したEAEセフ
アロースCL−6Bが充填されたクロマトカラム
(直径1.3cm、高さ8cm)に吸着させ、緩衝液A1
0カラム分で洗浄した後、0〜500mMのNaClを
含有する緩衝液Aのリニアグラジエントで溶出さ
せた、型制限酵素Gceinは約150〜250mMの
NaCl濃度の溶液中に溶出された(精製段階4)。 次に、得られた型制限酵素Gcein含有画分
の溶液を透析チユーブにいれてポリエチレングリ
コール6000につけて濃縮した。次に、予め100m
MのNaClを含む緩衝液Aで平衡化したセフアデ
ツクスG−200が充填されたゲル濾過カラム(直
径1.3cm、高さ25cm)に酵素液を供試し、100mM
のNaClを含む緩衝液A1カラム分で型制限酵素
Gcein含有画分を溶出させた。この型制限酵
素Gcein含有画分の溶液を再度透析チユーブに
いれてポリエチレングリコール6000につけて濃縮
し、緩衝液B{10mMのTris−HCl(PH7.5)、7m
Mの塩化マグネシウム、7mMの2−メルカプト
エタノール及び50%V/Vグリセロール}で一夜
透析して精製した(精製段階5)。なお、以上全
ての精製段階1〜5の各操作は4℃以下の温度で
行つた。 このようにして得られた型制限酵素Gcein
を5〜10μ使用し、10mMのTris−HCl(PH
7.5)、7mMの塩化マグネシウム、7mMの2−
メルカプトエタノール及び1μgのλDNAからな
る合計50μの混合液を調整し、37℃で1時間反
応させ、反応停止のため1重量%ドテシル硫酸ナ
トリウム(SDS)及び10mMエチレンジアミン四
酢酸(EDTA)の液5μを添加した。得られた
反応混合物をアガロースゲル電気泳動にかけ、
λDNAの切断の有無により酵素活性を調べた。
この型制限酵素Gceinの酵素活性について、
λDNA1μgを1時間で完全に切断する酵素量を
1単位(1unit)とした。 なお、アガロースゲル電気泳動は、1重量%ア
ガロース、89mMのTris−硼酸(PH8.3)、2.5m
MのEDTA及び500μg/のエチジウムブロマ
イドからなる平板ゲルを用い、電気泳動用緩衝液
{89mMのTris−硼酸(PH8.3)、2.5mMのEDTA
及び500μg/のエチジウムブロマイド}によ
つて1cm当り5.5Vの定電圧で約4時間泳動させ
た後、302nmのUVランプの下でλDNAの切断を
確認した。 以上のようにして得られた型制限酵素Gcein
は24時間の反応においても他の切断のパターン
は変化せず、他の非特異的DNase等の活性は含
まれていなかつた。上記精製段階1〜5での各精
製度及び全活性は第1表に示す通りであつた。 (2) 試験例(型制限酵素Gceinの酵素化学的
性質の確認) ダブルダイゼツシヨン(double digestion)
テスト 既知の型制限酵素BamHと
pBR322DNAとを使用し、1μgのE.coiu(大腸
菌)プラスミドpBR322DNA、10mMのTris
−HCl(PH7.5)、7mMの2−メルカプトエタ
ノール及び7mMの塩化マグネシウムの混合物
30μ中、37℃2時間の条件で酸素未添加、
型制限酵素BamHのみ添加、精製した型
制限酵素Gceinのみ添加、及び、型制限酵
素BamHとGceinの混合添加の下に反応さ
せ、上記と同様のアガロースゲル電気泳動法で
型制限酵素Gceinが認識する塩基配列と切
断位置とを調べた。結果は両酵素共に全く同じ
位置でpBR322DNAを認識し切断しており、
このことから型制限酵素Gceinは、二本鎖
デオキシリボ核酸の分子内の塩基配列 5′……G−G−A−T−C−C……3′ 3′……C−C−T−A−G−G……5′ を認識し切断するものであり、BamHと互
いにアイソシズマーの関係にあると思われた。 認識切断部位の決定 pBR322DNAを型制限酵素Gceinで切断
し、ホスハターゼで処理して切断末端のリン酸
を取除き、〔γ−32P〕ATPで切断末端を32Pで
標識した。これを型制限酵素Hindで処理
して得られたフラグメント(約346ベース・ペ
ア)をマクサム・ギルバード法でその塩基配列
を決定した。その結果、第1図に示すように、
その切口からの塩基配列は 5′−G−AT−C−C−A−C−A−G……と
なることが判明した。また、第2図に示すよう
に末端の塩基はGであることが判明した。 以上の結果より、型制限酵素Gceinは、
二本鎖デオキシリボ核酸の分子内の塩基配列 5′……G−↓G−A−T−C−C……3′ 3′……C−C−T−A−G−↑G……5′ を認識し矢印の位置でこれを切断することが判
明した。 各種基質DNAに対する切断部位の数 基質DNAとしてE.coliフアージλDNA、E.
coliプラスミドpBR322DNA、E.Coliフアージ
φ×174RF DNA及び動物ウイルスSV 40
DNAを使用し、これらの基質DNAに本発明の
型制限酵素Gceinを作用させ、この酵素反
応終了後に生成物をアガロースゲル電気泳動法
で処理して上記各基質DNAに対する本発明の
型制限酵素Gceinの作用及び基質特異性を
調べた。結果は第2表の通りでつた。 至適PH及びPH安定域 1μgのλDNA、7mMの塩化マグネシウム
及び7mMの2−メルカプトエタノールに10m
Mの酢酸ナトリウム(PH4)、塩酸ピペラジン
(PH5)、塩酸ヒスチジン(PH6)、塩酸イミダ
ゾール(PH7)、Tris−HCl(PH8)あるいは塩
酸モ)エタノールアミン(PH9)を添加して調
整した各反応溶液50μを使用し、常法により
型制限酵素Gceinの至適PH及びPH安定域を
調べた。結果は、至適PHが7.5〜9.5であり、PH
安定域は5.5〜10であつて極めて広いことが判
明した。 至適温度及び温度安定性 1μgのλDNA、10mMのTris−HCl(PH7.5)、
7mMの塩化マグネシウム及び7mMの2−メ
ルカプトエタノールからなる標準反応系の反応
溶液50μを使用し、常法により、型制限酵
素Gceinの至適温度及び温度安定性を調べ
た。結果は、至適温度が35〜40℃で、5分間保
温による温度安定性は50℃までであり、極めて
安定であることが判明した。 塩要求性及び至適塩濃度 上記標準反応系の反応溶液に濃度を変えて
NaClを添加し、常法により型制限酵素
Gceinの塩要求性及び至適塩濃度を調べた。
結果は、至適塩濃度が0〜150mMNaClであ
り、塩濃度0でも型制限酵素Gceinは反応
するので塩要求性は特に認められず、使い易い
酵素であることが判明した。 希釈に対する安定性 上記標準反応系に加える酵素量(37℃、10分
間の反応で1μgのλDNAを完全に切断する酵
素量)を1/5にし、60〜120分間反応させて安定
性を調べた。結果は全て反応系でλDNAを完
全に切断しており、希釈に対して極めて安定で
あることが判明した。 二価の金属塩に対する要求性 標準反応系の金属塩塩化マグネシウムを、塩
化カルシウム、塩化マンガン、塩化第二銅、及
び塩化コバルトに代え、1mMのEDTAを加
えた反応系で反応させ、他の二価の金属塩に対
する要求性を調べた。結果は塩化マンガン存在
下でのみ多少反応した。 分子量 ゲル濾過法で分子量を測定した。結果は、
25000±5000であつた。 既知の型制限酵素Al及びBamHとの
比較 上記の酵素化学的性質を既知の型制限酵素
Ali及びBamHと比較すると、第3表に示
す通りである。
[Industrial Application Field] This invention relates to type restriction enzymes and methods for producing the same, and particularly to double-stranded deoxyribonucleic acid (double-stranded DNA).
base sequence within the molecule. 5'...G-↓G-A-T-C-C...3'3'...C-C-T-A-G-↑G...5' (However, in the formula, A represents adenosine, This invention relates to Gcein, a type of restriction enzyme that recognizes Gcein (G represents guanosine, T represents thymidine, and C represents cytidine (the same applies hereinafter)) and cleaves it at the position indicated by the arrow, and a method for producing the same. [Prior art] Restriction enzymes are strain-specific endonucleases that cut and eliminate foreign DNA that invades cells as viral DNA or naked DNA. I recognize it, but
Types that cut DNA nonspecifically, types that recognize a specific base sequence of double-stranded DNA and cut it at that specific position, and types that cut DNA at a specific position that is different from the recognized base sequence. A type that exhibits characteristics intermediate between the above-mentioned types and the other types is known. Among these, type restriction enzymes can be used in combination with several restriction enzymes with different specificities to systematically cut long DNA molecules and obtain uniform DNA fragments containing the target gene. . For this reason, these types of restriction enzymes are useful for recombinant
An enzyme used in DNA technology to extract DNA fragments that contain the necessary genetic information and to introduce the extracted DNA fragments into the site where the genetic information is expressed in an active form, as well as for gene analysis. It is an extremely important enzyme in genetic engineering-related technology. By the way, in the field of research on type restriction enzymes, many enzymes with specificity in recognition base sequences and cleavage positions have been isolated to date, and their oxygen chemical properties have also been clarified.
Recognizes the base sequence 5'...G-↓G-A-T-C-C...3'3'...C-C-T-A-G-↑G...5' in the DNA molecule. Regarding the type of restriction enzyme that cuts this at the position of the arrow, for example, Bacillus amyloliquefaciens H (Bacillus amyloliquefaciens H)
