JPH05144626A - Insulating material for superconducting oxide wire and manufacture of insulated wire - Google Patents

Insulating material for superconducting oxide wire and manufacture of insulated wire

Info

Publication number
JPH05144626A
JPH05144626A JP3308719A JP30871991A JPH05144626A JP H05144626 A JPH05144626 A JP H05144626A JP 3308719 A JP3308719 A JP 3308719A JP 30871991 A JP30871991 A JP 30871991A JP H05144626 A JPH05144626 A JP H05144626A
Authority
JP
Japan
Prior art keywords
insulating material
wire
oxide
insulated
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3308719A
Other languages
Japanese (ja)
Inventor
Hiroko Higuma
弘子 樋熊
Makoto Utsunomiya
真 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3308719A priority Critical patent/JPH05144626A/en
Publication of JPH05144626A publication Critical patent/JPH05144626A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide the title manufacturing method of insulating material of superconducting oxide wire capable of increasing the insulating strength and thinning the thickness of the insulating layer without losing the superconducting characteristics of inner superconductor as well as the wire using this insulating material. CONSTITUTION:A superconducting oxide wire rod sheathed by an insulating material of the wire rod containing 30-100wt.% of silicon oxide or at least one or more elements out of Al2O3, BeO, ThO2, MgO, MgAl2O4, ZrO2, Si3N4, etc., as the other components and a metal mainly comprising metallic silver is coated with a kneaded material comprising a cloth or an organic binder and the insulating material or a sol to be turned into an oxide by decomposition. Furthermore, an insulated wire is to be manufactured by baking the insulating material at the temperature of 3-20 deg.C higher than the optimum baking temperature of not insulated wire rod.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導線を巻き
線して超電導コイル化するための線材の絶縁材料および
絶縁した線の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating material for a wire for winding an oxide superconducting wire into a superconducting coil and a method for producing an insulated wire.

【0002】[0002]

【従来の技術】従来のNbAl、Nb3Snなどの金属系または
化合物系の超電導線材の絶縁材としては、主成分がSiO2
のクオーツが一般に用いられており、強度などにおいて
も実績がある。しかしながら、酸化物超電導線材の絶縁
材料として、ほとんどのばあいアルミナが用いられてい
る。
2. Description of the Related Art As an insulating material for a conventional metal-based or compound-based superconducting wire such as NbAl or Nb 3 Sn, the main component is SiO 2
Quartz is commonly used and has a proven track record in terms of strength. However, in most cases, alumina is used as the insulating material for the oxide superconducting wire.

【0003】酸化物超電導線材の絶縁プロセスは、金属
銀を主体とする金属でシース化されている酸化物超電導
線材に絶縁材であるアルミナ繊維の不織布をかぶせ、引
き続きコイル状に巻き線したのち、シース内部の超電導
体を焼成するために同時に絶縁体も焼成工程を経るとい
うものである。したがって、前述したように、熱処理工
程を経るため、耐熱性のセラミックス材料が酸化物超電
導線材の絶縁材料として用いられている。これらの技術
は、たとえば雑誌(日経超電導 1990.12.10号、p.12-1
3)などに掲載されている。
In the insulation process of an oxide superconducting wire, an oxide superconducting wire which is sheathed with a metal mainly composed of metallic silver is covered with a non-woven fabric of alumina fiber which is an insulating material, and subsequently wound in a coil shape. In order to fire the superconductor inside the sheath, the insulator is also subjected to the firing process at the same time. Therefore, as described above, a heat-resistant ceramic material is used as an insulating material for the oxide superconducting wire because it undergoes a heat treatment step. These technologies are described in, for example, magazines (Nikkei Superconductivity 1990.12.10, p.12-1).
3) and so on.

【0004】[0004]

【発明が解決しようとする課題】主成分がSiO2のクオー
ツは、強度には問題がないが、酸化物超電導線材に適用
すると、絶縁しないものの特性、たとえば線材の臨界電
流が極端に低下する。
Quartz, whose main component is SiO 2 , has no problem in strength, but when it is applied to an oxide superconducting wire, the characteristics of non-insulating material, for example, the critical current of the wire, are extremely lowered.

