JPH05144702A - Position detector and fine pattern forming system employing position detector - Google Patents

Position detector and fine pattern forming system employing position detector

Info

Publication number
JPH05144702A
JPH05144702A JP3301623A JP30162391A JPH05144702A JP H05144702 A JPH05144702 A JP H05144702A JP 3301623 A JP3301623 A JP 3301623A JP 30162391 A JP30162391 A JP 30162391A JP H05144702 A JPH05144702 A JP H05144702A
Authority
JP
Japan
Prior art keywords
wafer
lens
optical system
position detecting
fine pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3301623A
Other languages
Japanese (ja)
Other versions
JP3111556B2 (en
Inventor
Souichi Katagiri
創一 片桐
Tsuneo Terasawa
恒男 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03301623A priority Critical patent/JP3111556B2/en
Publication of JPH05144702A publication Critical patent/JPH05144702A/en
Application granted granted Critical
Publication of JP3111556B2 publication Critical patent/JP3111556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7084Position of mark on substrate, i.e. position in (x, y, z) of mark, e.g. buried or resist covered mark, mark on rearside, at the substrate edge, in the circuit area, latent image mark, marks in plural levels

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To achieve focusing without moving the optical element in a rear surface detecting optical system by optically correcting error due to shift of focus in a rear surface detecting optical system caused by fluctuation of the thickness of wafer. CONSTITUTION:Focus of a rear surface position detecting optical system 27 shifts every time when the thickness of wafer 3 varies, and thereby focusing of a demagnification lens 22 onto the wafer 3 is performed through gap sensors 36, 23. The wafer 3 is mounted on XYZtheta tables 28, 30, 31 being driven through a drive unit 33. Position of a reticle 19 is measured through a position detecting optical system 21 and a signal is delivered to a system control unit 37. Position of the wafer 3 is measured through the rear surface detecting optical system 27 and a signal is delivered to the system control unit 37. The system control unit 37 calculates relative positional shift and commands the XYZtheta table drive unit 33 to move the wafer 3 to a desired position. Consequently, mechanical scanning is not required in the optical correction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体製造方法及び装置
に係り、特に、X線露光装置、縮小投影露光装置あるい
は、電子線描画装置の位置合わせ精度を向上させるのに
好適なパターン形成装置とその使用方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing method and apparatus, and more particularly to a pattern forming apparatus suitable for improving the alignment accuracy of an X-ray exposure apparatus, reduction projection exposure apparatus or electron beam drawing apparatus. Regarding how to use it.

【0002】[0002]

【従来の技術】ウェーハプロセスの影響を受けにくい位
置検出光学系として、ウェーハ裏面に設けたマークの位
置を検出する裏面検出がある。この従来の裏面検出は、
特開昭63−224327号公報に記載のように、試料
の裏側のマークに対する焦点合わせを位置検出光学系の
一部の光学素子を移動させて焦点合わせを行っていた。
2. Description of the Related Art As a position detecting optical system which is not easily affected by a wafer process, there is backside detection for detecting the position of a mark provided on the backside of a wafer. This conventional backside detection is
As described in JP-A-63-224327, focusing on the mark on the back side of the sample is performed by moving some optical elements of the position detection optical system.

【0003】[0003]

【発明が解決しようとする課題】0.35μmルール以
降のデバイスの製造には、0.1μmより高いアライメ
ント精度が要求される。この精度は、従来のように試料
の表面のマークを検出する方法では、レジストの塗布む
らやマークのダメージ等に起因する検出誤差によって達
成が困難となる。このような背景から、特公昭55−4
6053号公報に記載のような試料の裏面マークを検出
する方法が有効となる。
Alignment accuracy higher than 0.1 μm is required for manufacturing devices of 0.35 μm rule or later. This accuracy is difficult to achieve in the conventional method of detecting the mark on the surface of the sample due to a detection error caused by uneven coating of the resist or damage to the mark. Against this background, Japanese Patent Publication No. 55-4
The method of detecting the back surface mark of the sample as described in Japanese Patent No. 6053 is effective.

