JPH05145368A - Surface wave device - Google Patents

Surface wave device

Info

Publication number
JPH05145368A
JPH05145368A JP30349591A JP30349591A JPH05145368A JP H05145368 A JPH05145368 A JP H05145368A JP 30349591 A JP30349591 A JP 30349591A JP 30349591 A JP30349591 A JP 30349591A JP H05145368 A JPH05145368 A JP H05145368A
Authority
JP
Japan
Prior art keywords
electromechanical coupling
coupling coefficient
bgs
piezoelectric substrate
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30349591A
Other languages
Japanese (ja)
Inventor
Michio Kadota
道雄 門田
Kazuhiko Morozumi
和彦 諸角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP30349591A priority Critical patent/JPH05145368A/en
Publication of JPH05145368A publication Critical patent/JPH05145368A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To provide a device utilizing a BGS wave having less production of spurious vibration and an excellent resonance characteristic by forming a piezoelectric substrate through the use of a piezoelectric material whose electromechanical coupling coefficient of thickness-shear vibration is a specific value or over. CONSTITUTION:A piezoelectric substrate 2 is formed by using a material in which a ratio of titanium and zirconium of a lead titanate and zirconate group piezoelectric ceramics PbTi1-xO3-PbZrxO3 is selected properly and an electromechanical coupling coefficient K15 of thickness-shear vibration is selected to be 40% or over. Interdigital transducers 3, 4 are formed to the upper side of the substrate 2 to form a surface wave resonator 1 thereon. Thus, the production of spurious vibration is effectively suppressed and the resonance characteristic is made excellent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、BGS波を利用した表
面波装置に関し、特に、圧電基板の材料を選択すること
により共振特性が改良された表面波装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface wave device utilizing BGS waves, and more particularly to a surface wave device having improved resonance characteristics by selecting a material for a piezoelectric substrate.

【0002】[0002]

【従来の技術】図2は、従来のBGS波を利用した表面
波共振子を示す斜視図である。表面波共振子1は、チタ
ン酸ジルコン酸鉛系セラミックスのような圧電セラミッ
クスからなる圧電基板2を用いて構成されている。この
圧電基板2は、矢印P方向に分極処理されている。ま
た、圧電基板2の上面には、一対のくし歯電極3,4が
形成されている。くし歯電極3,4は、それぞれ、複数
本の電極指を有し、該複数本の電極指が互いに間挿し合
うように配置されている。表面波共振子1では、くし歯
電極3,4間に交流電界を印加することにより矢印X方
向にBGS波が励起され、励起されたBGS波が端面2
a,2b間で反射されるように構成されている。
2. Description of the Related Art FIG. 2 is a perspective view showing a conventional surface acoustic wave resonator utilizing BGS waves. The surface acoustic wave resonator 1 is configured using a piezoelectric substrate 2 made of piezoelectric ceramics such as lead zirconate titanate-based ceramics. The piezoelectric substrate 2 is polarized in the direction of arrow P. A pair of comb-teeth electrodes 3, 4 are formed on the upper surface of the piezoelectric substrate 2. Each of the comb electrodes 3 and 4 has a plurality of electrode fingers, and the plurality of electrode fingers are arranged so as to be interleaved with each other. In the surface wave resonator 1, a BGS wave is excited in the arrow X direction by applying an AC electric field between the comb-teeth electrodes 3 and 4, and the excited BGS wave is converted into the end surface 2
It is configured to be reflected between a and 2b.

【0003】[0003]

【発明が解決しようとする課題】BGS波を利用した表
面波共振子1では、端面2a,2b間でBGS波を反射
させることにより共振子として動作させるものであるた
め、端面2a,2bの精度を可能な限り高める必要があ
る。そして、この端面2a,2bの精度を可能な限り高
めることにより、良好な共振特性が得られるとされてい
る。しかしながら、端面2a,2bの精度を高めるのに
も限度があり、従って、実際には端面2a,2bの精度
を可能な限り高めたとしても、共振点−反共振点間、特
に反共振周波数近傍の周波数領域においてかなりの強さ
のスプリアス振動が発生するという問題があった。
In the surface wave resonator 1 utilizing the BGS wave, the BGS wave is reflected between the end faces 2a and 2b to operate as a resonator. Therefore, the accuracy of the end faces 2a and 2b is high. Needs to be increased as much as possible. It is said that good resonance characteristics can be obtained by increasing the accuracy of the end faces 2a and 2b as much as possible. However, there is a limit to increasing the accuracy of the end faces 2a and 2b. Therefore, even if the accuracy of the end faces 2a and 2b is increased as much as possible, the resonance point-the anti-resonance point, especially the anti-resonance frequency vicinity, is limited. There was a problem that spurious vibrations of considerable strength were generated in the frequency region of.