【0005】一方、アルミナ主体の絶縁材料は、まず強
度が弱いという問題がある。強度の弱さの最大の原因は
焼成工程でアルミナが焼結されないことにある。むし
ろ、アルミナ繊維の不織布が焼成工程で粉々になって強
度が低下する傾向にある。また、アルミナ繊維の不織布
を用いないばあい、たとえば、粉末を有機バインダに混
練して塗布する方法においても、若干の付着力の改善は
あるものの、結局、アルミナは焼結しないため、塗布膜
が容易に破壊し、短絡しやすくなる。もう一つの問題点
は、アルミナの繊維が曲げ強度が弱く、また、細くて長
い繊維が作りにくいため、薄くて緻密な不織布がえられ
にくく、高価なものになる。このことは、コイル設計上
では、絶縁層が厚くなるため、コンパクトに密に巻き線
ができなくなり、容量と巻き線の回数でコイルの発生磁
場が決まるため大変不利となる。
On the other hand, the insulating material mainly composed of alumina has a problem that its strength is weak. The biggest cause of weakness is that alumina is not sintered in the firing process. Rather, the non-woven fabric of alumina fibers tends to be shattered during the firing process, resulting in a decrease in strength. Further, when a non-woven fabric of alumina fiber is not used, for example, even in a method of kneading powder with an organic binder and applying it, although there is a slight improvement in the adhesive force, in the end, since alumina does not sinter, the coating film is not formed. It easily breaks and is easily short-circuited. Another problem is that alumina fibers have low bending strength, and it is difficult to form thin and long fibers, which makes it difficult to obtain thin and dense nonwoven fabrics, which makes them expensive. This is very disadvantageous in terms of coil design, because the insulating layer becomes thicker, and compact and dense winding cannot be performed, and the magnetic field generated by the coil is determined by the capacity and the number of windings.

【0006】本発明は、このような問題点を解消するた
めになされたもので、内部の超電導体の超電導特性を阻
害することなく、絶縁強度を高め、絶縁層の厚みを薄く
することを容易に可能とすることのできる酸化物超電導
線材の絶縁材料ならびにその絶縁材料で絶縁した線の製
造方法を供給することを目的としている。
The present invention has been made to solve such a problem, and it is easy to increase the insulation strength and reduce the thickness of the insulating layer without impairing the superconducting characteristics of the internal superconductor. It is an object of the present invention to provide an insulating material for an oxide superconducting wire and a method for manufacturing a wire insulated by the insulating material, which are capable of achieving the above.

【0007】[0007]

【課題を解決するための手段】本発明にかかわる酸化物
超電導線材の絶縁材料は、酸化ケイ素を30重量%以上10
0重量%以下含有し、ばあいによってはその他の成分と
してAl2O3、BeO、ThO2、MgO、MgAl2O4、ZrO2、Si3N4
どを少なくとも1種以上含有しているものである。
The insulating material of the oxide superconducting wire according to the present invention contains silicon oxide in an amount of 30% by weight or more and 10% by weight or more.
Containing 0% by weight or less, and depending on the case, at least one or more of Al 2 O 3 , BeO, ThO 2 , MgO, MgAl 2 O 4 , ZrO 2 and Si 3 N 4 as other components. Is.

【0008】また、金属銀を主体とする金属でシース化
されている酸化物超電導線材を、本発明の絶縁材料で絶
縁する。
Further, an oxide superconducting wire which is sheathed with a metal composed mainly of metallic silver is insulated with the insulating material of the present invention.

【0009】本発明にかかわる絶縁した線の製造方法
は、金属銀を主体とする金属でシース化されている酸化
物超電導線材を、絶縁材料を布または有機バインダと絶
縁材料を混練したペーストまたは分解によって酸化物と
なるゾルなどによって被覆し、絶縁しない線材の最適焼
成温度より3℃から20℃高い温度で焼成するものであ
る。
The method of manufacturing an insulated wire according to the present invention is a method in which an oxide superconducting wire which is sheathed with a metal mainly composed of metallic silver is used as a paste or decomposed by kneading an insulating material with a cloth or an organic binder. It is coated with sol, which becomes an oxide, and fired at a temperature that is 3 ° C to 20 ° C higher than the optimum firing temperature of the non-insulated wire.

