JPH0514381B2 - - Google Patents

Info

Publication number
JPH0514381B2
JPH0514381B2 JP60242442A JP24244285A JPH0514381B2 JP H0514381 B2 JPH0514381 B2 JP H0514381B2 JP 60242442 A JP60242442 A JP 60242442A JP 24244285 A JP24244285 A JP 24244285A JP H0514381 B2 JPH0514381 B2 JP H0514381B2
Authority
JP
Japan
Prior art keywords
battery
pole
terminal
manufacturing
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60242442A
Other languages
Japanese (ja)
Other versions
JPS62103966A (en
Inventor
Kensuke Hironaka
Satoshi Matsubayashi
Asahiko Miura
Yasunao Wada
Takumi Hayakawa
Akio Komaki
Toshio Uchida
Shogo Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP60242442A priority Critical patent/JPS62103966A/en
Publication of JPS62103966A publication Critical patent/JPS62103966A/en
Publication of JPH0514381B2 publication Critical patent/JPH0514381B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/126Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉型鉛蓄電池の製造法に関するもの
で、特に極柱部、端子部を改良したものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a sealed lead-acid battery, and in particular improves the pole portion and the terminal portion.

従来の技術 従来の密閉型鉛蓄電池はABSあるいはAS樹脂
のハードケース電槽を用いている。
Conventional technology Conventional sealed lead-acid batteries use hard case containers made of ABS or AS resin.

発明が解決しようとする問題点 そのため極板群を電槽内に挿入後、蓋の接着、
および極性、端子部の封口に接着剤を使用しなけ
ればならない。この方式では組立工数がかかるの
みならず、接着剤の硬化に時間がかかり、製造コ
ストの上昇につながつている。さらに従来の方式
では電槽自体がかなり厚く、薄形化には限界を生
じる。最近、密閉型鉛蓄電池はハンデイクリーナ
用、VTR(ヴイテイアール)用電源に代表される
ように家電品への適用がさかんであり、今後ます
ますその傾向は増大するものと考えられる。そし
て電池としては、大型化に向うと同時に、電池容
量が1Ah程度あるいは1Ah以下の小型化、薄型化
に当然進んでゆくと考えられる。その際、従来の
技術では電槽を用いているため薄型化には、その
厚みの限度と製造上の困難性から無理を生じる。
たとえ出来たとしても製造コストが大幅に上昇
し、密閉型鉛蓄電池のメリツトが失なわれる。そ
れに対し他の方法たとえば電槽と極板を一体化し
て作るなどの方法でも、極柱部、端子部の封口に
従来通りの樹脂剤の充填が必要であり工数と手間
がかかり、コスト上昇の原因となる。
Problems to be Solved by the Invention Therefore, after inserting the electrode plate group into the battery case, the lid is glued and
Adhesive must be used for polarity and sealing of terminals. This method not only requires assembly man-hours, but also takes time for the adhesive to harden, leading to an increase in manufacturing costs. Furthermore, in the conventional method, the battery case itself is quite thick, and there is a limit to how thin it can be made. Recently, sealed lead-acid batteries have been increasingly used in home appliances, such as power supplies for hand-held cleaners and VTRs, and this trend is expected to increase in the future. As batteries become larger, it is thought that, at the same time, they will naturally become smaller and thinner, with a battery capacity of about 1 Ah or less. In this case, since the conventional technology uses a battery case, it is difficult to make it thinner due to its thickness limit and manufacturing difficulties.
Even if it were possible, manufacturing costs would increase significantly and the advantages of sealed lead-acid batteries would be lost. On the other hand, even with other methods, such as integrating the battery case and the electrode plate, it is necessary to fill the pole and terminal parts with resin as in the past, which takes a lot of man-hours and effort, and increases costs. Cause.

本発明は上記の問題点を解決することを主眼と
し、合成樹脂または金属と合成樹脂との複合膜で
極板群をくるみ、周囲を熱溶着した後、端子をは
さみ込むことで、機械化を容易にし、量産、薄形
化に適した構造をもたせ、製造コストの低減を目
的とする。
The present invention aims to solve the above problems, and facilitates mechanization by wrapping the electrode plate group in a synthetic resin or a composite film of metal and synthetic resin, heat welding the surrounding area, and then sandwiching the terminals. The aim is to reduce manufacturing costs by creating a structure suitable for mass production and thinning.