【0004】本発明の目的は、スプリアス振動の発生の
少ない、良好な共振特性を有するBGS波を利用した表
面波装置を提供することにある。
An object of the present invention is to provide a surface acoustic wave device using BGS waves which has a good resonance characteristic with less generation of spurious vibrations.

【0005】[0005]

【課題を解決するための手段】本願発明者らは、BGS
波を利用した表面波装置において、端面精度を高めるの
にも限界があることに鑑み、所望でないスプリアス振動
を抑圧する方法を鋭意検討した結果、圧電基板の材料を
特定のものに選択すれば、共振点−反共振点間、特に反
共振周波数近傍のスプリアス振動を効果的に抑圧し得る
ことを見出し、本発明をなすに至った。すなわち、本発
明は、圧電基板と、圧電基板上に設けられた少なくとも
1つのインターデジタルトランスデューサとを備えるB
GS波を利用した表面波装置において、上記圧電基板
が、厚みすべり振動の電気機械結合係数k15が40%以
上の材料で構成されていることを特徴とする。
Means for Solving the Problems The present inventors
In a surface acoustic wave device utilizing waves, considering that there is a limit to improving the end face accuracy, as a result of diligent examination of a method of suppressing undesired spurious vibrations, if the material of the piezoelectric substrate is selected to be a specific one, The inventors have found that spurious vibrations between the resonance point and the anti-resonance point, particularly in the vicinity of the anti-resonance frequency, can be effectively suppressed, and have completed the present invention. That is, the present invention comprises a piezoelectric substrate and at least one interdigital transducer provided on the piezoelectric substrate.
A surface acoustic wave device using GS waves is characterized in that the piezoelectric substrate is made of a material having an electromechanical coupling coefficient k 15 of thickness shear vibration of 40% or more.

【0006】[0006]

【作用】本発明では、圧電基板の厚みすべり振動の電気
機械結合係数k15が40%以上の材料で該圧電基板が構
成されているため、後述の実施例から明らかなように、
共振点−反共振点間、特に反共振周波数近傍の所望でな
いスプリアス振動を効果的に抑圧することができる。
In the present invention, since the piezoelectric substrate is made of a material having an electromechanical coupling coefficient k 15 of thickness shear vibration of the piezoelectric substrate of 40% or more, as will be apparent from the examples described later,
Undesired spurious vibrations between the resonance point and the anti-resonance point, particularly near the anti-resonance frequency, can be effectively suppressed.

【0007】[0007]

【実施例の説明】チタンとジルコンとの比を変更してな
る下記の表1に示す種々の組成のチタン酸ジルコン酸鉛
系圧電セラミックスPbTi1-x 3 −PbZrx 3
を用いて圧電基板を作製し、図2に示した端面反射型の
表面波共振子1を作製した。なお、使用した圧電基板の
寸法は、0.92×0.90×0.80mmであり、該
圧電基板の上面に電極指の対数;15対及び交叉幅;7
波長のインターデジタルトランスデューサを形成した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Lead zirconate titanate-based piezoelectric ceramics PbTi 1-x O 3 -PbZr x O 3 of various compositions shown in Table 1 below, in which the ratio of titanium to zircon is changed.
A piezoelectric substrate was manufactured by using, and the end face reflection type surface wave resonator 1 shown in FIG. 2 was manufactured. The size of the piezoelectric substrate used was 0.92 × 0.90 × 0.80 mm, and the number of pairs of electrode fingers on the upper surface of the piezoelectric substrate was 15 pairs and the cross width was 7
A wavelength interdigital transducer was formed.

