JPH05144745A - Manufacture of semiconductor substrate - Google Patents

Manufacture of semiconductor substrate

Info

Publication number
JPH05144745A
JPH05144745A JP3330023A JP33002391A JPH05144745A JP H05144745 A JPH05144745 A JP H05144745A JP 3330023 A JP3330023 A JP 3330023A JP 33002391 A JP33002391 A JP 33002391A JP H05144745 A JPH05144745 A JP H05144745A
Authority
JP
Japan
Prior art keywords
film
substrate
semiconductor
melting point
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3330023A
Other languages
Japanese (ja)
Inventor
Masaaki Kameda
正明 亀田
Makoto Tanaka
田中  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3330023A priority Critical patent/JPH05144745A/en
Publication of JPH05144745A publication Critical patent/JPH05144745A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To provide the manufacturing method, of a semiconductor substrate, wherein a film thickness can be controlled easily, an arbitrary film thickness can be obtained and a high semiconductor characteristic can be obtained. CONSTITUTION:A film formation substrate 1 whose influence of a silicon semiconductor film 2 is small and which is composed mainly of a low-melting-point metal whose melting point is lower than that of the film is used. A plasma flame-sprayed silicon semiconductor film 2 in an arbitrary film thickness is formed on the film-formation substrate 1; after that, the film-formation substrate 1 is heated and its temperature is raised up to the melting point of its constituent metal; the film-formation substrate 1 is melted; the plasma flame-sprayed silicon semiconductor film 2 is separated; after that, the low-melting-point metal which has adhered to and is left on the separation face of the plasma flame- sprayed silicon semiconductor film 2 is removed by a proper etching operation; a silicon semiconductor substrate 11 is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体基板、特に多
結晶シリコン基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor substrate, particularly a polycrystalline silicon substrate.

【0002】[0002]

【従来の技術】従来、多結晶シリコン基板としては、キ
ャスト多結晶シリコン基板が用いられているが、このキ
ャスト多結晶シリコン基板は、基板の形成工程におい
て、1000℃を超える高温での熱処理プロセス等を必
要とし、その製造が煩瑣で難しいく、基板自体が高価に
なるなどの難点があった。
2. Description of the Related Art Conventionally, a cast polycrystalline silicon substrate has been used as a polycrystalline silicon substrate, but this cast polycrystalline silicon substrate is subjected to a heat treatment process at a high temperature exceeding 1000 ° C. in a substrate forming process. However, the manufacturing process is complicated and difficult, and the substrate itself is expensive.

【0003】そこで、シリコン半導体材料の粉末を用い
て、プラズマ溶射法により多結晶シリコン基板を製造す
る方法が考えられている。この多結晶シリコン基板の具
体的な製造方法としては、ステンレス基板などの膜形成
基板上に、膜厚が100μm以上という非常に厚いシリ
コン半導体溶射膜を形成した後、これを自然剥離させる
というものであった。
Therefore, a method of manufacturing a polycrystalline silicon substrate by a plasma spraying method using a powder of a silicon semiconductor material has been considered. As a concrete method of manufacturing this polycrystalline silicon substrate, a very thick silicon semiconductor sprayed film having a film thickness of 100 μm or more is formed on a film forming substrate such as a stainless substrate, and then the film is spontaneously peeled off. there were.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな製造方法では、多結晶シリコン基板の膜厚を相当量
厚くしなければ、所期の効果が得られないばかりか、そ
の膜厚の制御も非常に困難を極めており、従って、この
方法を用いて膜厚の薄い多結晶シリコン基板を得ること
は極めて困難な状況にあった。
However, in such a manufacturing method, the desired effect cannot be obtained unless the thickness of the polycrystalline silicon substrate is considerably increased, and the thickness of the polycrystalline silicon substrate can be controlled. It is extremely difficult to obtain a polycrystalline silicon substrate having a thin film thickness by using this method.

【0005】また、この製造方法ではステンレス基板な
どを膜形成基板として用いるため、半導体溶射膜形成時
に、このシリコン半導体溶射膜に悪影響を及ぼす不純物
が、上記膜形成基板から多結晶シリコン基板に取り込ま
れてしまい、この結果、この多結晶シリコン基板を用い
た光電変換装置の特性劣化をもたらしていた。
Further, in this manufacturing method, since a stainless steel substrate or the like is used as the film forming substrate, impurities that adversely affect the silicon semiconductor sprayed film are taken into the polycrystalline silicon substrate from the film forming substrate when the semiconductor sprayed film is formed. As a result, the characteristics of the photoelectric conversion device using this polycrystalline silicon substrate are deteriorated.