問題点を解決するための手段 本発明は陽極板、陰極板およびリテーナからな
る極板群を合成樹脂または金属と合成樹脂との複
合膜でくるみ、周囲を極柱ともに熱溶着で密閉し
電槽とするとともに電槽の膜の上から接着剤を塗
布した端子をはさみ込み固定することを特徴とす
る。
Means for Solving the Problems The present invention wraps an electrode plate group consisting of an anode plate, a cathode plate, and a retainer in a synthetic resin or a composite film of metal and synthetic resin, and seals the surroundings together with the pole poles by heat welding. In addition to this, a terminal coated with adhesive is inserted and fixed onto the membrane of the battery case.

作 用 合成樹脂または金属と合成樹脂との複合膜でく
るみ、周囲を熱溶着するため、従来の電槽内への
極板群の挿入、蓋の接着等がはぶかれ、しかも自
動化が容易となる。また熱溶着後、膜の上から端
子をまさみ込み固定するため、従来のハンダによ
る極柱と端子の接続、さらに樹脂剤による埋込み
作業がなくなり、工程、時間の短縮とともに、自
動化が容易となる。また使用する膜は薄膜でよい
ため従来のハードケース電槽にくらべ、薄型化が
可能で、電池の重量、容積効率も向上し、材料費
も安価となる。
Function: Because it is wrapped in synthetic resin or a composite film of metal and synthetic resin, and the surrounding area is heat-welded, the conventional process of inserting the electrode plate group into the battery case and gluing the lid is eliminated, and it is easy to automate. Become. In addition, since the terminals are inserted and fixed onto the membrane after heat welding, there is no need to connect the poles and terminals using conventional solder, or to embed the terminals using resin, which shortens the process and time and facilitates automation. In addition, since the membrane used can be a thin film, it can be made thinner than conventional hard case batteries, improving the weight and volumetric efficiency of the battery, and reducing material costs.

実施例 本発明の詳細を実施例をもつて説明する。Example The details of the present invention will be explained using examples.