BamH obtained from amyloliquefaciensH)
{Roberts, RJ, Wilson, GA and Young, F.
E., Nature, 256 , 82-84 (1977), and
Geoge, J. and Cnirikjian, J.G., Proc. Natl.
AcadSci.USA, 79, 2432-2436 (1982)} and this isoschizomer of BamH.
Ali obtained from Acetobacter liquefaciens IAM 1834 (Japanese Unexamined Patent Publication No. 175881/1981) has been reported. However, the DNA that is the subject of research in recombinant DNA technology and the base sequences of that DNA are extremely diverse, which requires the development and production of restriction enzyme types with various specificities, as well as the need for dilution. It has excellent enzymatic chemical properties such as high stability against salt concentration, wide stability range against salt concentration, and high thermal stability, and is cheaper and easier to use in terms of ease of production. There is a need for the development of type restriction enzymes. [Problems to be solved by the invention] Therefore, as part of physiological and chemical research on acetic acid bacteria, the present inventors focused on the fact that certain types of acetic acid bacteria produce restriction enzymes, and investigated the enzyme chemical properties and structure. As a result of extensive research into type restriction enzymes that have excellent properties such as ease of use, we have discovered that certain bacteria belonging to the genus Gluconobacter have been found to have a nucleotide sequence of 5'...G- in the molecule of double-stranded DNA. ↓G-A-T-C-C...3'3'...C-C-T-A-G-↑G...5' The present invention was achieved by discovering that it was possible to produce a compound (named .) and establishing a method for its purification. Therefore, an object of the present invention is to provide a Gcein-type restriction enzyme that has excellent properties in terms of stability against dilution, stability range against salt concentration, oxygen chemical properties such as thermal stability, and ease of production. Another object of the present invention is to provide a method for producing this type of restriction enzyme Gcein. [Means for Solving the Problems] That is, the present invention is directed to culturing a restriction enzyme Gcein-producing bacterium belonging to the genus Gluconobacter, and a restriction enzyme collected from the resulting culture, which is a double-stranded deoxyribonin. Recognizes the base sequence 5'...G-G-↓G-T-C-C...3'3'...C-C-T-A-G-↑G...5' in the nucleic acid molecule. Gcein is a type of restriction enzyme that cleaves this at the position indicated by the arrow, and is a type of restriction enzyme that is used to collect the above-mentioned restriction enzyme Gcein from the obtained bacterial cells by culturing Gcein-producing bacteria belonging to the genus Gluconobacter. This is the manufacturing method. The microorganisms used in the present invention include restriction enzymes belonging to the genus Gluconobacter, which is an acetic acid bacterium.
All Gcein-producing bacteria can be used, but for example, Gluconobacter cerinus, which is preserved by the Fermentation Research Institute and can be freely distributed to third parties.
One can mention FO 3260. This strain was developed by the present inventors as Gluconobacter industrius FO.
The bacterium was deposited as 3260 at the Fermentation Research Institute, but later it was classified as Gluconobacter cerinus along with other strains of Gluconobacter bacteria. {Y.Yamada ana M.Akita, J.Gen.Appl.
Microbiol., 30 , 115-126 (1984)}. In the present invention, the above-mentioned restriction enzyme Gcein-producing bacteria can be cultured by a known method known as a culture method for acetic acid bacteria. In other words, carbon sources such as glucose, glycerol, and ethanol, nitrogen sources such as ammonium nitrate and ammonium chloride, various phosphates, inorganic salts such as magnesium sulfate and calcium chloride, and natural organic nutrients such as yeast extract, malt extract, and peptone. Usually, under aerobic conditions such as shaking culture, the pH of the medium is 5 to 7, the culture temperature is 25 to 30°C, and the culture time is 24 to 48 hours, so that tooth growth reaches the early stationary phase. Do this until you reach . In addition, as a method for separating and purifying the target restriction enzyme Gcein from the culture obtained after culturing,
A conventionally known method can be employed, and for example, the following method can be used. First, the bacterial cells collected by centrifuging the culture solution are washed with an appropriate buffer such as tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), and then sonicated to disrupt the cells. Centrifuge to remove the precipitate and obtain a cell-free extract. Next, this cell-free extract was treated with sloreptomycin sulfate and further fractionated using ammonium sulfate, followed by heparin cepharose CL-6B, diethylaminoethyl (DEAE) cepharose CL-6B,
The type restriction enzyme Gceil of the present invention can be obtained by combining methods such as affinity chromatography such as Cephadex G-200, ion exchange chromatography, and gel filtration.