【0010】[0010]

【作用】酸化ケイ素を30重量%以上100重量%以下含有
していることで著しく絶縁層の付着力が改善される。こ
の原因について調べたところ、金属銀が絶縁層のごく薄
い界面に拡散して化合物層を形成しているため、SiO2
強固に結合していることがわかった。また、その他の成
分として、Al2O3、BeO、ThO2、MgO、MgAl2O4、ZrO2、Si
3N4を含んでいるばあいは、これらにはSiO2のような結
合作用は持たないが、SiO2と同時に添加されていること
で前記の化合物層がこれらの添加物を結合している。
[Function] By containing 30% by weight or more and 100% by weight or less of silicon oxide, the adhesive force of the insulating layer is remarkably improved. Upon investigating the cause of this, it was found that the metallic silver diffused to the very thin interface of the insulating layer to form a compound layer, so that SiO 2 was firmly bonded. In addition, as other components, Al 2 O 3 , BeO, ThO 2 , MgO, MgAl 2 O 4 , ZrO 2 , Si
When 3 N 4 is contained, they do not have a binding action like SiO 2 , but they are added at the same time as SiO 2 so that the compound layer binds these additives. ..

【0011】酸化ケイ素を30重量%以上100重量%以下
含有していることは、比較的長い繊維が容易にえられた
り、さまざまな塗布方法ができるなどのプロセス上のメ
リットがある。
Containing 30% by weight or more and 100% by weight or less of silicon oxide has a merit in the process such that a relatively long fiber can be easily obtained and various coating methods can be performed.

【0012】SiO2を含む絶縁材料が超電導特性を劣化さ
せている原因を本発明者らは解明した。Siが銀シース内
部に拡散して悪影響を及ぼすということは全くなく、単
に超電導体の融点を高めているということがわかった。
酸化物超電導材料は、焼成温度に大変敏感であるため、
そのため良好な超電導特性がえられていなかったことが
わかった。したがって、本発明では絶縁材料を絶縁しな
い線材の最適焼成温度より3℃から20℃高い温度で焼成
するため、融点の高温化による特性劣化を回避し、良好
な超電導特性がえられる。
The present inventors have clarified the cause that the insulating material containing SiO 2 deteriorates the superconducting property. It was found that Si never diffuses into the silver sheath and exerts an adverse effect, but merely raises the melting point of the superconductor.
Oxide superconducting materials are very sensitive to firing temperature,
Therefore, it was found that good superconducting properties were not obtained. Therefore, in the present invention, since the insulating material is fired at a temperature higher by 3 ° C. to 20 ° C. than the optimum firing temperature of the wire material that does not insulate, characteristic deterioration due to a higher melting point can be avoided and good superconducting characteristics can be obtained.

【0013】添加物を加えることで融点の高温側へのシ
フトを少なくするようにコントロールすることができ
る。すなわち、良好な特性の出せる焼成温度が絶縁によ
って高くなりすぎて、銀の融点との温度マージンをなる
べく多くとるために、添加物が有効に働く。
The addition of additives can be controlled so as to reduce the shift of the melting point to the high temperature side. That is, the firing temperature at which good characteristics can be obtained becomes too high due to insulation, and the additive works effectively in order to maximize the temperature margin with the melting point of silver.

【0014】[0014]

【実施例】以下に、本発明について、実施例と比較例を
あげて詳細に説明する。
EXAMPLES The present invention will be described in detail below with reference to examples and comparative examples.