【0004】このような試料の裏面マークを検出する場
合、特開昭63−224327号公報に記載のように表
面の回路パターンの形成される表面に露光光学系の焦点
を合わせるので、試料の厚さが変わると裏面検出光学系
の試料裏面に対する焦点がずれてしまう。このために裏
面検出光学系の光学素子の一部を動かして焦点合わせを
行う必要があった。この動作に伴い位置検出の基準位置
がずれて位置検出値が不安定になる問題があった。
When detecting the backside mark of such a sample, the exposure optical system is focused on the surface on which the circuit pattern on the surface is formed, as described in JP-A-63-224327. If the angle changes, the focus of the back surface detection optical system on the back surface of the sample shifts. For this reason, it is necessary to move a part of the optical element of the back surface detection optical system for focusing. With this operation, there is a problem that the reference position for position detection shifts and the position detection value becomes unstable.

【0005】本発明の目的は、裏面検出光学系の光学素
子を移動させること無く焦点合わせが可能な高精度で非
常に簡単な超小型の裏面マーク位置検出装置を提供し、
さらに本位置検出装置を用いた半導体製造用パターン形
成装置を提供することにある。
An object of the present invention is to provide a highly-accurate and very simple ultra-small backside mark position detecting device capable of focusing without moving the optical element of the backside detection optical system,
Another object of the present invention is to provide a semiconductor manufacturing pattern forming apparatus using the position detecting apparatus.

【0006】[0006]

【課題を解決するための手段】試料の傾きに依存する位
置検出手段と、位置検出手段の対物レンズとしてメリジ
オナル方向の半径位置によって焦点位置の異なるレン
ズ、試料保持手段及びその位置測定手段と、試料の微動
手段と、露光あるいは描画手段と、所望のパターンの形
成されたマスクあるいは描画データを備えることで達成
される。
SOLUTION: A position detecting means depending on the inclination of a sample, a lens having a different focal position depending on a radial position in the meridional direction as an objective lens of the position detecting means, a sample holding means and its position measuring means, and a sample This is achieved by providing the fine movement means, the exposure or drawing means, and the mask or drawing data on which a desired pattern is formed.

【0007】[0007]

【作用】ウェハ3上の格子状マークを単色光源で照明し
たときに生じる回折光のうち、±1次回折光の位相差か
らマーク2の位置を検出する位置検出方式を例にとって
説明する。例えば、図3に示すような光学系の構成をと
った場合を想定する。裏面検出を行う場合、図4に示す
ようなウェハ3の厚さに起因する検出誤差εを低減する
ことが重要である。この光学系は、ウェハ3裏面の傾き
による位置検出誤差εをキャンセルすることが可能であ
る。
The position detection method for detecting the position of the mark 2 from the phase difference of the ± 1st order diffracted light among the diffracted light generated when the lattice-shaped marks on the wafer 3 are illuminated by the monochromatic light source will be described as an example. For example, it is assumed that the optical system has the configuration shown in FIG. When performing the back surface detection, it is important to reduce the detection error ε caused by the thickness of the wafer 3 as shown in FIG. This optical system can cancel the position detection error ε due to the inclination of the back surface of the wafer 3.