【0008】上記のようにして得られた各表面波共振子
について、共振特性、すなわちインピーダンス−周波数
特性及び位相−周波数特性を測定した。そして、所望で
ないスプリアス振動がほとんど発生していない場合を〇
印を付し、所望でないスプリアス振動がかなりの程度で
発生している場合を×印を付して、表1に示した。例と
して、図3にスプリアス振動が発生していない表面波共
振子(組成Bの圧電材料を使用)のインピーダンス−周
波数特性(実線)及び位相−周波数特性(破線)を、図
4にスプリアス振動が発生している表面波共振子(組成
Fを使用)のインピーダンス−周波数特性(実線)及び
位相−周波数特性(破線)を示す。
The resonance characteristics, that is, the impedance-frequency characteristics and the phase-frequency characteristics of the surface acoustic wave resonators obtained as described above were measured. The results are shown in Table 1 when the undesired spurious vibrations are hardly generated, and when the undesired spurious vibrations are generated to a considerable extent, by the cross mark. As an example, FIG. 3 shows an impedance-frequency characteristic (solid line) and a phase-frequency characteristic (broken line) of a surface wave resonator (using a piezoelectric material having a composition B) in which spurious vibration does not occur, and FIG. The impedance-frequency characteristic (solid line) and the phase-frequency characteristic (broken line) of the generated surface wave resonator (using the composition F) are shown.

【0009】[0009]

【表1】 [Table 1]

【0010】表1から明らかなように、組成A〜Dの圧
電基板を用いた場合には、スプリアス振動が抑圧される
のに対し、組成E〜Gの圧電基板を用いた場合には、反
共振周波数近傍でスプリアス振動がかなりの程度で発生
することがわかった。そこで、組成A〜Dと、組成E〜
Gの圧電基板の材料定数の違いを検討した結果、組成A
〜Dでは、厚みすべり振動の電気機械結合係数k15が、
40%以上であるのに対し、E〜Gの圧電基板の厚みす
べり振動の電気機械結合係数k15は40%以下であるこ
とから、上記スプリアス振動は、電気機械結合係数k15
が40%以上の圧電基板を用いることにより抑圧される
ことを見出した。
As is clear from Table 1, when the piezoelectric substrates of compositions A to D are used, spurious vibrations are suppressed, whereas when the piezoelectric substrates of compositions E to G are used, the spurious vibration is suppressed. It was found that spurious vibrations occur to a considerable extent near the resonance frequency. Therefore, the compositions A to D and the compositions E to
As a result of examining the difference in the material constant of the piezoelectric substrate of G, the composition A
At ~ D, the electromechanical coupling coefficient k 15 of the thickness shear vibration is
To which the 40% or more, since the electromechanical coupling factor k 15 of the thickness-shear vibration of the piezoelectric substrate E~G is 40% or less, the spurious vibrations, the electromechanical coupling coefficient k 15
Was suppressed by using a piezoelectric substrate of 40% or more.

【0011】なお、厚みすべり振動モードの電気機械結
合係数k15は、BGS波の電気機械結合係数kBGS と下
記の式(1)で示す関係を有する。 (kBGS )2=(k152 /{1+(k152 }……(1) すなわち、厚みすべり振動の電気機械結合係数k15は、
BGS波の電気機械結合係数kBGS と上記の関係を有す
るため、電気機械結合係数k15は、BGS波を利用した
端面反射型の表面波共振子1において共振特性をはかる
目安となることがわかる。なお、上記のように厚みすべ
り振動の電気機械結合係数k15を指標とした用いたの
は、BGS波の電気機械結合係数kBGS を直接測定する
ことができないからである。
The electromechanical coupling coefficient k 15 of the thickness-shear vibration mode has a relationship with the electromechanical coupling coefficient k BGS of BGS waves shown by the following equation (1). (K BGS ) 2 = (k 15 ) 2 / {1+ (k 15 ) 2 } (1) That is, the electromechanical coupling coefficient k 15 of the thickness shear vibration is
Since the electromechanical coupling coefficient k BGS of the BGS wave has the above relation, the electromechanical coupling coefficient k 15 is a standard for measuring the resonance characteristic in the end surface reflection type surface wave resonator 1 using the BGS wave. .. Incidentally, those used in which an index electromechanical coupling factor k 15 in the thickness shear vibration as described above, it is not possible to directly measure the electromechanical coupling coefficient k BGS of BGS waves.