【0015】[実施例1]Bi2Sr2CaCu2Oy組成の超電導
体を銀シース化した厚み0.3mm、幅3mmのテープに絶縁
材料を含むスラリーで塗布する。スラリーの組成は、重
量比がSiO2:Al2O3=4:1組成で、平均粒径20μmの
粉末をメチルセルロースを溶媒に溶かした溶液と混練し
て、スラリーを作製した。長さ1.2mの銀シーステープ
をスラリーにデッピングして塗布膜を形成し、塗布膜を
150℃で20分乾燥した。乾燥後、外径が35mmのアルミナ
ボビンに巻き線した。さらに、このものを大気中、890
℃、30時間の焼成後徐冷して、実施例1の特性測定用の
酸化物超電導コイルとした。なお、絶縁しない線材の最
適焼成温度は875〜880℃である。
Example 1 A superconductor having a composition of Bi 2 Sr 2 CaCu 2 Oy is coated on a silver sheathed tape having a thickness of 0.3 mm and a width of 3 mm with a slurry containing an insulating material. The composition of the slurry was SiO 2 : Al 2 O 3 = 4: 1 in weight ratio, and a powder having an average particle size of 20 μm was kneaded with a solution of methylcellulose dissolved in a solvent to prepare a slurry. A 1.2 m long silver sheath tape is dipped into the slurry to form a coating film.
It was dried at 150 ° C for 20 minutes. After drying, it was wound on an alumina bobbin having an outer diameter of 35 mm. Furthermore, this thing in the atmosphere, 890
After firing at 30 ° C. for 30 hours, it was gradually cooled to obtain an oxide superconducting coil for measuring characteristics of Example 1. The optimum firing temperature for non-insulated wires is 875-880 ° C.

【0016】焼成後の絶縁層の厚みは30μmであった。
絶縁層の密着性、強度は、引っかき試験を行なった結果
良好であった。
The thickness of the insulating layer after firing was 30 μm.
The adhesion and strength of the insulating layer were good as a result of a scratch test.

【0017】つぎに、4端子抵抗法により、20Kにおけ
る臨界電流を測定した。電流端子は、線材の最長距離と
なるようにし、電圧端子は、電流端子より3cm離しては
んだ付けした。測定結果を図1に示す。図1は、線材の
臨界電流−外部磁界特性である。図において、aが実施
例1の特性曲線である。
Next, the critical current at 20 K was measured by the 4-terminal resistance method. The current terminal was set to the longest distance of the wire, and the voltage terminal was soldered 3 cm away from the current terminal. The measurement results are shown in FIG. FIG. 1 shows the critical current-external magnetic field characteristics of the wire. In the figure, a is a characteristic curve of the first embodiment.

【0018】[比較例1]実施例1と全く同様に、Bi2S
r2CaCu2Oy組成の超電導体を銀シース化した厚み0.3mm、
幅3mmのテープに実施例1と同組成の絶縁材料を含むス
ラリーで塗布する。つぎに長さ1.2mの銀シーステープ
をスラリーにデッピングして塗布膜を形成し、塗布膜を
150℃で20分乾燥した。乾燥後、外径が35mmのアルミナ
ボビンに巻き線した。さらに、このものを大気中、880
℃、30時間の焼成後徐冷して、比較例1の特性測定用の
酸化物超電導コイルとした。
[Comparative Example 1] In the same manner as in Example 1, Bi 2 S
A superconductor of r 2 CaCu 2 Oy composition with a silver sheath thickness of 0.3 mm,
A tape having a width of 3 mm is coated with a slurry containing an insulating material having the same composition as in Example 1. Next, a 1.2 m long silver sheath tape is dipped into the slurry to form a coating film, and the coating film is removed.
It was dried at 150 ° C for 20 minutes. After drying, it was wound on an alumina bobbin having an outer diameter of 35 mm. Furthermore, this thing in the atmosphere, 880
After firing at 30 ° C. for 30 hours, it was gradually cooled to obtain an oxide superconducting coil for measuring characteristics of Comparative Example 1.

【0019】焼成後の絶縁層の厚みは30μmであった。
絶縁層の密着性、強度は、引っかき試験を行なった結果
良好であった。
The thickness of the insulating layer after firing was 30 μm.
The adhesion and strength of the insulating layer were good as a result of a scratch test.

【0020】つぎに、4端子抵抗法により、20Kにおけ
る臨界電流を測定した。電流端子は、線材の最長距離と
なるようにし、電圧端子は、電流端子より3cm離しては
んだ付けした。測定結果を図1に示す。図1は、線材の
臨界電流−外部磁界特性である。図において、bが比較
例1の特性曲線である。
Next, the critical current at 20 K was measured by the 4-terminal resistance method. The current terminal was set to the longest distance of the wire, and the voltage terminal was soldered 3 cm away from the current terminal. The measurement results are shown in FIG. FIG. 1 shows the critical current-external magnetic field characteristics of the wire. In the figure, b is the characteristic curve of Comparative Example 1.