第1図において、46mm×86mm×1.4mmの陽極板
1を1枚と46mm×86mm×0.7mmの陰極板2を2枚、
リテーナ3ではさみ込んでなる極板群4を厚さ
0.1mmの塩化ビニリデン/アルミシート/塩化ビ
ニルの3層複合膜5でくるみ、周囲を加熱温度
220℃の熱プレスにて約1分間加熱し、熱溶着を
行ない電槽とした。この時極柱6も完全に熱溶着
部7に入り込んでいる。第2図に熱溶着後の概略
図を示す。次に第3図に示すように、コの字型の
先端を鋭利にした端子8に接着剤9を塗布し、熱
溶着部中の極柱6に膜5の上からはさみ込んで固
定した。この時、膜5はもちろん極柱6の鉛も容
易に浸入でき、しかも極柱6と端子8との電気的
接触も完全であつた。また、周囲温度40℃、50℃
での放置試験ならびに充放電サイクル試験での電
解液のモレ試験を行つたが、周囲温度40℃、50℃
で70日間放置、サイクル試験55サイクル時点で
の液モレは観測されていない。なお、充電中発生
するガスおよび電解液の注入については第2図に
示すゴム弁10を用いて、ガスの放出を行つてい
る。次に周囲温度40℃、50℃で放電中の電池から
の電解液の透湿量を測定したが、70日間におい
て、ほとんど透湿量はなかつた。これは実施例の
複合膜5として塩化ビニリデン/アルミシート/
塩化ビニルを用いているためと考えられる。本発
明の製造法による電池(以下「本発明の電池a」
という)の性能、生産性と調査するためと従来の
ABS電槽をもちいた電池(以下「従来の電池b」
という)との比較を行つた。第4図に250mA完
全放電試験55サイクルの結果を示す。本発明、従
来の電池a,bをも差が現われておらず、本発明
の電池aが従来の電池bと比べて容量面で劣つて
いないことが解つた。寿命については55サイクル
であるが、電池からの電解液の透湿がほとんどな
いことを考えると、従来の電池bと同等もしくは
それ以上と考えられる。生産性については、従来
の電池bについて、極板群の電槽内挿入から極
柱、端子部の樹脂剤埋込みまでの製造に要する所
要時間と、本発明の電池aの複合膜溶着から端子
部固定までの製造に要する所要時間を比較した。
その結果を第5図に示す。図より明らかなように
本発明製造法では従来製造法にくらべ約1/15の時
間で済むことが解る。この大きな差は特に接着剤
の硬化時間によるところが大きい。
In Figure 1, one anode plate 1 of 46 mm x 86 mm x 1.4 mm and two cathode plates 2 of 46 mm x 86 mm x 0.7 mm,
The thickness of the electrode plate group 4 sandwiched between the retainer 3
Wrapped with 0.1 mm vinylidene chloride/aluminum sheet/vinyl chloride three-layer composite membrane 5 and heated around the temperature.
It was heated in a heat press at 220°C for about 1 minute to heat weld and form a battery case. At this time, the pole post 6 has also completely entered the heat welded portion 7. Figure 2 shows a schematic diagram after heat welding. Next, as shown in FIG. 3, an adhesive 9 was applied to a U-shaped terminal 8 with a sharp tip, and the terminal 8 was fixed by being inserted into the pole column 6 in the heat-welded portion from above the membrane 5. At this time, not only the membrane 5 but also the lead of the pole post 6 could penetrate easily, and the electrical contact between the pole post 6 and the terminal 8 was also perfect. Also, the ambient temperature is 40℃, 50℃
We conducted an electrolyte leakage test during a storage test and a charge/discharge cycle test at an ambient temperature of 40°C and 50°C.
No liquid leakage was observed after the 55th cycle of the cycle test. In addition, regarding the injection of gas and electrolyte generated during charging, a rubber valve 10 shown in FIG. 2 is used to release the gas. Next, we measured the amount of moisture permeation of the electrolyte from the battery during discharge at ambient temperatures of 40°C and 50°C, and found that there was almost no permeation of moisture over 70 days. This is the composite membrane 5 of the example: vinylidene chloride/aluminum sheet/
This is thought to be due to the use of vinyl chloride. Battery manufactured by the manufacturing method of the present invention (hereinafter referred to as "Battery a of the present invention")
) to investigate the performance, productivity and conventional
A battery using an ABS battery case (hereinafter referred to as "conventional battery b")
). Figure 4 shows the results of 55 cycles of a 250mA full discharge test. There was no difference between the batteries a and b of the present invention and the conventional batteries, and it was found that battery a of the present invention was not inferior to the conventional battery b in terms of capacity. The lifespan is 55 cycles, but considering that there is almost no moisture permeation of the electrolyte from the battery, it is considered to be equivalent to or longer than conventional battery B. Regarding productivity, the time required for manufacturing from inserting the electrode plate group into the battery case to embedding the pole pole and terminal part in resin for conventional battery b, and the time required for manufacturing from composite membrane welding to terminal part for battery a of the present invention. We compared the time required for manufacturing until fixation.
The results are shown in FIG. As is clear from the figure, the manufacturing method of the present invention takes about 1/15th the time compared to the conventional manufacturing method. This large difference is due in particular to the curing time of the adhesive.