【0006】この発明は、かかる従来の問題点に鑑みて
なされたものであって、膜厚の制御が容易で、任意の膜
厚が得られ、しかも高い半導体特性を得ることができる
半導体基板の製造方法の提供を目的とする。
The present invention has been made in view of the above conventional problems, and it is a semiconductor substrate in which the film thickness can be easily controlled, an arbitrary film thickness can be obtained, and high semiconductor characteristics can be obtained. The purpose is to provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】この発明の半導体の製造
方法は、形成すべき半導体基板の特性に対して影響が少
なく、かつこの半導体基板よりも低い融点を有する低融
点金属、例えば、錫,鉛、インジウム,ガリウム,アル
ミニウムから選択される低融点金属を主体とする膜形成
基板を用いるものであって、この膜形成基板上に、前記
半導体基板の材料粉末を原材料として、プラズマ溶射法
により半導体膜を形成し、この後、前記膜形成基板をそ
の構成金属の融点まで加熱昇温して、これを溶融除去す
ることを特徴とする。
A method of manufacturing a semiconductor according to the present invention has a low influence on the characteristics of a semiconductor substrate to be formed and has a melting point lower than that of the semiconductor substrate, for example, tin, A film forming substrate mainly composed of a low melting point metal selected from lead, indium, gallium, and aluminum is used, and a semiconductor is formed on the film forming substrate by a plasma spraying method using the material powder of the semiconductor substrate as a raw material. It is characterized in that a film is formed, and thereafter, the film-forming substrate is heated to the melting point of the constituent metal and heated to be melted and removed.

【0008】[0008]

【作用】低融点金属を主体とする膜形成基板上に、プラ
ズマ溶射半導体薄膜を形成した後、膜形成基板の構成金
属の融点まで加熱昇温して、この膜形成基板を溶融する
ことにより、プラズマ溶射半導体薄膜を分離し、この後
に、このプラズマ溶射半導体薄膜の分離面に残留してい
る低融点金属を、適当なエッチングにより除去して、半
導体基板を得る。このような製造方法によれば、プラズ
マ溶射半導体膜の膜厚を自由に制御でき、任意の膜厚の
薄膜半導体基板を得ることができる。
After the plasma sprayed semiconductor thin film is formed on the film-forming substrate mainly composed of the low melting point metal, the temperature is raised to the melting point of the constituent metal of the film-forming substrate to melt the film-forming substrate. The plasma sprayed semiconductor thin film is separated, and then the low melting point metal remaining on the separation surface of the plasma sprayed semiconductor thin film is removed by appropriate etching to obtain a semiconductor substrate. According to such a manufacturing method, the thickness of the plasma sprayed semiconductor film can be freely controlled, and a thin film semiconductor substrate having an arbitrary thickness can be obtained.

【0009】さらに、膜形成基板の主体である低融点金
属は、ステンレスの主成分である鉄などに比べて拡散係
数が小さく、この低融点金属が膜形成基板上に形成した
プラズマ溶射半導体薄膜中に拡散して悪影響を及ぼしに
くい。
Further, the low melting point metal, which is the main constituent of the film forming substrate, has a smaller diffusion coefficient than iron, which is the main constituent of stainless steel, and this low melting point metal is contained in the plasma sprayed semiconductor thin film formed on the film forming substrate. Difficult to affect the negative effect.

【0010】また、膜形成基板の主体金属として、半導
体材料の半導体特性に対し影響の少ない低融点金属を選
択することにより、半導体特性の低下を防ぐことができ
る。
Further, by selecting, as the main metal of the film forming substrate, a low melting point metal that has little influence on the semiconductor characteristics of the semiconductor material, it is possible to prevent deterioration of the semiconductor characteristics.

【0011】[0011]

【実施例】以下、この発明の実施例を図面に基づいて説
明する。図1はこの発明に係る一実施例である半導体基
板の製造工程を示し、具体的には、多結晶シリコン基板
の製造工程を示している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a manufacturing process of a semiconductor substrate which is one embodiment according to the present invention, and specifically shows a manufacturing process of a polycrystalline silicon substrate.