【0021】[比較例2]実施例1と全く同様に、Bi2S
r2CaCu2Oy組成の超電導体を銀シース化した厚み0.3mm、
幅3mmのテープを、絶縁を行なわないで、線どうしが接
触しないように、外径35mmのアルミナボビンに巻き線し
た。さらに、このものを大気中、880℃、30時間の焼成
後徐冷して、比較例2の特性測定用の酸化物超電導コイ
ルとした。
[Comparative Example 2] Bi 2 S
A superconductor of r 2 CaCu 2 Oy composition with a silver sheath thickness of 0.3 mm,
A tape having a width of 3 mm was wound around an alumina bobbin having an outer diameter of 35 mm so that the wires did not come into contact with each other without insulation. Further, this was fired in air at 880 ° C. for 30 hours and then gradually cooled to obtain an oxide superconducting coil for measuring characteristics of Comparative Example 2.

【0022】つぎに、4端子抵抗法により、20Kにおけ
る臨界電流を測定した。電流端子は、線材の最長距離と
なるようにし、電圧端子は、電流端子より3cm離しては
んだ付けした。測定結果を図1に示す。図1は、線材の
臨界電流−外部磁界特性である。図において、cが比較
例2の特性曲線である。
Next, the critical current at 20 K was measured by the 4-terminal resistance method. The current terminal was set to the longest distance of the wire, and the voltage terminal was soldered 3 cm away from the current terminal. The measurement results are shown in FIG. FIG. 1 shows the critical current-external magnetic field characteristics of the wire. In the figure, c is the characteristic curve of Comparative Example 2.

【0023】[比較例3]Bi2Sr2CaCu2Oy組成の超電導
体を銀シース化した厚み0.3mm、幅3mmのテープに絶縁
材料を含むスラリーで塗布する。スラリーは、Al2O3
平均粒径20μmの粉末をメチルセルロースを溶媒に溶か
した溶液と混練して、スラリーを作製した。長さ1.2m
の銀シーステープをスラリーにデッピングして塗布膜を
形成した。塗布膜を150℃で20分乾燥し、乾燥後、外径
が35mmのアルミナボビンに巻き線した。さらに、このも
のを大気中、880℃、30時間の焼成後徐冷した。
Comparative Example 3 A superconductor having a composition of Bi 2 Sr 2 CaCu 2 Oy is applied to a silver sheathed tape having a thickness of 0.3 mm and a width of 3 mm with a slurry containing an insulating material. The slurry was prepared by kneading a powder of Al 2 O 3 having an average particle size of 20 μm with a solution in which methyl cellulose was dissolved in a solvent to prepare a slurry. Length 1.2m
The silver sheath tape of 1 was dipped in the slurry to form a coating film. The coating film was dried at 150 ° C. for 20 minutes, and after drying, it was wound on an alumina bobbin having an outer diameter of 35 mm. Further, this was baked in air at 880 ° C. for 30 hours and then gradually cooled.

【0024】焼成後の絶縁層の厚みは30μmから0μm
であった。これは、絶縁層が作業中において容易に剥離
したためで、また、線間の一部が短絡していた。したが
って、線同志が密接することのないように巻き線をした
サンプルを、再度作製して、比較例3の特性測定用の酸
化物超電導コイルとした。
The thickness of the insulating layer after firing is 30 μm to 0 μm
Met. This is because the insulating layer was easily peeled off during the work, and a part of the wire was short-circuited. Therefore, a sample wound so that the wires do not come into close contact with each other was re-produced to obtain an oxide superconducting coil for measuring characteristics of Comparative Example 3.

【0025】つぎに、4端子抵抗法により、20Kにおけ
る臨界電流を測定した。電流端子は、線材の最長距離と
なるようにし、電圧端子は、電流端子より3cm離しては
んだ付けした。測定結果を図1に示す。dが比較例3の
絶縁特性である。
Next, the critical current at 20 K was measured by the 4-terminal resistance method. The current terminal was set to the longest distance of the wire, and the voltage terminal was soldered 3 cm away from the current terminal. The measurement results are shown in FIG. d is the insulation characteristic of Comparative Example 3.