Purification is carried out. The type restriction enzyme Gceil of the present invention produced in this way has the base sequence 5'...G-↓G-A-T-C-C...3'3'... in the molecule of double-stranded DNA. It is a type of restriction enzyme that recognizes C-C-T-A-G-↑G...5' and cleaves it at the position indicated by the arrow. Acetobacter liquefaciens AM
It is an isoschizomer of Ali obtained from 1834, and its stability against dilution,
The above-mentioned BamH and
Demonstrates better characteristics than Ali. [Examples] Hereinafter, the present invention will be explained in detail based on Examples and Test Examples. (1) Example (Production of Gcein-type restriction enzyme) Gluconobacter selinus
cerinus) FO 3260 with potato extract 20% by weight,
Yeast extract 1.55% by weight, glycerol 1.5% by weight,
Glucose 0.5% by weight, peptone 1.5% by weight, agar
5 ml of a slant medium containing 2.0% by weight and 0.7% by weight of calcium carbonate was inoculated and cultured at 30°C for 48 hours.
Next, the obtained culture was mixed with 1.5% by weight of glycerol.
It was added to a nutrient medium 10 with a pH of 6.8 consisting of 0.5% by weight of glucose, 0.5% by weight of peptone, 0.5% by weight of yeast extract, and 0.1% by weight of malt extract, and cultured for an additional 48 hours at 30°C while shaking on a rotary shaker. Bacterial cells in the early stationary phase were collected using a centrifuge. 32g of the obtained bacterial cells were mixed with 10mM Tris-HCl (PH
7.5) and in the presence of 10mM 2-mercaptoethanol, the bacterial cells were disrupted by sonication at 180W for 6 minutes, and after centrifugation, NaCl was added to the supernatant solution to make it 100mM, and finally to 1% by weight. Streptomycin was added to remove nucleic acids, and the mixture was allowed to stand for 30 minutes, followed by centrifugation to remove the precipitate and obtain a supernatant (purification step 1). Ammonium sulfate was added to the supernatant thus obtained while stirring until it became a 35% solution by weight, and the precipitate was removed by centrifugation.
Ammonium sulfate was added to the supernatant to make a 60% solution by weight, and the mixture was allowed to stand overnight. After standing overnight, add buffer A (50mM) to the centrifuged precipitate.
Tris-HCl (PH7.5), 7mM magnesium chloride, and 7mM 2-mercaptoethanol were added to dissolve and dialyzed overnight (purification step 2). At night, 40 ml of the obtained dialysate was equilibrated with buffer A containing 100 mM NaCl, and then heparin-sepharose was added.
Chromatography column packed with CL-6B (diameter 1.3
cm, height 8 cm) and pre-adsorbed with 100mM NaCl.
After washing with 10 columns of buffer A containing 100
The type restriction enzyme Gceinl was eluted with a linear gradient in buffer A containing ~600 mM NaCl. The target type restriction enzyme Gcein is approximately 250-350mM NaCl
(purification step 3). Furthermore, the obtained solution containing the restriction enzyme Gcein was dialyzed overnight with buffer A, and 30.5 ml of the obtained dialysate was transferred to a chromatography column packed with EAE Sepharose CL-6B equilibrated with buffer A in advance. (diameter 1.3 cm, height 8 cm), buffer solution A1
After washing for 0 column minutes, the restriction enzyme Gcein was eluted with a linear gradient of buffer A containing 0 to 500 mM NaCl.
It was eluted into a solution of NaCl concentration (purification step 4). Next, the resulting solution of the restriction enzyme Gcein-containing fraction was placed in a dialysis tube, soaked in polyethylene glycol 6000, and concentrated. Next, 100m in advance
The enzyme solution was applied to a gel filtration column (diameter 1.3 cm, height 25 cm) packed with Sephadex G-200 equilibrated with buffer A containing 100 mM NaCl.
Type restriction enzyme in buffer A1 column containing NaCl
The Gcein-containing fraction was eluted. The solution of the fraction containing this type of restriction enzyme Gcein was placed in a dialysis tube again, soaked in polyethylene glycol 6000, concentrated, and diluted with buffer B {10mM Tris-HCl (PH7.5), 7mM
It was purified by overnight dialysis against M magnesium chloride, 7 mM 2-mercaptoethanol, and 50% V/V glycerol (purification step 5). In addition, each operation of all the above purification steps 1-5 was performed at the temperature of 4 degreeC or less. Type restriction enzyme Gcein thus obtained
Use 5-10μ of 10mM Tris-HCl (PH
7.5), 7mM magnesium chloride, 7mM 2-
A total of 50μ of a mixture consisting of mercaptoethanol and 1μg of λDNA was prepared and reacted at 37°C for 1 hour. To stop the reaction, 5μ of a solution of 1% by weight sodium dotecyl sulfate (SDS) and 10mM ethylenediaminetetraacetic acid (EDTA) was added. Added. The resulting reaction mixture was subjected to agarose gel electrophoresis.
Enzyme activity was examined based on the presence or absence of λDNA cleavage.
Regarding the enzyme activity of this type of restriction enzyme Gcein,
The amount of enzyme that completely cleaves 1 μg of λDNA in 1 hour was defined as 1 unit. For agarose gel electrophoresis, 1% by weight agarose, 89mM Tris-boric acid (PH8.3), 2.5m
Using a plate gel consisting of M EDTA and 500 μg/ethidium bromide, electrophoresis buffer {89 mM Tris-boric acid (PH8.3), 2.5 mM EDTA
and 500 μg/ethidium bromide} at a constant voltage of 5.5 V per cm for about 4 hours, and then the cleavage of the λDNA was confirmed under a 302 nm UV lamp. Type restriction enzyme Gcein obtained as above