【0012】この製造工程において用いる膜形成基板1
は、形成すべき多結晶シリコン基板11の特性に対して
影響が少なく、かつこの半導体基板11よりも低い融点
を有する低融点金属を主体とするもの、つまり、錫(S
n),鉛(Pb),インジウム(In),ガリウム(G
a)およびアルミニウム(Al)から選択される低融点
金属が好適である。本実施例においては、前記膜形成基
板1として錫を主体としたものを用いている。
Film-forming substrate 1 used in this manufacturing process
Is mainly composed of a low melting point metal having a lower melting point than that of the semiconductor substrate 11, that is, tin (S
n), lead (Pb), indium (In), gallium (G
A low melting point metal selected from a) and aluminum (Al) is preferred. In this embodiment, the film forming substrate 1 is mainly made of tin.

【0013】続いて、この膜形成基板1を用いた多結晶
シリコン基板11の製造方法について、図1(a) 〜(c)
を参照しつつ具体的に説明する。
Next, a method of manufacturing a polycrystalline silicon substrate 11 using this film forming substrate 1 will be described with reference to FIGS.
It will be specifically described with reference to.

【0014】まず、膜形成基板1上に、シリコン粉末を
原材料として、プラズマ溶射法により多結晶シリコン半
導体膜2を形成する(図1(a) 参照)。この場合のプラ
ズマ溶射条件は表1に示すとおりである。
First, a polycrystalline silicon semiconductor film 2 is formed on a film forming substrate 1 by a plasma spraying method using silicon powder as a raw material (see FIG. 1 (a)). The plasma spraying conditions in this case are as shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】次に、多結晶シリコン半導体膜2が形成さ
れた膜形成基板1を、加熱プレート3上に載置させると
ともに、窒素(N2 )雰囲気中に置き、加熱プレート3
により、膜形成基板1をその構成金属である錫の融点
(250°C)まで加熱昇温して、これを溶融する(図
1(b) 参照)。
Next, the film forming substrate 1 on which the polycrystalline silicon semiconductor film 2 is formed is placed on the heating plate 3 and is placed in a nitrogen (N 2 ) atmosphere, and the heating plate 3 is placed.
Thus, the film-forming substrate 1 is heated to the melting point (250 ° C.) of the constituent metal, tin, to be melted (see FIG. 1 (b)).

【0017】そして、膜形成基板1の表面部分が溶融し
たところで、この膜形成基板1から多結晶シリコン半導
体膜2を剥離させて、膜形成基板1を分離除去する(図
1(c) 参照)。
When the surface portion of the film forming substrate 1 is melted, the polycrystalline silicon semiconductor film 2 is peeled off from the film forming substrate 1 to separate and remove the film forming substrate 1 (see FIG. 1 (c)). ..

【0018】最後に、多結晶シリコン半導体膜2の裏面
つまり分離面2aに付着残留している錫を、塩酸(HC
l)溶液などでエッチング除去して、完成品である多結
晶シリコン基板を得る。
Finally, the tin remaining on the back surface of the polycrystalline silicon semiconductor film 2, that is, the separation surface 2a, is removed from hydrochloric acid (HC
l) Etching off with a solution or the like to obtain a finished polycrystalline silicon substrate.

【0019】次に、以上の工程で製造された多結晶シリ
コン基板を用いた光電変換装置の構造を図2に示す。
Next, FIG. 2 shows the structure of a photoelectric conversion device using the polycrystalline silicon substrate manufactured through the above steps.

【0020】同図において、11は上述したプラズマ溶
射法により製造された多結晶シリコン基板からなるn型
多結晶シリコン、12は真性(i型)非晶質シリコン、
13はp型非晶質シリコン、14はITO(Indium Tin
Oxide) からなる透明導電膜、および15は前記n型多
結晶シリコン11とコンタクトするアルミニウムからな
る裏面電極である。
In the figure, 11 is n-type polycrystalline silicon made of a polycrystalline silicon substrate manufactured by the plasma spraying method described above, 12 is intrinsic (i-type) amorphous silicon,
13 is p-type amorphous silicon, 14 is ITO (Indium Tin)
The transparent conductive film made of oxide (Oxide), and 15 are back electrodes made of aluminum which are in contact with the n-type polycrystalline silicon 11.

【0021】この光電変換装置の製造方法としては、ま
ず、n型多結晶シリコン11上に、プラズマガスCVD
法によりi型非晶質シリコン12を形成する。次に、こ
のi型非晶質シリコン12上に、プラズマガスCVD法
によりp型非晶質シリコン13を形成する。
As a method of manufacturing this photoelectric conversion device, first, plasma gas CVD is performed on the n-type polycrystalline silicon 11.
The i-type amorphous silicon 12 is formed by the method. Next, p-type amorphous silicon 13 is formed on the i-type amorphous silicon 12 by the plasma gas CVD method.