【0008】まず、位置検出について説明する。図5に
公知のあらさ測定器の光学系の概略を示す。これは、ア
プライド オプティクス(APPLIED OPTICS)Vol.20,No.
4/p610に記載されている。これは基本的にノマルスキー
型干渉計を用いている。波長のわずかに異なる二周波を
直線偏光で出射する光源10を用いる。出射ビームは、
ビームスプリッタ15により二つに分けられる。一方の
ビームは、検光子16aによりヘテロダイン干渉を生じ
させて基準となる参照信号を検出する。他方のビーム
は、ウォラストンプリズム5に入射する。ここで、P偏
光(ν1)とS偏光(ν2)の光が分離し、対物レンズ3によ
りウェハ面上の二点に絞られる。試料面から反射した光
は、再び、対物レンズ3を透過した後、ウォラストンプ
リズム5に入射する。ここで、分割された二周波は、再
び、重なり合い一本のビームとなって、検光子16bに
導かれる。ここで、検光子16bは、傾き検出光11の
偏光面に対し互いに45°になるように調節されてい
る。これによって、ヘテロダイン干渉を生じさせ、検出
信号を得る。この参照信号とこの検出信号の周期は同一
である。よって、試料1が傾いた場合、検出光11a、
11bの光路差が相対的に変わり、参照信号に対して検
出信号の位相が変化することになる。
First, the position detection will be described. FIG. 5 schematically shows an optical system of a known roughness measuring instrument. This is APPLIED OPTICS Vol.20, No.
4 / p610. This basically uses a Nomarski interferometer. A light source 10 which emits two frequencies having slightly different wavelengths by linearly polarized light is used. The output beam is
It is divided into two by the beam splitter 15. One beam causes heterodyne interference by the analyzer 16a to detect a reference signal serving as a reference. The other beam enters the Wollaston prism 5. Here, the P-polarized light (ν 1 ) and the S-polarized light (ν 2 ) are separated and focused by the objective lens 3 into two points on the wafer surface. The light reflected from the sample surface passes through the objective lens 3 again and then enters the Wollaston prism 5. Here, the divided two frequencies are overlapped again to form one beam, which is guided to the analyzer 16b. Here, the analyzers 16b are adjusted to be at 45 ° with respect to the polarization plane of the tilt detection light 11. This causes heterodyne interference and obtains a detection signal. The reference signal and the detection signal have the same cycle. Therefore, when the sample 1 is tilted, the detection light 11a,
The optical path difference of 11b relatively changes, and the phase of the detection signal changes with respect to the reference signal.

【0009】この検出原理を基本的に用いて裏面マーク
2の位置検出を行なえるようにしたものを図3に示す。
この検出方式と同様に二周波レーザ10で被検面を照明
する。この二つのビーム11は、裏面に設けられた格子
状マーク2を照明する。このビーム11は、それぞれP
偏光11aとS偏光11bにわかれている。このとき生
じる回折光のうち、各々の±一次光12ab、13ab
のみを考える。これらの回折光12ab、13abの位
相は、裏面マーク2の傾きと位置によって変化する。こ
の位相変化を図3に示すように参照信号を基準として検
出する。検出光12、13は、対物レンズ1により平行
ビームとされ、フーリェ変換面にてそれぞれ二組の光の
うち片方ずつを偏光ビームスプリッタ4で選び取る。こ
のビーム13aと12bを集光レンズ6で集光し、これ
ら二つのビームの交差点にウォラストンプリズム5bを
おいてヘテロダイン干渉を生じさせ、光電変換器7aで
検出する。検出される位相差φ1は、図4に示すよう
に、マークの位置をδ、マークのピッチをP、検出光の
波長をλ、ウェハ3の基準面からのずれ量をtとする
と、
FIG. 3 shows a structure in which the position of the back mark 2 can be detected by basically using this detection principle.
Similar to this detection method, the dual-frequency laser 10 illuminates the test surface. The two beams 11 illuminate the lattice-shaped mark 2 provided on the back surface. This beam 11 is P
It is divided into polarized light 11a and S polarized light 11b. Of the diffracted light generated at this time, the respective ± first-order lights 12ab and 13ab
Think only. The phases of these diffracted lights 12ab and 13ab change depending on the tilt and position of the back surface mark 2. This phase change is detected using the reference signal as a reference as shown in FIG. The detection lights 12 and 13 are made into parallel beams by the objective lens 1, and one of the two lights is selected by the polarization beam splitter 4 on the Fourier transform surface. These beams 13a and 12b are condensed by a condenser lens 6, a Wollaston prism 5b is placed at the intersection of these two beams to cause heterodyne interference, and they are detected by a photoelectric converter 7a. As shown in FIG. 4, when the mark position is δ, the mark pitch is P, the wavelength of the detection light is λ, and the deviation amount from the reference plane of the wafer 3 is t, the detected phase difference φ 1 is

【0010】[0010]

【数2】 [Equation 2]