【0026】図1において、本発明の実施例1の絶縁材
を本発明の方法によって被覆した線材は、絶縁を施さな
い比較例2の特性とほぼ同等であって、絶縁による特性
劣化がないということは明らかである。また、本発明の
絶縁材を従来の絶縁方法で被覆した比較例1では、著し
く絶縁による特性劣化があり、本発明の絶縁方法が有効
であることは明らかである。さらに、従来の絶縁材で、
従来の方法によった比較例3では、比較的特性劣化は少
ないが、絶縁材の強度に欠けるため実用に適していな
い。
In FIG. 1, the wire coated with the insulating material of Example 1 of the present invention by the method of the present invention has almost the same characteristics as those of Comparative Example 2 in which no insulation is applied, and there is no deterioration of characteristics due to insulation. That is clear. Further, in Comparative Example 1 in which the insulating material of the present invention is coated by the conventional insulating method, the characteristics are significantly deteriorated by insulation, and it is clear that the insulating method of the present invention is effective. Furthermore, with conventional insulation,
In Comparative Example 3 based on the conventional method, the characteristic deterioration was relatively small, but the strength of the insulating material was lacking, so that it was not suitable for practical use.

【0027】[実施例2]Bi2Sr2Ca2Cu3Oy組成の超電導
体を銀シース化した厚み0.3mm、幅3mmのテープに、SiO
2の繊維を織った布で被覆した。布の厚みは、100μmで
ある。実施例1と同様に、外径が5mmのアルミナボビン
に巻き線した。さらに、このものを大気中、860℃、30
時間の焼成後徐冷して、実施例2の特性測定用の酸化物
超電導コイルとした。絶縁層の密着性、強度は、良好で
あった。
Example 2 A superconductor having a composition of Bi 2 Sr 2 Ca 2 Cu 3 Oy was silver-sheathed, and a tape having a thickness of 0.3 mm and a width of 3 mm was coated with SiO 2.
Two fibers were coated with a woven cloth. The cloth has a thickness of 100 μm. As in Example 1, the alumina bobbin having an outer diameter of 5 mm was wound. Furthermore, this product was stored in the atmosphere at 860 ℃, 30
After firing for a period of time, it was gradually cooled to obtain an oxide superconducting coil for measuring characteristics of Example 2. The adhesion and strength of the insulating layer were good.

【0028】つぎに、4端子抵抗法により、77Kにおけ
る臨界電流を測定した。電流端子は、線材の最長距離と
なるようにし、電圧端子は、電流端子より3cm離しては
んだ付けした。測定結果を図2に示す。図2は、線材の
臨界電流−外部磁界特性である。図において、eが実施
例2の特性曲線である。
Next, the critical current at 77K was measured by the 4-terminal resistance method. The current terminal was set to the longest distance of the wire, and the voltage terminal was soldered 3 cm away from the current terminal. The measurement results are shown in FIG. FIG. 2 shows the critical current-external magnetic field characteristics of the wire. In the figure, e is the characteristic curve of the second embodiment.

【0029】[比較例4]Bi2Sr2Ca2Cu3Oy組成の超電導
体を銀シース化した厚み0.3mm、幅3mmのテープに、SiO
2の繊維を織った布で被覆した。布の厚みは、100μmで
ある。実施例1と同様に、外径が5mmのアルミナボビン
に巻き線した。さらに、このものを大気中、845℃、30
時間の焼成後徐冷して、比較例4の特性測定用の酸化物
超電導コイルとした。絶縁層の密着性、強度は、良好で
あった。
[Comparative Example 4] A superconductor having a composition of Bi 2 Sr 2 Ca 2 Cu 3 Oy was silver-sheathed, and a tape having a thickness of 0.3 mm and a width of 3 mm was coated with SiO 2.
Two fibers were coated with a woven cloth. The cloth has a thickness of 100 μm. As in Example 1, the alumina bobbin having an outer diameter of 5 mm was wound. In addition, this was placed in the atmosphere at 845 ℃, 30
After firing for a period of time, it was gradually cooled to obtain an oxide superconducting coil for measuring characteristics of Comparative Example 4. The adhesion and strength of the insulating layer were good.