Other cleavage patterns did not change even after 24 hours of reaction, and other activities such as non-specific DNase were not included. The degree of purification and total activity in the above purification steps 1 to 5 were as shown in Table 1. (2) Test example (confirmation of enzymatic chemical properties of type restriction enzyme Gcein) Double digestion
Test with known type restriction enzyme BamH
pBR322DNA, 1μg of E. coli plasmid pBR322DNA, 10mM Tris
- mixture of HCl (PH7.5), 7mM 2-mercaptoethanol and 7mM magnesium chloride
No oxygen added in 30μ medium at 37℃ for 2 hours.
The reaction was carried out with the addition of only the type restriction enzyme BamH, only the purified type restriction enzyme Gcein, and the addition of a mixture of type restriction enzymes BamH and Gcein, and the type restriction enzyme Gcein was recognized by the same agarose gel electrophoresis method as above. The base sequence and cleavage position were investigated. The results showed that both enzymes recognized and cut pBR322DNA at exactly the same position.
From this, the type restriction enzyme Gcein has a base sequence within the molecule of double-stranded deoxyribonucleic acid. It recognizes and cleaves -G-G...5', and was thought to have an isocismal relationship with BamH. Determination of recognition cleavage site pBR322DNA was cut with the type restriction enzyme Gcein, treated with phoshatase to remove the phosphate at the cut end, and the cut end was labeled with 32P using [γ- 32 P]ATP. This was treated with the type restriction enzyme Hind, and the resulting fragment (approximately 346 base pairs) was sequenced using the Maxam-Gilbert method. As a result, as shown in Figure 1,
The base sequence from that cut was found to be 5'-G-AT-C-C-A-C-A-G... Furthermore, as shown in FIG. 2, the terminal base was found to be G. From the above results, the type restriction enzyme Gcein is
Base sequence in the molecule of double-stranded deoxyribonucleic acid 5'...G-↓G-A-T-C-C...3'3'...C-C-T-A-G-↑G...5 ′ and cut it at the position of the arrow. Number of cleavage sites for various substrate DNAs E. coli phage λDNA, E.
coli plasmid pBR322DNA, E.Coli phage φ×174RF DNA and animal virus SV 40
Using DNA, the type restriction enzyme Gcein of the present invention is allowed to act on these substrate DNAs, and after the enzyme reaction is completed, the product is treated with agarose gel electrophoresis to determine the type restriction enzyme Gcein of the present invention for each of the above substrate DNAs. The effect and substrate specificity of the compound were investigated. The results were as shown in Table 2. Optimal PH and PH stability range 1μg of λDNA, 7mM magnesium chloride and 7mM 2-mercaptoethanol for 10m
Each reaction solution was prepared by adding M sodium acetate (PH4), piperazine hydrochloride (PH5), histidine hydrochloride (PH6), imidazole hydrochloride (PH7), Tris-HCl (PH8) or ethanolamine (PH9) Using 50μ, the optimum PH and PH stability range of the type restriction enzyme Gcein were investigated by a conventional method. The result is that the optimal PH is 7.5 to 9.5, and the PH
It was found that the stability range was 5.5 to 10, which was extremely wide. Optimal temperature and temperature stability 1μg of λDNA, 10mM Tris-HCl (PH7.5),
The optimal temperature and temperature stability of the restriction enzyme Gcein were investigated by a conventional method using 50 µ of a standard reaction solution consisting of 7 mM magnesium chloride and 7 mM 2-mercaptoethanol. The results showed that the optimal temperature was 35 to 40°C, and the temperature stability was up to 50°C when kept warm for 5 minutes, indicating that it was extremely stable. Salt requirement and optimal salt concentration By changing the concentration of the reaction solution of the above standard reaction system,
Add NaCl and type restriction enzyme using the usual method.
The salt requirement and optimal salt concentration of Gcein were investigated.
The results showed that the optimal salt concentration was 0 to 150mM NaCl, and since the type restriction enzyme Gcein reacted even at a salt concentration of 0, no particular salt requirement was observed, and the enzyme was found to be easy to use. Stability against dilution The amount of enzyme added to the above standard reaction system (the amount of enzyme that completely cleaves 1 μg of λ DNA in a 10 minute reaction at 37°C) was reduced to 1/5, and the stability was investigated by reacting for 60 to 120 minutes. . The results showed that λDNA was completely cleaved in all reaction systems, and it was found to be extremely stable against dilution. Requirement for divalent metal salt The metal salt magnesium chloride in the standard reaction system was reacted in a reaction system in which 1mM EDTA was added instead of calcium chloride, manganese chloride, cupric chloride, and cobalt chloride. The requirements for valent metal salts were investigated. The results showed some reaction only in the presence of manganese chloride. Molecular weight Molecular weight was measured by gel filtration method. Result is,
It was 25000±5000. Comparison with known restriction enzymes Al and BamH
A comparison with Ali and BamH is as shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