【0011】となる。このとき傾きとウェハの厚さを
d、ウェハの傾きをθ、二つのビーム11の間隔をlと
すると、これに起因する表面位置での誤差εは、
[0011] At this time, if the inclination and the thickness of the wafer are d, the inclination of the wafer is θ, and the interval between the two beams 11 is 1, the error ε in the surface position due to this is

【0012】[0012]

【数3】 [Equation 3]

【0013】となる。ここで、[0013] here,

【0014】[0014]

【数4】 [Equation 4]

【0015】である。このときに、このεとtに起因す
る位相を等しく取るようにPとlを選べば良い。つま
り、
[0015] At this time, P and l may be selected so that the phases caused by ε and t are equal. That is,

【0016】[0016]

【数5】 [Equation 5]

【0017】が成り立てば良い。(2)(3)(4)(5)式よ
り次の式が満たされれば良いことがわかる。
It suffices if From the expressions (2), (3), (4) and (5), it is understood that the following expressions should be satisfied.

【0018】[0018]

【数6】 [Equation 6]

【0019】上式より、例えば、検出光源10としてH
e−Neの波長λ=633nm、試料3の厚さd=60
0μm、裏面マーク2のピッチP=6μmとすると、l
を63.3μmとすれば良いことになる。このlは、ウ
ォラストンプリズム5aのビーム分離角度ξと対物レン
ズ1の焦点距離fによって決められる。つまり、所望の
ビーム間距離lが既知の場合、以下の式によって決定さ
れる。
From the above equation, for example, H is used as the detection light source 10.
e-Ne wavelength λ = 633 nm, sample 3 thickness d = 60
Assuming that 0 μm and the pitch P of the rear surface marks 2 = 6 μm,
Should be 63.3 μm. This l is determined by the beam separation angle ξ of the Wollaston prism 5a and the focal length f of the objective lens 1. That is, when the desired inter-beam distance 1 is known, it is determined by the following formula.

【0020】[0020]

【数7】 [Equation 7]

【0021】このような分離角度をもつウォラストンプ
リズムを用いれば良い。
A Wollaston prism having such a separation angle may be used.

【0022】また、本装置を用いて厚さの異なるウェハ
を加工する場合、(数6)を変形して求めた次式に基づい
てマーク2のピッチPを定めれば良い。
Further, when processing wafers having different thicknesses by using this apparatus, the pitch P of the marks 2 may be determined based on the following equation obtained by modifying (Equation 6).

【0023】[0023]

【数8】 [Equation 8]

【0024】(数8)を見るとわかるようにウェハ3の
厚さdとマークのピッチPには、比例関係がある。つま
り、厚さdの異なるウェハ3を用いた場合、マーク2の
ピッチPはそれに伴って変える必要がある。ここで普
通、集積回路パターンを形成する表面側に露光光学系の
焦点を合わせるために、裏面検出光学系に対しては図2
に示すようにデフォーカスΔfを生じることになる。こ
のウェハの厚さdの変化量がデフォーカス量Δfとなる
ので、このデフォーカス量Δfをキャンセルする球面収
差を対物レンズ1に与えれば良い。例えば、対物レンズ
1の焦点距離fが30mm、ウェハの厚さdが600μ
mを設計上の値とした場合を用いて説明する。一般に、
±一次回折光の回折角度は、次式で表される。
As can be seen from (Equation 8), there is a proportional relationship between the thickness d of the wafer 3 and the mark pitch P. That is, when the wafers 3 having different thicknesses d are used, the pitch P of the marks 2 needs to be changed accordingly. Normally, in order to focus the exposure optical system on the front surface side on which the integrated circuit pattern is formed, as shown in FIG.
As shown in FIG. Since the amount of change in the wafer thickness d becomes the defocus amount Δf, it is sufficient to give the objective lens 1 spherical aberration that cancels the defocus amount Δf. For example, the focal length f of the objective lens 1 is 30 mm and the wafer thickness d is 600 μ.
The case where m is a designed value will be described. In general,
The diffraction angle of ± first-order diffracted light is expressed by the following equation.