【0030】つぎに、4端子抵抗法により、77Kにおけ
る臨界電流を測定した。電流端子は、線材の最長距離と
なるようにし、電圧端子は、電流端子より3cm離しては
んだ付けした。測定結果を図2に示す。図2は、線材の
臨界電流−外部磁界特性である。図において、fが比較
例4の特性曲線である。
Next, the critical current at 77K was measured by the 4-terminal resistance method. The current terminal was set to the longest distance of the wire, and the voltage terminal was soldered 3 cm away from the current terminal. The measurement results are shown in FIG. FIG. 2 shows the critical current-external magnetic field characteristics of the wire. In the figure, f is the characteristic curve of Comparative Example 4.

【0031】図2より明らかなように、実施例2では、
絶縁材の被覆方法および超電導体の種類が実施例1と異
なっているが、同様に効果が現れている。
As is clear from FIG. 2, in the second embodiment,
The insulating material coating method and the type of superconductor are different from those in Example 1, but the same effects are exhibited.

【0032】なお、酸化ケイ素を30重量%以上100重量
%以下含有し、その他の成分としてAl2O3、BeO、ThO2
MgO、MgAl2O4、ZrO2、Si3N4などを少なくとも1種以上
含有しているばあいは、絶縁後の熱処理温度を調整する
上で有効である。すなわち、酸化ケイ素の含有量が少な
くなるにつれて焼成温度を低下させることができること
を本発明者らは、実験により確認している。
It should be noted that silicon oxide is contained in an amount of 30% by weight or more and 100% by weight or less, and the other components include Al 2 O 3 , BeO, ThO 2 ,
When at least one of MgO, MgAl 2 O 4 , ZrO 2 and Si 3 N 4 is contained, it is effective in adjusting the heat treatment temperature after insulation. That is, the present inventors have confirmed by experiments that the firing temperature can be lowered as the content of silicon oxide decreases.

【0033】[0033]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されたような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0034】酸化ケイ素を30重量%以上100重量%以下
含有し、ばあいによってはその他の成分としてAl2O3、B
eO、ThO2、MgO、MgAl2O4、ZrO2、Si3N4などを少なくと
も1種以上含有しているため、充分に強固に絶縁を施す
ことができる。
Silicon oxide is contained in an amount of 30% by weight or more and 100% by weight or less, and Al 2 O 3 and B may be added as other components depending on the case.
Since it contains at least one kind of eO, ThO 2 , MgO, MgAl 2 O 4 , ZrO 2 , Si 3 N 4, etc., it is possible to perform insulation sufficiently and firmly.

【0035】金属銀を主体とする金属でシース化されて
いる酸化物超電導線材を絶縁するため、絶縁材との密着
性が良好である。
Since the oxide superconducting wire which is sheathed with a metal composed mainly of metallic silver is insulated, the adhesion with the insulating material is good.

【0036】金属銀を主体とする金属でシース化されて
いる酸化物超電導線材を、絶縁材料を布または有機バイ
ンダと絶縁材料との混練物または分解によって酸化物と
なるゾルなどによって被覆し、絶縁しない線材の最適焼
成温度より3℃から20℃高い温度で焼成するため、絶縁
を施さない線材と同等の特性を実現可能である。
An oxide superconducting wire which is sheathed with a metal mainly composed of metallic silver is coated with an insulating material by a cloth or a kneaded product of an organic binder and an insulating material or a sol which becomes an oxide by decomposition and is insulated. Since it is fired at a temperature 3 to 20 ° C. higher than the optimum firing temperature of the non-insulated wire, it is possible to achieve the same characteristics as the wire without insulation.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1および比較例1〜3においてえられた
線材の臨界電流−外部磁界特性を示すグラフである。
FIG. 1 is a graph showing the critical current-external magnetic field characteristics of the wire rods obtained in Example 1 and Comparative Examples 1 to 3.