【表】 [発明の効果] 本発明によれば、希釈に対する安定性、至適塩
濃度幅、熱安定性等の酵素化学的性質が優れてい
て製造が比較的簡便であると共に、二本鎖デオキ
シリボ核酸の分子内の塩基配列 5′……G−G−↓G−T−C−C……3′ 3′……C−C−T−A−G−↑G……5′ を認識し矢印の位置でこれを切断する型制限酵
素Gcein及びその製造法を提供することができ
る。
[Table] [Effects of the Invention] According to the present invention, enzyme chemical properties such as stability against dilution, optimal salt concentration range, and thermal stability are excellent, production is relatively simple, and double-stranded Recognizes the base sequence 5'...G-G-↓G-T-C-C...3'3'...C-C-T-A-G-↑G...5' in the molecule of deoxyribonucleic acid It is possible to provide a restriction enzyme, Gcein, which cleaves Gcein at the position indicated by the arrow, and a method for producing the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の型制限酵素Gceinで処理
したpBR322 DNAのポリアクリルアミドゲル電
気泳動を示す写真、第2図は本発明の型制限酵
素Gceinで処理したpBR322 DNAのPEI−セル
ロース薄層クロマトグラフイーを示す写真であ
る。
Figure 1 is a photograph showing polyacrylamide gel electrophoresis of pBR322 DNA treated with the type restriction enzyme Gcein of the present invention, and Figure 2 is a PEI-cellulose thin layer chromatography of pBR322 DNA treated with the type restriction enzyme Gcein of the present invention. This is a photo showing E.