【0025】[0025]

【数9】 [Equation 9]

【0026】ウェハの厚さdが500μmの場合、デフ
ォーカス量Δfは、100μmとなる。この時のマーク
2のピッチPは、(数8)より5μmである。この場合
の回折角度は、(数9)より算出できる。これを次に示
す(数10)に代入すると回折光の対物レンズ1へのメ
リジオナル方向rの入射位置がわかる。(図1参照)
When the wafer thickness d is 500 μm, the defocus amount Δf is 100 μm. The pitch P of the marks 2 at this time is 5 μm from (Equation 8). The diffraction angle in this case can be calculated from (Equation 9). By substituting this into (Formula 10) shown below, the incident position of the diffracted light on the objective lens 1 in the meridional direction r can be known. (See Figure 1)

【0027】[0027]

【数10】 [Equation 10]

【0028】以下同様にして(数8)、(数9)、(数
10)より、対物レンズ1には、図6に示す球面収差が
必要になることがわかる。また、一般的に次式の(数
1)の表す球面収差を対物レンズ1に与えれば良いとも
いえる。
Similarly, from (Equation 8), (Equation 9), and (Equation 10), it is understood that the objective lens 1 needs the spherical aberration shown in FIG. It can also be said that it is generally sufficient to give the objective lens 1 the spherical aberration represented by the following equation (Equation 1).

【0029】[0029]

【数11】 [Equation 11]

【0030】このような球面収差を持つ対物レンズ1を
用いればウェハの厚さの異なる場合でも良好な焦点合わ
せが可能である。同様の効果は、同等の球面収差を持つ
プリズム等の光学素子を用いても得られる。
By using the objective lens 1 having such spherical aberration, good focusing is possible even when the thickness of the wafer is different. The same effect can be obtained by using an optical element such as a prism having the same spherical aberration.

【0031】[0031]

【実施例】〈実施例1〉本発明の一実施例を詳細に述べ
る。作用の項で説明した裏面検出光学系を用いる。
EXAMPLE 1 An example of the present invention will be described in detail. The back surface detection optical system described in the section of action is used.

【0032】図7に裏面検出アライメント法を縮小投影
露光装置に適用した例を示す。一般に縮小レンズ22
は、コラム(図示せず)に機械的に固定であり、裏面検
出光学系27は、ベース32に固定されるため、縮小レ
ンズ22の焦点位置は常に固定である。そのために、裏
面位置検出光学系27の焦点は、ウェハ3の厚さが異な
るたびにずれることになる。本発明は上記の裏面検出光
学系27を用いた場合に、この問題を解決する方法にあ
る。
FIG. 7 shows an example in which the back surface detection alignment method is applied to a reduction projection exposure apparatus. Generally a reduction lens 22
Is mechanically fixed to a column (not shown), and since the back surface detection optical system 27 is fixed to the base 32, the focal position of the reduction lens 22 is always fixed. Therefore, the focus of the back surface position detection optical system 27 shifts each time the thickness of the wafer 3 changes. The present invention resides in a method for solving this problem when the above-mentioned back surface detection optical system 27 is used.