【図2】実施例2および比較例4においてえられた線材
の臨界電流−外部磁界特性を示すグラフである。
FIG. 2 is a graph showing the critical current-external magnetic field characteristics of the wire rods obtained in Example 2 and Comparative Example 4.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化ケイ素を30重量%以上100重量%以
下含有し、ばあいによってはその他の成分としてAl
2O3、BeO、ThO2、MgO、MgAl2O4、ZrO2、Si3N4などを少
なくとも1種以上含有していることを特徴とする酸化物
超電導線の絶縁材料。
1. Containing 30% by weight or more and 100% by weight or less of silicon oxide, and in some cases Al as another component.
An insulating material for an oxide superconducting wire, which contains at least one or more of 2 O 3 , BeO, ThO 2 , MgO, MgAl 2 O 4 , ZrO 2 , Si 3 N 4 .
【請求項2】 金属銀を主体とする金属でシース化され
ている酸化物超電導線材を絶縁することを特徴とする請
求項1記載の絶縁材料。
2. The insulating material according to claim 1, which insulates an oxide superconducting wire which is sheathed with a metal mainly composed of metallic silver.
【請求項3】 金属銀を主体とする金属でシース化され
ている酸化物超電導線材を、絶縁材料を布または有機バ
インダと絶縁材料との混練物または分解によって酸化物
となるゾルなどによって被覆し、絶縁しない線材の最適
焼成温度より3℃から20℃高い温度で焼成することを特
徴とする請求項1記載の絶縁材料で絶縁した線の製造方
法。
3. An oxide superconducting wire, which is sheathed with a metal mainly composed of metallic silver, is coated with an insulating material with a cloth or a kneaded material of an organic binder and an insulating material, or a sol which becomes an oxide by decomposition. The method for producing a wire insulated with an insulating material according to claim 1, wherein the firing is performed at a temperature higher by 3 to 20 ° C than the optimum firing temperature of the non-insulated wire.
JP3308719A 1991-11-25 1991-11-25 Insulating material for superconducting oxide wire and manufacture of insulated wire Pending JPH05144626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3308719A JPH05144626A (en) 1991-11-25 1991-11-25 Insulating material for superconducting oxide wire and manufacture of insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3308719A JPH05144626A (en) 1991-11-25 1991-11-25 Insulating material for superconducting oxide wire and manufacture of insulated wire

Publications (1)

Publication Number Publication Date
JPH05144626A true JPH05144626A (en) 1993-06-11

Family

ID=17984461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3308719A Pending JPH05144626A (en) 1991-11-25 1991-11-25 Insulating material for superconducting oxide wire and manufacture of insulated wire

Country Status (1)

Country Link
JP (1) JPH05144626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11551832B2 (en) 2017-05-19 2023-01-10 Ustav Materialov A Mechaniky Strojov Sav Superconductor wire based on MgB2 core with AI based sheath and method of its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11551832B2 (en) 2017-05-19 2023-01-10 Ustav Materialov A Mechaniky Strojov Sav Superconductor wire based on MgB2 core with AI based sheath and method of its production

Similar Documents

Publication Publication Date Title
US6387852B1 (en) Method of applying high temperature compatible insulation to superconductors
US20030130128A1 (en) Method of fabricating fine high temperature superconducting composites
JPH05144626A (en) Insulating material for superconducting oxide wire and manufacture of insulated wire
US3041511A (en) Multilayer thin film capacitor
US6387525B1 (en) Self insulating substrate tape
JP2742259B2 (en) Superconducting wire
JP2979546B2 (en) Manufacturing method of oxide superconducting coil
AU6612798A (en) Coating of a superconductor
JPH0661682A (en) Supperconducting magnetic shield
JPS63299012A (en) Superconductive fiber and its manufacture
JP2727565B2 (en) Superconductor manufacturing method
JP4373683B2 (en) Method for manufacturing Bi-based oxide superconducting coil
Nikulin et al. Ultrathin ceramic insulation for Ag-sheathed high T/sub c/-superconductors
JPH0218810A (en) Vacuum heat resistant conductor
JP3713284B2 (en) Manufacturing method of oxide superconducting coil
JP3590567B2 (en) Manufacturing method of oxide superconducting wire and oxide superconducting wire
JP2595670B2 (en) Method for manufacturing superconducting film-formed substrate
JPH02246101A (en) Oxide superconductive coil
JPH01128408A (en) Manufacture of ceramics system superconductor coil
JP2573506B2 (en) Manufacturing method of ceramic superconducting wire
JPH04292808A (en) Multicore superconductive wire
JPH0766009A (en) Thermistor element and manufacture thereof
JPH05121226A (en) Superconducting member and its production
JPS63292517A (en) Compound ceramic superconductor
JPS63259917A (en) Superconductive moulded matter