【0022】引き続いて、このp型非晶質シリコン13
上に、窓側電極として透明導電膜14を形成し、最後
に、n型多結晶シリコン11の他主面に、裏面電極15
を形成して、光電変換装置を完成する。
Subsequently, the p-type amorphous silicon 13 is formed.
A transparent conductive film 14 is formed thereon as a window-side electrode, and finally, a back surface electrode 15 is formed on the other main surface of the n-type polycrystalline silicon 11.
Are formed to complete the photoelectric conversion device.

【0023】而して、以上のように構成された光電変換
装置においては、良好な光電変換特性を有することを確
認することができた。
Thus, it has been confirmed that the photoelectric conversion device having the above structure has good photoelectric conversion characteristics.

【0024】[0024]

【発明の効果】以上詳述したように、この発明によれ
ば、形成すべき半導体の特性に対し影響が少なく、かつ
この半導体よりも低い融点を有する低融点金属を主体と
する膜形成基板上に、プラズマ溶射半導体膜を形成し、
その後に、膜形成基板の金属の融点まで加熱昇温して膜
形成基板を溶融して、プラズマ溶射半導体膜を分離する
ことにより、高温プロセス、および半導体の切り出し加
工なしに半導体基板を得ることができる。
As described above in detail, according to the present invention, a film-forming substrate mainly composed of a low melting point metal having a small influence on the characteristics of the semiconductor to be formed and having a melting point lower than that of the semiconductor is formed. To form a plasma sprayed semiconductor film,
After that, by heating up to the melting point of the metal of the film forming substrate to melt the film forming substrate and separating the plasma sprayed semiconductor film, a semiconductor substrate can be obtained without a high temperature process and semiconductor cutting processing. it can.

【0025】この場合、プラズマ溶射半導体膜の膜厚制
御は容易であり、任意の膜厚が得られるとともに、材料
コストさらには製造コストの低減が可能となり、しか
も、膜形成基板の主体である低融点金属は、プラズマ溶
射半導体膜中に拡散して悪影響を及ぼしにくく、高い半
導体特性を確保することができる。
In this case, the film thickness of the plasma sprayed semiconductor film can be easily controlled, an arbitrary film thickness can be obtained, and the material cost and the manufacturing cost can be reduced, and moreover, it is a main component of the film forming substrate. The melting point metal hardly diffuses into the plasma sprayed semiconductor film and exerts no adverse effect, and high semiconductor characteristics can be secured.

【0026】また、プラズマ溶射シリコン半導体基板の
ような多結晶半導体基板を光電変換装置に応用する場合
は、100μm以下の膜厚が望ましいところ、前記製造
方法によれば所望の薄い膜厚を有する半導体基板が容易
に得られ、良好な光電変換特性を備えた光電変換装置を
得ることができる。
Further, when a polycrystalline semiconductor substrate such as a plasma sprayed silicon semiconductor substrate is applied to a photoelectric conversion device, a film thickness of 100 μm or less is desirable, but according to the manufacturing method, a semiconductor having a desired thin film thickness is obtained. A substrate can be easily obtained, and a photoelectric conversion device having good photoelectric conversion characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る一実施例である多結晶シリコン
基板の製造方法を説明するための製造工程図である。
FIG. 1 is a manufacturing process diagram for explaining a method for manufacturing a polycrystalline silicon substrate which is an embodiment according to the present invention.

【図2】同多結晶シリコン基板を用いた光電変換装置の
断面図である。
FIG. 2 is a sectional view of a photoelectric conversion device using the same polycrystalline silicon substrate.

【符号の説明】[Explanation of symbols]