【0033】縮小投影露光装置は、集積回路のパターン
の描かれたレティクル19を照明光学系17で照明し、
縮小投影レンズ22を通してウェハ3上に縮小転写する
装置である。露光の手順は、次のように行われる。縮小
レンズ22とウェハ3の焦点合わせはギャップセンサ3
6、23で行う。ギャップセンサ36、23は、空気差
圧を利用するものが簡単な構成で精度良く位置を検出で
きる。また、ウェハ3は、XYZθテーブル28、3
0、31上に載置され所望の位置に移動ができる。この
XYZθテーブル28、30、31の位置は、レーザ測
長計25で測定され、システム制御ユニット37で処理
される。また、XYZθテーブル28、30、31は、
駆動ユニット33で駆動される。レティクル19とウェ
ハ3の位置は精度良く相対的に位置合わせする必要があ
る。レティクル19の位置は、位置検出光学系21で測
定されシステム制御ユニット37に信号が送られる。ウ
ェハ3の位置は、裏面検出光学系27で測定されてシス
テム制御ユニット37に信号が送られる。そして、シス
テム制御ユニット37で相対位置ずれ量を算出し、XY
Zθテーブル駆動ユニット33に指令してウェハ3を所
望の位置に移動する。その後に、レティクル19を照明
して、ウェハ3上の感光膜上にパターンを形成する。こ
の時、裏面検出光学系27の対物レンズ1として、作用
の項で述べた球面収差をもつものを用いると、ウェハ3
の厚さが異なる場合にも良好なアライメント精度を実現
できる。
The reduction projection exposure apparatus illuminates a reticle 19 on which a pattern of an integrated circuit is drawn with an illumination optical system 17,
This is an apparatus for reducing and transferring onto the wafer 3 through the reduction projection lens 22. The exposure procedure is performed as follows. The focusing of the reduction lens 22 and the wafer 3 is performed by the gap sensor 3
Perform at 6 and 23. The gap sensors 36 and 23, which use air differential pressure, have a simple structure and can detect the position with high accuracy. Further, the wafer 3 has XYZθ tables 28, 3
It is placed on 0, 31 and can be moved to a desired position. The positions of the XYZθ tables 28, 30, 31 are measured by the laser length meter 25 and processed by the system control unit 37. Further, the XYZθ tables 28, 30, and 31 are
It is driven by the drive unit 33. The positions of the reticle 19 and the wafer 3 need to be accurately aligned relative to each other. The position of the reticle 19 is measured by the position detection optical system 21 and a signal is sent to the system control unit 37. The position of the wafer 3 is measured by the back surface detection optical system 27 and a signal is sent to the system control unit 37. Then, the system control unit 37 calculates the relative positional deviation amount, and XY
The Zθ table drive unit 33 is instructed to move the wafer 3 to a desired position. After that, the reticle 19 is illuminated to form a pattern on the photosensitive film on the wafer 3. At this time, if the objective lens 1 of the back surface detection optical system 27 having the spherical aberration described in the section of operation is used, the wafer 3
Good alignment accuracy can be achieved even when the thicknesses of the two are different.

【0034】〈実施例2〉次に、図8により本発明を反
射型投影露光装置に応用した場合について説明する。露
光光源40より発生する光を照明光学ミラー41で集光
し、パターン形成されているマスク42を照明する。反
射した光は、投影光学ミラー群44、45、46、47
で反射され、ウェハ3上の感光膜を照明してパターンを
形成する。反射型光学システムの場合は、マスク42全
面を一度に照明できないので、一般には、図8に示すよ
うにマスク42とウェハ3を同期走査して露光する。ま
た、マスク42ウェハ3間の相対位置合わせは、実施例
1と同様に本発明の裏面検出光学系27を用いる。位置
合わせ方法については実施例1と同じである。
<Second Embodiment> Next, a case where the present invention is applied to a reflection type projection exposure apparatus will be described with reference to FIG. The light generated from the exposure light source 40 is condensed by the illumination optical mirror 41 to illuminate the mask 42 on which the pattern is formed. The reflected light is reflected by the projection optical mirror group 44, 45, 46, 47.
And is illuminated by the photosensitive film on the wafer 3 to form a pattern. In the case of the reflection type optical system, since the entire surface of the mask 42 cannot be illuminated at one time, generally, the mask 42 and the wafer 3 are synchronously scanned and exposed as shown in FIG. Further, for the relative alignment between the masks 42 and the wafer 3, the back surface detection optical system 27 of the present invention is used as in the first embodiment. The alignment method is the same as in the first embodiment.

【0035】〈実施例3〉本発明の裏面位置検出光学系
27は、電子線露光装置にも適用可能である。図9を用
いて説明する。
<Third Embodiment> The back surface position detecting optical system 27 of the present invention is also applicable to an electron beam exposure apparatus. This will be described with reference to FIG.

【0036】電子線描画装置の位置合わせにも適用可能
なことは明らかである。
It is obvious that the method can also be applied to the alignment of the electron beam drawing apparatus.

【0037】図9に示すように、描画データ記憶部57
に格納された図形を電子銃58と電子レンズ59によっ
てウェハ3に所望のパターンを形成する電子線描画装置
のウェハ3の裏面に検出器27を設置する。
As shown in FIG. 9, the drawing data storage unit 57.
The detector 27 is installed on the back surface of the wafer 3 of the electron beam drawing apparatus for forming a desired pattern on the wafer 3 by the electron gun 58 and the electron lens 59.