【0012】なお、BGS波端面反射共振子の実効的電
気機械結合係数を測定した報告(例えば、昭和51年5
月発行日本音響学会講演論文集、第351頁〜第352
頁)もなされているが、この電気機械結合係数は、共振
特性を示す曲線から算出したBGS波端面反射共振子の
実効的な電気機械結合係数keffであり、上記kBGS
直接測定したものではない、またこの電気機械結合係数
effは共振子の設計手法等により変化し、kBGSとは1
対1の相関があるとは言えないことを指摘しておく。
A report of measuring the effective electromechanical coupling coefficient of the BGS wavefront reflection resonator (for example, 5 1976)
Published by The Acoustical Society of Japan, pp. 351-352
The electromechanical coupling coefficient is the effective electromechanical coupling coefficient k eff of the BGS wavefront reflection resonator calculated from the curve showing the resonance characteristics, which is a direct measurement of k BGS. This electromechanical coupling coefficient k eff varies depending on the resonator design method, and k BGS is 1
It should be pointed out that there is no one-to-one correlation.

【0013】図5は、上記式(1)に従って厚みすべり
振動の電気機械結合係数k15から算出された組成A〜G
の材料のBGS波の電気機械結合係数kBGS を印で、B
GS波端面反射共振子の周波数特性から求めた電気機械
結合係数keffを●印で示す。図5から明らかなよう
に、厚みすべり振動の電気機械結合係数k15とBGS波
の電気機械結合係数kBGS に1:1の関係がないことが
わかる。なお、上記実施例では、図2に示した端面反射
型の表面波共振子において、上記のように厚みすべり振
動の電気機械結合係数k15を40%以上とすることによ
りスプリアス振動の抑圧を実現し得ることを示したが、
本発明は、2組以上のインターデジタルトランスデュー
サが構成されたBGS波を利用した端面反射型の表面波
フィルタ等にも適用し得ることを指摘しておく。
FIG. 5 shows compositions A to G calculated from the electromechanical coupling coefficient k 15 of the thickness shear vibration according to the above equation (1).
BGS wave electromechanical coupling coefficient k BGS of the material
The electromechanical coupling coefficient k eff obtained from the frequency characteristics of the GS wave facet reflection resonator is indicated by a ● symbol . As is apparent from FIG. 5, the electromechanical coupling coefficient k BGS electromechanical coupling coefficient k 15 and BGS wave of the thickness shear vibration 1: 1 it can be seen that there is no relationship. In the above embodiment, the suppression of spurious vibration is realized in the end face reflection type surface wave resonator shown in FIG. 2 by setting the electromechanical coupling coefficient k 15 of the thickness shear vibration to 40% or more as described above. I have shown that
It should be pointed out that the present invention can be applied to an end-face reflection type surface wave filter using BGS waves in which two or more sets of interdigital transducers are configured.

【0014】[0014]

【発明の効果】以上のように、本発明では、圧電基板と
して、厚みすべり振動の電気機械結合係数k15が40%
以上の材料のものを用いているため、スプリアス振動を
効果的に抑圧することが可能とされている。従って、圧
電基板の端面の精度を高めるだけでは実現し得なかった
優れた共振特性を示すBGS波を利用した表面波装置を
提供することが可能となる。
As described above, according to the present invention, the piezoelectric substrate has an electromechanical coupling coefficient k 15 of thickness shear vibration of 40%.
Since the materials described above are used, spurious vibrations can be effectively suppressed. Therefore, it is possible to provide a surface acoustic wave device using a BGS wave exhibiting excellent resonance characteristics that could not be realized only by improving the accuracy of the end surface of the piezoelectric substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】厚みすべり振動の電気機械結合係数k15と共振
特性との関係を説明するための図。
FIG. 1 is a diagram for explaining a relationship between an electromechanical coupling coefficient k 15 of thickness shear vibration and resonance characteristics.

【図2】BGS波を利用した端面反射型の表面波共振子
を示す斜視図。
FIG. 2 is a perspective view showing an end surface reflection type surface acoustic wave resonator utilizing BGS waves.

【図3】電気機械結合係数k15が40%以上の材料から
なる圧電基板を用いた表面波共振子のインピーダンス−
周波数特性及び位相−周波数特性を示す図。
FIG. 3 Impedance of a surface acoustic wave resonator using a piezoelectric substrate made of a material having an electromechanical coupling coefficient k 15 of 40% or more-
The figure which shows a frequency characteristic and a phase-frequency characteristic.

【図4】電気機械結合係数k15が38%の材料からなる
圧電基板を用いた表面波共振子のインピーダンス−周波
数特性及び位相−周波数特性を示す図。
FIG. 4 is a diagram showing impedance-frequency characteristics and phase-frequency characteristics of a surface acoustic wave resonator using a piezoelectric substrate made of a material having an electromechanical coupling coefficient k 15 of 38%.