Claims (1)

【特許請求の範囲】 1 グルコノバクター属に属する型制限酵素
GceinI生産菌を培養し、得られた培養物から採
取された制限酵素であり、二本鎖デオキシリボ核
酸の分子内の塩基配列 5′……G−↓G−A−T−C−C……3′ 3′……C−C−T−A−G−↑G……5′ (但し、式中Aはアデノシンを、Gはグアノシン
を、Tはチミジンを、Cはシチジンをそれぞれ示
す。)を認識し矢印の位置でこれを切断する型
制限酵素GceinI。 2 グルコノバクター属に属する型制限酵素
GceinI生産菌を培養し、得られた培養物から上
記型制限酵素Gceinを採取することを特徴と
する型制限酵素の製造法。
[Claims] 1. Restriction enzyme belonging to the genus Gluconobacter
It is a restriction enzyme collected from the culture obtained by culturing GceinI-producing bacteria, and has the base sequence in the molecule of double-stranded deoxyribonucleic acid 5'...G-↓G-A-T-C-C... 3'3'...C-C-T-A-G-↑G...5' (However, in the formula, A represents adenosine, G represents guanosine, T represents thymidine, and C represents cytidine.) Restriction enzyme GceinI recognizes and cuts it at the position indicated by the arrow. 2 Type restriction enzyme belonging to the genus Gluconobacter
1. A method for producing a restriction enzyme, which comprises culturing a GceinI-producing bacterium and collecting the above-mentioned restriction enzyme Gcein from the resulting culture.
JP61210726A 1986-09-09 1986-09-09 Ii type restriction enzyme and production thereof Granted JPS6368082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61210726A JPS6368082A (en) 1986-09-09 1986-09-09 Ii type restriction enzyme and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61210726A JPS6368082A (en) 1986-09-09 1986-09-09 Ii type restriction enzyme and production thereof