発明の効果 以上の如く本発明によれば、従来法に比べて電
池の製造時間、工数を大幅に縮少することがで
き、かつ薄型電池の製造に最適であると共に電池
性能も従来電池と同等である等工業的価値大であ
る。
Effects of the Invention As described above, according to the present invention, it is possible to significantly reduce battery manufacturing time and man-hours compared to conventional methods, and it is optimal for manufacturing thin batteries, and the battery performance is equivalent to that of conventional batteries. It has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の極板群に複合膜を取付
ける前の状態断面図、第2図は本発明実施例の複
合膜熱溶着後で端子取付前の電池の断面図、第3
図は本発明実施例の端子部の断面図、第4図は本
発明の電池と従来法の電池の寿命試験比較特性曲
線図、第5図は本発明製造法と従来製造法との所
要時間比較図である。 1:陽極板、2:陰極板、3:リテーナ、4:
極板群、5:複合膜、6:極柱、7:熱溶着部、
8:端子、9:接着剤、a:本発明の電池。
FIG. 1 is a cross-sectional view of the battery before attaching the composite membrane to the electrode plate group according to the embodiment of the present invention, FIG.
The figure is a sectional view of the terminal part of the embodiment of the present invention, Figure 4 is a comparison characteristic curve of the life test of the battery of the present invention and the battery of the conventional method, and Figure 5 is the time required for the manufacturing method of the present invention and the conventional method. It is a comparison diagram. 1: Anode plate, 2: Cathode plate, 3: Retainer, 4:
Plate group, 5: Composite membrane, 6: Pole column, 7: Heat welded part,
8: terminal, 9: adhesive, a: battery of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 陽極板、陰極板及びリテーナからなる極板群
を、合成樹脂膜または金属と合成樹脂との複合膜
でくるみ、該膜の周囲を熱溶着して極柱ともに密
閉し、端子先端部に接着剤を塗布した端子によつ
て、前記密閉した膜の上から前記極柱をはさみ込
み、前記端子先端部を極柱の両側から侵入させて
固定することを特徴とする密閉型鉛蓄電池の製造
法。
1. Wrap the electrode plate group consisting of an anode plate, a cathode plate, and a retainer in a synthetic resin film or a composite film of metal and synthetic resin, heat weld the periphery of the film to seal the pole column, and glue it to the tip of the terminal. A method for manufacturing a sealed lead-acid battery, characterized in that the pole pole is sandwiched from above the sealed membrane using a terminal coated with an agent, and the tip of the terminal is penetrated from both sides of the pole pole and fixed. .
JP60242442A 1985-10-29 1985-10-29 Manufacture of enclosed type lead storage battery Granted JPS62103966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242442A JPS62103966A (en) 1985-10-29 1985-10-29 Manufacture of enclosed type lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242442A JPS62103966A (en) 1985-10-29 1985-10-29 Manufacture of enclosed type lead storage battery

Publications (2)

Publication Number Publication Date
JPS62103966A JPS62103966A (en) 1987-05-14
JPH0514381B2 true JPH0514381B2 (en) 1993-02-24

Family

ID=17089148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242442A Granted JPS62103966A (en) 1985-10-29 1985-10-29 Manufacture of enclosed type lead storage battery

Country Status (1)

Country Link
JP (1) JPS62103966A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645363U (en) * 1987-06-29 1989-01-12

Also Published As

Publication number Publication date
JPS62103966A (en) 1987-05-14

Similar Documents

Publication Publication Date Title
JP5970379B2 (en) Lightweight bipolar sealed lead-acid battery and method thereof
EP2503635B1 (en) Bipolar electrode pair/separation membrane assembly, bipolar battery including same, and production method thereof
JP2003323869A (en) Battery and battery module
JP5664565B2 (en) Flat battery
JPH023267B2 (en)
JP2000067839A (en) Secondary battery
JPS63174265A (en) Manufacture of thin type enclosed lead storage battery
JPH0514381B2 (en)
CN210120185U (en) Soft packet of three electrode lithium ion battery's utmost point ear structure
KR20150064257A (en) electrochemical energy storage device
JPH0556622B2 (en)
JPH09306443A (en) Non-aqueous electrolyte battery
JPH08287889A (en) Thin macromolecule solid electrolyte battery and manufacture thereof
JPH0378745B2 (en)
JPS60230353A (en) Manufacture of sealed lead-acid battery
JPH08171897A (en) Lead-acid battery
JPS63298959A (en) Sealed lead-acid battery
JPS6338529Y2 (en)
JPH0451938B2 (en)
US20120159773A1 (en) Method for producing an electrochemical cell
JP2003051294A (en) Sealed cell and production method therefor
JPH01220367A (en) Manufacture of electrochemical cell
JPS59146149A (en) Manufacture of lead battery
JPS61267259A (en) Manufacture of flat battery
JPH01137570A (en) Manufacture of sealed type lead-acid battery