1 錫基板(膜形成基板) 2 多結晶シリコン基板 2a 多結晶シリコン基板の裏面(分離面) 3 加熱プレート 11 n型多結晶シリコン基板 12 i型非晶質シリコン 13 p型非晶質シリコン 14 透明導電膜 15 裏面電極 1 Tin Substrate (Film Forming Substrate) 2 Polycrystalline Silicon Substrate 2a Back Side (Separation Surface) of Polycrystalline Silicon Substrate 3 Heating Plate 11 n-type Polycrystalline Silicon Substrate 12 i-type Amorphous Silicon 13 p-type Amorphous Silicon 14 Transparent Conductive film 15 Backside electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 形成すべき半導体基板の特性に対して影
響が少なく、かつこの半導体基板よりも低い融点を有す
る低融点金属を主体とする膜形成基板上に、前記半導体
基板の材料粉末を原材料として、プラズマ溶射法により
半導体膜を形成した後、前記膜形成基板をその構成金属
の融点まで加熱昇温して、これを溶融除去することを特
徴とする半導体基板の製造方法。
1. A raw material of a material powder of a semiconductor substrate is formed on a film-forming substrate mainly composed of a low melting point metal having a low melting point lower than that of the semiconductor substrate and having little influence on the characteristics of the semiconductor substrate to be formed. As a method for manufacturing a semiconductor substrate, a semiconductor film is formed by a plasma spraying method, the film forming substrate is heated to the melting point of the constituent metal and heated to be melted and removed.
JP3330023A 1991-11-18 1991-11-18 Manufacture of semiconductor substrate Pending JPH05144745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3330023A JPH05144745A (en) 1991-11-18 1991-11-18 Manufacture of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3330023A JPH05144745A (en) 1991-11-18 1991-11-18 Manufacture of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH05144745A true JPH05144745A (en) 1993-06-11

Family

ID=18227913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3330023A Pending JPH05144745A (en) 1991-11-18 1991-11-18 Manufacture of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH05144745A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317979A (en) * 2004-04-29 2005-11-10 Sychip Inc Integrated passive device
JPWO2013161523A1 (en) * 2012-04-26 2015-12-24 東洋鋼鈑株式会社 Cermet covering material, alloy powder for producing cermet covering material, and method for producing cermet covering material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123591A (en) * 1975-04-09 1976-10-28 Milnes Arthur Method of producing solar battery semiconductor
JPS56105623A (en) * 1980-01-29 1981-08-22 Agency Of Ind Science & Technol Manufacture of polycrystalline silicon semiconductor
JPS57183075A (en) * 1981-04-29 1982-11-11 Licentia Gmbh Method of producing semiconductor layer solarg battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123591A (en) * 1975-04-09 1976-10-28 Milnes Arthur Method of producing solar battery semiconductor
JPS56105623A (en) * 1980-01-29 1981-08-22 Agency Of Ind Science & Technol Manufacture of polycrystalline silicon semiconductor
JPS57183075A (en) * 1981-04-29 1982-11-11 Licentia Gmbh Method of producing semiconductor layer solarg battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317979A (en) * 2004-04-29 2005-11-10 Sychip Inc Integrated passive device
JPWO2013161523A1 (en) * 2012-04-26 2015-12-24 東洋鋼鈑株式会社 Cermet covering material, alloy powder for producing cermet covering material, and method for producing cermet covering material

Similar Documents

Publication Publication Date Title
JPH03278466A (en) Thin film transistor and manufacture thereof
US3746587A (en) Method of making semiconductor diodes
JPH1140832A (en) Thin-film solar cell and manufacture therefor
JP3262232B2 (en) Method for manufacturing semiconductor device
JPH05144745A (en) Manufacture of semiconductor substrate
JP2002185024A (en) Solar battery and manufacturing method therefor
JP2000156517A (en) Manufacture of compound semiconductor thin film and solar battery using the same
JP2854038B2 (en) Semiconductor element
JP2522024B2 (en) Method for manufacturing photoelectric conversion element
JPH0834177B2 (en) Method for manufacturing semiconductor polycrystalline thin film
JPH06140355A (en) Semiconductor device and manufacture thereof
JPH01268121A (en) Formation of ohmic electrode for silicon semiconductor element
JP4957042B2 (en) Manufacturing method of solar cell
JPH084095B2 (en) Method for manufacturing semiconductor device
JPH04274374A (en) Solar cell and manufacture thereof
JP2611434B2 (en) Schottky barrier diode manufacturing method
JPH08222526A (en) P-type and n-type identical ohmic material and its manufacture
JPH04212473A (en) Polycrystal semiconductor film and photovoltaic device using the same
JPS6298721A (en) Zn solid-state diffusing method for iii-v compound semiconductor
JPH04229664A (en) Photoelectromotive force device and its manufacture
JPS60117785A (en) Manufacture of thin film semiconductor element having microcrystal property
JP2664377B2 (en) Manufacturing method of light receiving device
JPH04133358A (en) Electrode for semiconductor device
JPH104203A (en) Polycrystalline silicon thin film solar battery and manufacture thereof
JPS6169122A (en) Manufacture of semiconductor device