【0038】本実施例によれば、電子線描画装置の位置
合わせも今までにない高精度で行なうことができる。
According to this embodiment, the alignment of the electron beam drawing apparatus can be performed with a higher precision than ever before.

【0039】[0039]

【発明の効果】ウェハの厚さの変化(数百μm)による
裏面検出光学系の焦点ずれに起因する誤差が光学的に補
正される。従って、従来必要であった補正のための機械
的な走査は必要が無いので、これに伴う誤差の低減がで
きる。
According to the present invention, the error due to the defocus of the back surface detection optical system due to the change in the thickness of the wafer (several hundred μm) is optically corrected. Therefore, there is no need for mechanical scanning for correction, which was required in the past, so that errors associated therewith can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のレンズの説明図。FIG. 1 is an explanatory view of a lens of the present invention.

【図2】本発明のレンズを位置検出光学系に応用した説
明図。
FIG. 2 is an explanatory diagram in which the lens of the present invention is applied to a position detection optical system.

【図3】裏面位置検出光学系の説明図。FIG. 3 is an explanatory diagram of a back surface position detection optical system.

【図4】裏面位置検出光学系の機能の説明図。FIG. 4 is an explanatory diagram of a function of a back surface position detection optical system.

【図5】公知のあらさ測定機の説明図。FIG. 5 is an explanatory view of a known roughness measuring machine.

【図6】球面収差量の位置例を示す説明図。FIG. 6 is an explanatory diagram showing a position example of a spherical aberration amount.

【図7】本発明を縮小投影露光装置に適用した説明図。FIG. 7 is an explanatory diagram in which the present invention is applied to a reduction projection exposure apparatus.

【図8】本発明を反射型縮小投影露光装置に適用した説
明図。
FIG. 8 is an explanatory diagram in which the present invention is applied to a reflective reduction projection exposure apparatus.

【図9】本発明を電子線描画装置に適用した説明図。FIG. 9 is an explanatory diagram in which the present invention is applied to an electron beam drawing apparatus.

【符号の説明】[Explanation of symbols]

1…対物レンズ、2…マーク、3…ウェハ、19…レテ
ィクル位置検出光学系、27…裏面位置検出光学系。
1 ... Objective lens, 2 ... Mark, 3 ... Wafer, 19 ... Reticle position detecting optical system, 27 ... Back surface position detecting optical system.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 8831−4M 341 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 8831-4M 341

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基板上に形成された格子状マークを単色光
源で照明し、生じる回折光をレンズで受けて前記基板の
位置検出をする位置検出装置において、所定の球面収差
をもっているレンズを含むことを特徴とする位置検出装
置。
1. A position detecting device for illuminating a lattice-shaped mark formed on a substrate with a monochromatic light source and receiving the diffracted light generated by a lens to detect the position of the substrate, which includes a lens having a predetermined spherical aberration. A position detecting device characterized by the above.
【請求項2】請求項1に記載のレンズは、単レンズであ
って、軸対称な非球面レンズである位置検出装置。
2. The position detecting device according to claim 1, wherein the lens is a single lens and is an axially symmetric aspherical lens.
【請求項3】請求項1に記載のレンズは二枚以上の貼り
あわせ、あるいは組合せレンズであって、前記二枚以上
のレンズは前記単色光源から生じる光に対して互いに屈
折率が異なる球面レンズである位置検出装置。
3. The lens according to claim 1, which is a cemented or combined lens of two or more lenses, wherein the two or more lenses have different refractive indexes with respect to light emitted from the monochromatic light source. Position detection device.
【請求項4】請求項1に記載の位置検出装置において、
前記格子状マークのピッチをP、前記単色光源から生じ
る光の波長をλ、前記レンズの中心からメリジオナル方
向への距離をr、前記レンズの焦点距離をfとしたと
き、所定の球面収差Δfを実質的に 【数1】 とした位置検出装置。
4. The position detecting device according to claim 1, wherein
When the pitch of the grid-like marks is P, the wavelength of light emitted from the monochromatic light source is λ, the distance from the center of the lens in the meridional direction is r, and the focal length of the lens is f, a predetermined spherical aberration Δf is obtained. Substantially And position detection device.
【請求項5】基板の裏面に形成したマークを検出して前
記基板の位置を検出する位置検出手段と、前記基板の表
面に微細パターンを形成する微細パターン形成手段を具
備した微細パターン形成装置において、前記位置検出手
段として、請求項1に記載の位置検出装置を用いた微細
パターンの形成装置。
5. A fine pattern forming apparatus comprising position detecting means for detecting a mark formed on the back surface of a substrate to detect the position of the substrate, and fine pattern forming means for forming a fine pattern on the front surface of the substrate. A fine pattern forming apparatus using the position detecting device according to claim 1 as the position detecting means.
JP03301623A 1991-11-18 1991-11-18 Fine pattern forming equipment Expired - Fee Related JP3111556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03301623A JP3111556B2 (en) 1991-11-18 1991-11-18 Fine pattern forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03301623A JP3111556B2 (en) 1991-11-18 1991-11-18 Fine pattern forming equipment