Publications (2)

Publication Number Publication Date
JPS6368082A JPS6368082A (en) 1988-03-26
JPH0514554B2 true JPH0514554B2 (en) 1993-02-25

Family

ID=16594086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61210726A Granted JPS6368082A (en) 1986-09-09 1986-09-09 Ii type restriction enzyme and production thereof

Country Status (1)

Country Link
JP (1) JPS6368082A (en)

Also Published As

Publication number Publication date
JPS6368082A (en) 1988-03-26

Similar Documents

Publication Publication Date Title
JPH0514554B2 (en)
US4259446A (en) Process for preparation of deoxyribonucleases
JPS6337626B2 (en)
US5120651A (en) Restriction enzyme agei and process for producing same
JPS594115B2 (en) New nucleolytic enzyme and its production method
US4833082A (en) New restriction enzyme and process for producing the same
JPH01320995A (en) Production of nucleoside compound
US4542099A (en) Method for manufacturing restriction enzymes from Bifidobacteria
JPH0822223B2 (en) Method for producing PvuI restriction endonuclease
JP3092817B2 (en) Method for producing restriction enzyme
US4668631A (en) Process for producing a restriction enzyme
JPH0458884A (en) New restrictive enzyme
JPS6140789A (en) Novel restriction enzyme and preparation thereof
US4724209A (en) Process for producing restriction enzyme
JPH044875A (en) Production of restriction enzyme
JP3735956B2 (en) Xanthine dehydrogenase and method for producing the enzyme
JPH03112484A (en) Novel restriction enzyme and its production
JPH0665301B2 (en) Method for producing NAL (N-acylneuraminic acid aldolase)
JPS62126972A (en) Novel restriction enzyme and production thereof
JP3624960B2 (en) Thermostable ribonuclease H and uses thereof
JPS6211091A (en) Production of restriction enzyme
JPS59159778A (en) Preparation of heat-resistant leucine dehydrogenase
JPH0616704B2 (en) Bacterial catalase resistant to fluoride ions and Micrococcus sp. KWI-5 strain
JPS6357038B2 (en)
JPH01132384A (en) Plasmid and escherichia coli transformed therewith