【図5】実施例で用意された各圧電材料のBGS波の電
気機械結合係数kBGS と実効的電気機械結合係数keff
とを示す図。
FIG. 5 shows electromechanical coupling coefficient k BGS of BGS wave and effective electromechanical coupling coefficient k eff of each piezoelectric material prepared in the example.
And FIG.

【符号の説明】 1…表面波共振子 2…圧電基板 2a,2b…端面 3,4…インターデジタルトランスデューサを構成する
くし歯電極
[Explanation of Codes] 1 ... Surface wave resonator 2 ... Piezoelectric substrates 2a, 2b ... End surfaces 3, 4 ... Comb-shaped electrodes constituting an interdigital transducer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧電基板と、圧電基板上に設けられた少
なくとも1つのインターデジタルトランスデューサとを
備えるBGS波を利用した表面波装置において、 前記圧電基板が、厚みすべり振動の電気機械結合係数k
15が40%以上の圧電材料を用いて構成されていること
を特徴とする、表面波装置。
1. A surface acoustic wave device using a BGS wave, comprising a piezoelectric substrate and at least one interdigital transducer provided on the piezoelectric substrate, wherein the piezoelectric substrate has an electromechanical coupling coefficient k of thickness shear vibration.
15. A surface acoustic wave device, wherein 15 is composed of 40% or more of a piezoelectric material.
JP30349591A 1991-11-19 1991-11-19 Surface wave device Pending JPH05145368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30349591A JPH05145368A (en) 1991-11-19 1991-11-19 Surface wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30349591A JPH05145368A (en) 1991-11-19 1991-11-19 Surface wave device

Publications (1)

Publication Number Publication Date
JPH05145368A true JPH05145368A (en) 1993-06-11

Family

ID=17921655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30349591A Pending JPH05145368A (en) 1991-11-19 1991-11-19 Surface wave device

Country Status (1)

Country Link
JP (1) JPH05145368A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986523A (en) * 1997-08-29 1999-11-16 Murata Manufacturing Co., Ltd. Edge reflection type longitudinally coupled surface acoustic wave filter
FR2798925A1 (en) 1999-09-29 2001-03-30 Murata Manufacturing Co New lead zirconate-titanate based piezoelectric ceramic, especially for h.f. surface wave devices e.g. filters and oscillators, has a high niobium-to-manganese ratio and a fine sintered grain diameter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986523A (en) * 1997-08-29 1999-11-16 Murata Manufacturing Co., Ltd. Edge reflection type longitudinally coupled surface acoustic wave filter
FR2798925A1 (en) 1999-09-29 2001-03-30 Murata Manufacturing Co New lead zirconate-titanate based piezoelectric ceramic, especially for h.f. surface wave devices e.g. filters and oscillators, has a high niobium-to-manganese ratio and a fine sintered grain diameter
DE10048373C2 (en) * 1999-09-29 2003-02-06 Murata Manufacturing Co Piezoelectric ceramics and use thereof as surface acoustic wave devices

Similar Documents

Publication Publication Date Title
JPH025327B2 (en)
KR960005381B1 (en) Surface wave device
JPH09205337A (en) Surface acoustic wave device
JPH05145369A (en) Surface wave device
JPH05145368A (en) Surface wave device
JP3198613B2 (en) Surface wave device
US3401283A (en) Piezoelectric resonator
JPH08204498A (en) End face reflection type surface acoustic wave device
JP3198589B2 (en) Surface wave device
KR100465975B1 (en) Surface acoustic wave device and communication device
JP2018125725A (en) Acoustic wave device
JPS61154211A (en) Ceramic resonator
JP2012165032A (en) Elastic wave device
JP2022513852A (en) Piezoelectric materials and piezo devices
JPH05291869A (en) Surface acoustic wave device
JP3239399B2 (en) Surface wave device
US6628047B1 (en) Broadband ultrasonic transducers and related methods of manufacture
JP3233290B2 (en) Surface wave device
JP3198300B2 (en) KNbO3 piezoelectric element
JPH10173477A (en) Tuning fork piezoelectric oscillator
JP2002044785A (en) Piezo-resonator
JPH0153808B2 (en)
JPH0993078A (en) Piezoelectric device
JPH0342560B2 (en)
JP3198563B2 (en) Surface wave device