Publications (2)

Publication Number Publication Date
JPH05144702A true JPH05144702A (en) 1993-06-11
JP3111556B2 JP3111556B2 (en) 2000-11-27

Family

ID=17899176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03301623A Expired - Fee Related JP3111556B2 (en) 1991-11-18 1991-11-18 Fine pattern forming equipment

Country Status (1)

Country Link
JP (1) JP3111556B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0769726A3 (en) * 1995-10-20 1997-11-26 Ushiodenki Kabushiki Kaisha Process for projection exposure of a workpiece with alignment marks on the rear side and device for executing the process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0769726A3 (en) * 1995-10-20 1997-11-26 Ushiodenki Kabushiki Kaisha Process for projection exposure of a workpiece with alignment marks on the rear side and device for executing the process
US5874190A (en) * 1995-10-20 1999-02-23 Ushiodenki Kabushiki Kaisha Process for projection exposure of a workpiece with back alignment marks

Also Published As

Publication number Publication date
JP3111556B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
EP0906590B1 (en) Lithographic projection apparatus with off-axis alignment unit
US6844918B2 (en) Alignment system and methods for lithographic systems using at least two wavelengths
US7442908B2 (en) Method for optically detecting deviations of an image plane of an imaging system from the surface of a substrate
JP4332486B2 (en) Method and apparatus for repeatedly projecting a mask pattern onto a substrate using time-saving height measurement
US6614535B1 (en) Exposure apparatus with interferometer
US6122058A (en) Interferometer system with two wavelengths, and lithographic apparatus provided with such a system
JP4023695B2 (en) Alignment apparatus and lithographic apparatus provided with the apparatus
US6421124B1 (en) Position detecting system and device manufacturing method using the same
JP2001514804A (en) Alignment apparatus and lithographic apparatus including such an apparatus
US6417922B1 (en) Alignment device and lithographic apparatus comprising such a device
US5838450A (en) Direct reticle to wafer alignment using fluorescence for integrated circuit lithography
US7684050B2 (en) Shape measuring apparatus, shape measuring method, and exposure apparatus
US6198527B1 (en) Projection exposure apparatus and exposure method
JPH09246160A (en) Exposing aligner
TWI358529B (en) Shape measuring apparatus, shape measuring method,
US5671057A (en) Alignment method
US5726757A (en) Alignment method
JP2000012445A (en) Position detecting method and apparatus, and aligner equipped with the apparatus
JP3111556B2 (en) Fine pattern forming equipment
JPH06104158A (en) Position detecting device
EP1400859A2 (en) Alignment system and methods for lithographic systems using at least two wavelengths
JP3305058B2 (en) Exposure method and apparatus
JP3209189B2 (en) Exposure apparatus and method
JPH055604A (en) Position detection method and pattern forming method and apparatus using the same
Katagiri et al. Novel alignment technique for 0.1-micron lithography using the wafer rear surface and canceling tilt effect

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees